Identi Cation of Different Proteins Binding to Na, K-Atpase Α1 In

Total Page:16

File Type:pdf, Size:1020Kb

Identi Cation of Different Proteins Binding to Na, K-Atpase Α1 In Identication of Different Proteins Binding to Na, K-ATPase α1 in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome Cell Model by Proteomic Analysis Xu-Peng Wen Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China Yue-Zhong Zhang Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, China He Huang Hunan International Travel Health Care Center Tao-Hua Liu Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, China Qi-Quan Wan ( [email protected] ) Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China Research Article Keywords: ARDS, lipopolysaccharide, proteomics, Na, K-ATPase α1, A549 cell. Posted Date: July 9th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-687826/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia caused by accumulation of pulmonary uid, which is related to inammatory cell inltration, impaired tight junction of pulmonary epithelium and impaired Na, K-ATPase function, especially Na, K-ATPase α1 subunit. Up until now, the pathogenic mechanism at the level of protein during lipopolysaccharide- (LPS-) induced ARDS remains unclear. Using an unbiased, discovery and quantitative proteomic approach, the discovery of differentially expressed proteins binding to Na, K-ATPase α1 between LPS-induced A549 cell and control-A549 group is of particular interest for the current study. These proteins may help the clinical diagnosis and facilitate the personalized treatment of ARDS. We screened these Na, K-ATPase α1 interacting proteins, carried out the related Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and found evident phenomena of ubiquitination and deubiquitination, as well as the pathways related to autophagy. We also chose some of the differentiated expressing proteins with signicant performance for further verication by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Among proteins with rich abundance, there were several intriguing ones, including the deubiquitinase (OTUB1), the tight junction protein zonula occludens-1 (ZO-1), the scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complexes (CUL4B) and the autophagy-related protein sequestosome-1 (SQSTM1). Protein-protein interaction network showed that there were 244 signicantly enriched co-expression among 60 proteins in the group control-A549. while the group LPS-A549 showed 43 signicant enriched interactions among 29 proteins. In conclusion, our quantitative discovery-based proteomic approach identied commonalities, and revealed targets related to the occurrence and development of ARDS, being the rst study to investigate signicant differences in Na, K-ATPase α1 interacting proteins between LPS-induced ARDS cell model and control-A549 cell. 1. Introduction Acute respiratory distress syndrome (ARDS) is a potentially fatal clinical syndrome that occurs as a result of diversied pulmonary and extrapulmonary factors, characterized by excessive lung inammatory response, impaired tight junction of pulmonary epithelium, decreased pulmonary gas exchange ability and reduced alveolar uid clearance (AFC) of the lungs with consequent refractory hypoxemia.1 Every year, over 3 million patients worldwide suffer from ARDS. 10% of intensive care unit (ICU) patients were admitted as a result of ARDS. With high morbidity and mortality, it is a hot spot in the eld of intensive care and respiratory medicine.2 Effective removal of excess edema uid in the alveoli and maintenance of dry alveolar space are the main ways to relieve ARDS.3 Over the past decade, considerable work has been done for eliminating excessive accumulation of alveolar edema uid to relieve ARDS and is still in progress. The apically-located epithelial Na+ channel (ENaC) and sodium pump, namely Na, K-ATPase, on the basolateral surface of alveolar type epithelial cells (AT ) mediated sodium ion transport is the main dynamic of AFC.4–6 The imbalance of Na, K-ATPase will aggravate the formation of pulmonary edema by limiting Na+ transport and destroying the alveolar barrier function.7 Na, K-ATPase, is a ubiquitous enzyme consisting of three subunits. Among them, α-subunit plays a key role and is the most important one in sodium-water transport as the main driving force of Na+ and K+ exchange in the lung to promote uid clearance in the alveoli. There are four subtypes of α subunit, only α1 exists in lung.8 Na, K-ATPase α1 carries several binding domains and functional domains.9 Resolvin D1 can improve the expression of ENaC and Na, K- ATPase α1 protein and the activity of Na, K-ATPase enzyme through ALX/cAMP/PI3K pathway, thus improving the obstruction of pulmonary edema clearance caused by lipopolysaccharides (LPS).10 However, researchers have not explored the systemic regulation mechanism of Na, K-ATPase. Similarly, a study has reported that Maresin1 can enhance the protein expression of Na, K-ATPase α1, which may be achieved through the ALX/PI3K/AKT/Nedd4-2 pathway.6 Whereas, E3 ubiquitin ligase Nedd4-2 has no structural binding sites with Na, K-ATPase. Maresin1 could not increase Na, K-ATPase α1 level through increasing the phosphorylation of Nedd4-2 and its binding with 14-3-3 protein. The mechanism of Maresin1 regulating Na, K-ATPase α1 is not clear. Thus, investigating Na, K-ATPase α1-related pathway may provide new strategies and targets for ARDS treatment. But, a powerful tool to precisely and quantitatively detect changes in protein expression in response to ARDS is necessary. Unbiased discovery and the quantitative proteomic approach, enabling relatively comprehensive global analyses, have been used for identifying novel biomarkers and regulatory signal networks in lung diseases including ARDS.11–17 Studies identied some possible ARDS biomarkers, such as angiopoietin-2, surfactant proteins, glutathione, selectins, thrombomodulin, adenosine, Clara cell protein and many other biomarkers, which were reviewed before.11,12,15−18 Several clinical trials failed since there was more than one pathway causing ARDS.19–21 The research of ARDS biomarkers concerning several different elds, requiring a more comprehensive study method than traditional ones, thus non-targeted proteomics can be very suitable. In the present study, we utilized LPS-induced human AT II cell line (A549) as a model of ARDS,22–24 and detected the changes in the protein expression proles of LPS-A549 group compared with control-A549 group and control-IgG group. Among them, protein complexes and protein interaction networks are essential mediators of most biological functions. Currently, the majority of studies on the composition of protein complexes are carried out by anity purication mass spectrometry (AP-MS/MS), or by co-immunoprecipitation mass spectrometry (Co-IP-MS) for untransfected native samples, and present a static view of the system (Figs. 1 and 2) (free images were obtained from Aksomics). We employed anity purication (AP) or co-immunoprecipitation (Co-IP) technology to separate endogenous or labeled bait proteins and the proteins interacting with them. Then, we used liquid chromatography-tandem mass spectrometry (LC- MS/MS) technology to identify and quantify these proteins, combined with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, constructing the protein interaction network. Altogether, differential protein expression data may provide a valuable resource to reveal potential molecular targets for ARDS treatment. 2 Materials And Methods 2.1. Reagents Page 2/19 LPS (Escherichia coli serotype 055: B5), TCEP (tris (2-carboxyethyl) phosphine), IAA (iodoacetamide), PBS, C18 columns (3M), FA (Formic acid, LC-MS), TFA (Triuoroacetic acid, HPLC) and 10% ammonium hydroxide were purchased from Sigma-Aldrich (St Louis, MO, USA); Na, K-ATPase α1 antibody was purchased from Proteintech, USA; ACN (Acetonitrile, LC-MS) and H2O (LC-MS) were purchased from J.T.Baker (PA, USA); Trypsin (sequence grade) was purchased from Promega (Madison, WI, USA); NP-40 (Nonidet P 40) and Ammonium bicarbonate (ABC) were purchased from Sangon Biotech (Shanghai, China); Dynabeads® Anti Rabbit IgG was purchased from Thermo Scientic (Rockford, USA); Normal rabbit IgG was purchased from Cell signaling technology (MA, USA); Protease inhibitor cocktail (PIC) was purchased from Kangchen Bio-tech (Shanghai, China). 2.2 Cell line and cell culture A549 cell line was purchased from ATCC; A549 cells were seeded into plastic culture dishes at 1×106/cm2 and cultured in a humidied incubator (21 % O2, 5 % CO2, 37°C) in DMEM with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 units/ml penicillin, and 100µg/ml streptomycin. For all experiments, cells were grown and maintained in six-well plates, and cells were serum deprived for 24 h prior to pretreatment with LPS at a concentration of 1 ug/ml for 12 h at 37°C. 2.3 Sample preparation For all experiments, cells were grown and maintained in six-well plates without 10% FBS for 12 hours before the experiment started. Subsequent experiments were conducted on medium without 10% FBS. There were two groups: A: A549 cells, B: A549 cells + LPS (1µg/ml, cultured for 12h). ARDS was induced by LPS according to previous reports.10 The proteins were detected by mass spectrometry, and the amount of protein was4 mg. Na, K-ATPase α1 antibody was used to pull down the Na, K-ATPase α1 proteins in two groups of cells. These proteins were pulled down for label-free mass spectrometry to understand the binding and interacting protein, and then the protein of interest was selected for verication. 2.4 Sample lysis (1) Just before being used, Mix PBSN (PBS, 1% NP-40) and Protease inhibitor cocktail (PIC) were pre-chilled at 4°C. (2) Add 1mL lysis buffer to cell pellet, mix well, and sonicate to dissolve with ice bath. (3) 14000 g, centrifuge 15min at 4°C, transfer the supernatant to a new EP tube and keep it on ice.
Recommended publications
  • Theranostics OTUB2 Stabilizes U2AF2 to Promote the Warburg Effect and Tumorigenesis Via the AKT/Mtor Signaling Pathway in Non-Sm
    Theranostics 2019, Vol. 9, Issue 1 179 Ivyspring International Publisher Theranostics 2019; 9(1): 179-195. doi: 10.7150/thno.29545 Research Paper OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer Jing Li1*, Dongdong Cheng2*, Miaoxin Zhu1, Huajian Yu1, Zhen Pan2, Lei Liu1, Qin Geng1, Hongyu Pan1, Mingxia Yan1, Ming Yao1 1. State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China 2. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China * These authors contributed equally to this work. Corresponding author: State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai 200032, China. Tel: +86 2164183618; Fax: +86 21 64042002. Email: [email protected]; [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.08.28; Accepted: 2018.11.25; Published: 2019.01.01 Abstract Increasing evidence has confirmed that deubiquitinating enzymes play an important role in lung cancer progression. In the current study, we investigated the expression profile of deubiquitinating enzymes in non-small cell lung cancer (NSCLC) tissues and identified OTUB2 as an upregulated deubiquitinating enzyme. The role of OTUB2 in NSCLC is unknown. Methods: Quantitative, real-time PCR and Western blot were used to detect OTUB2 and U2AF2 expression in NSCLC tissues.
    [Show full text]
  • Anti-OTUB1 Monoclonal Antibody, Clone FQS24138(C) (DCABH-6470) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-OTUB1 monoclonal antibody, clone FQS24138(C) (DCABH-6470) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit monoclonal to OTUB1 Antigen Description Hydrolase that can remove conjugated ubiquitin from proteins and plays an important regulatory role at the level of protein turnover by preventing degradation. Regulator of T-cell anergy, a phenomenon that occurs when T-cells are rendered unresponsive to antigen rechallenge and no longer respond to their cognate antigen. Acts via its interaction with RNF128/GRAIL, a crucial inductor of CD4 T-cell anergy. Isoform 1 destabilizes RNF128, leading to prevent anergy. In contrast, isoform 2 stabilizes RNF128 and promotes anergy. Surprisingly, it regulates RNF128- mediated ubiquitination, but does not deubiquitinate polyubiquitinated RNF128. Deubiquitinates estrogen receptor alpha (ESR1). Mediates deubiquitination of Lys-48-linked polyubiquitin chains, but not Lys-63-linked polyubiquitin chains. Not able to cleave di-ubiquitin. Also capable of removing NEDD8 from NEDD8 conjugates, but with a nuch lower preference compared to Lys- 48-linked ubiquitin. Immunogen Synthetic peptide (the amino acid sequence is considered to be commercially sensitive) within Human OTUB1 aa 50-150 (Cysteine residue). The exact sequence is proprietary.Database link: Q96FW1 Isotype IgG Source/Host Rabbit Species Reactivity Mouse, Rat, Human Clone FQS24138(C) Purity Tissue culture supernatant Conjugate Unconjugated Applications WB Positive Control MCF7, HeLa, HepG2 and 293T cell lysates. Format Liquid Size 100 μl 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Preservative None Storage Store at +4°C short term (1-2 weeks).
    [Show full text]
  • FIH Regulates Cellular Metabolism Through Hydroxylation of the Deubiquitinase OTUB1
    RESEARCH ARTICLE FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1 Carsten C. Scholz1,2,3,4*, Javier Rodriguez1, Christina Pickel4, Stephen Burr5, Jacqueline- alba Fabrizio6, Karen A. Nolan4, Patrick Spielmann4, Miguel A. S. Cavadas1,3, Bianca Crifo2,3, Doug N. Halligan2,3, James A. Nathan5, Daniel J. Peet6, Roland H. Wenger4, Alex Von Kriegsheim1, Eoin P. Cummins2,3, Cormac T. Taylor1,2,3 1 Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland, 2 School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland, 3 The Conway Institute, University College Dublin, Belfield, Dublin, Ireland, 4 Institute of Physiology and Zürich Center for Integrative Human a11111 Physiology (ZIHP), University of Zürich, Zürich, Switzerland, 5 Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge Biomedical Research Centre, Cambridge, United Kingdom, 6 School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia * [email protected] OPEN ACCESS Abstract Citation: Scholz CC, Rodriguez J, Pickel C, Burr S, The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon Fabrizio J-a, Nolan KA, et al. (2016) FIH Regulates the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1. PLoS Biol 14(1): e1002347. hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory doi:10.1371/journal.pbio.1002347 oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, Academic Editor: Celeste Simon, University of the functional consequences of this outside of the HIF pathway remain unclear. Here, we Pennsylvania, UNITED STATES demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde Received: October 14, 2015 binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22.
    [Show full text]
  • FIH Regulates Cellular Metabolism Through Hydroxylation of The
    Edinburgh Research Explorer FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1 Citation for published version: Scholz, CC, Rodriguez, J, Pickel, C, Burr, S, Fabrizio, J, Nolan, KA, Spielmann, P, Cavadas, MAS, Crifo, B, Halligan, DN, Nathan, JA, Peet, DJ, Wenger, RH, Von Kriegsheim, A, Cummins, EP & Taylor, CT 2016, 'FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1', PLoS Biology, vol. 14, no. 1, pp. e1002347. https://doi.org/10.1371/journal.pbio.1002347 Digital Object Identifier (DOI): 10.1371/journal.pbio.1002347 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PLoS Biology Publisher Rights Statement: Copyright: © 2016 Scholz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 RESEARCH ARTICLE FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1 Carsten C.
    [Show full text]
  • OTUB1-Catalyzed Deubiquitination of FOXM1 Facilitates Tumor Progression and Predicts a Poor Prognosis in Ovarian Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 24 Research Paper OTUB1-catalyzed deubiquitination of FOXM1 facilitates tumor progression and predicts a poor prognosis in ovarian cancer Yiqin Wang1, Xianrong Zhou1, Midie Xu2,3,4,5, Weiwei Weng2,3,4,5, Qiongyan Zhang2,3,4,5, Yusi Yang2,3,4,5, Ping Wei2,4,6, Xiang Du2,3,4,5 1Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200044, China 2Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China 3Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 200032, China 4Institute of Pathology, Fudan University, Shanghai 200032, China 5Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China 6Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China Correspondence to: Ping Wei, e-mail: [email protected] Xiang Du, e-mail: [email protected] Keywords: OTUB1, FOXM1, ovarian carcinoma, ubiquitination, deubiquitination Received: August 12, 2015 Accepted: April 22, 2016 Published: May 4, 2016 ABSTRACT Ubiquitination is essential for regulation of cell physiology, protein stability, and signal transduction [1]. Its dysregulation is an important factor in many diseases, including cancer. We explored the potential OTUB1-catalyzed deubiquitination of FOXM1, a transcription factor linked to carcinogenesis, and the biological consequence of that interaction in ovarian cancer. We found that FOXM1 is ubiquitinated by multiple polyUb chains and targeted for proteosomal degradation in a reaction dependent on its ubiquitination-required KEN box. Additionally, the OTUB1 N-terminus and catalytic triad bind to FOXM1, specifically catalyzing cleavage of the K48-specific ubiquitin linkage from FOXM1. Moreover, OTUB1-FOXM1 interaction drives tumor progression and OTUB1 expression predicts a poor prognosis in ovarian cancer.
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • Otubain 1: a Cancer-Associated 26:1 R1–R14 Cancer Deubiquitinase REVIEW Otubain 1: a Non-Canonical Deubiquitinase with an Emerging Role in Cancer
    26 1 Endocrine-Related M Saldana et al. Otubain 1: a cancer-associated 26:1 R1–R14 Cancer deubiquitinase REVIEW Otubain 1: a non-canonical deubiquitinase with an emerging role in cancer Matthew Saldana, Kacey VanderVorst, Anastasia L Berg, Hyun Lee and Kermit L Carraway III Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California, USA Correspondence should be addressed to K L Carraway: [email protected] Abstract The ubiquitin system regulates diverse biological processes, many involved in cancer Key Words pathogenesis, by altering the ubiquitination state of protein substrates. This is f OTUB1 accomplished by ubiquitin ligases and deubiquitinases (DUBs), which respectively add f E2 enzyme or remove ubiquitin from substrates to alter their stability, activity, localization and f ubiquitin ligase interactions. While lack of catalytic activity makes therapeutic targeting of ubiquitin f DUB inhibitor ligases difficult, DUB inhibitors represent an active area of research and the identification f metastasis of cancer-associated DUBs may lead to the development of novel therapeutics. A growing body of literature demonstrates that the DUB Otubain 1 (OTUB1) regulates many cancer- associated signaling pathways including MAPK, ERa, epithelial-mesenchymal transition (EMT), RHOa, mTORC1, FOXM1 and P53 to promote tumor cell survival, proliferation, invasiveness and therapeutic resistance. In addition, clinical studies have associated elevated OTUB1 expression with high grade, invasiveness and metastasis in several tumor types including lung, breast, ovarian, glioma, colon and gastric. Interestingly, in addition to catalytic DUB activity, OTUB1 displays a catalytic-independent, non-canonical activity where it inhibits the transfer of ubiquitin onto protein substrates by sequestration of E2 ubiquitin-conjugating enzymes.
    [Show full text]
  • The Role of Deubiquitinating Enzymes in Acute Lung Injury and Acute Respiratory Distress Syndrome
    International Journal of Molecular Sciences Review The Role of Deubiquitinating Enzymes in Acute Lung Injury and Acute Respiratory Distress Syndrome Tiao Li and Chunbin Zou * Division of Pulmonary, Allergy, Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; [email protected] * Correspondence: [email protected]; Tel.: +(412)-624-3666 Received: 1 June 2020; Accepted: 5 July 2020; Published: 8 July 2020 Abstract: Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30–40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways. Keywords: acute lung injury/acute respiratory distress syndrome; deubiquitinating enzyme; protein stability; inflammation; infection 1. Introduction Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are a group of illnesses with features of lung inflammation, air–blood barrier disfunction, and hypoxemia.
    [Show full text]
  • Download
    www.aging-us.com AGING 2021, Vol. 13, No. 12 Research Paper Immune infiltration and a ferroptosis-associated gene signature for predicting the prognosis of patients with endometrial cancer Yin Weijiao1,2, Liao Fuchun1, Chen Mengjie1, Qin Xiaoqing1, Lai Hao3, Lin Yuan3, Yao Desheng1 1Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China 2Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, PR China 3Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China Correspondence to: Yao Desheng; email: [email protected] Keywords: ferroptosis, endometrial cancer, prognosis Received: March 24, 2021 Accepted: June 4, 2021 Published: June 24, 2021 Copyright: © 2021 Weijiao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Ferroptosis, a form of programmed cell death induced by excess iron-dependent lipid peroxidation product accumulation, plays a critical role in cancer. However, there are few reports about ferroptosis in endometrial cancer (EC). This article explores the relationship between ferroptosis-related gene (FRG) expression and prognosis in EC patients. One hundred thirty-five FRGs were obtained by mining the literature, retrieving GeneCards and analyzing 552 malignant uterine corpus endometrial carcinoma (UCEC) samples, which were randomly assigned to training and testing groups (1:1 ratio), and 23 normal samples from The Cancer Genome Atlas (TCGA).
    [Show full text]
  • Human OTUB1 / OTB1 Protein (His Tag)
    Human OTUB1 / OTB1 Protein (His Tag) Catalog Number: 12927-H07E General Information SDS-PAGE: Gene Name Synonym: HSPC263; OTB1; OTU1 Protein Construction: A DNA sequence encoding the human OTUB1 (Q96FW1-1) (Met 1-Lys 271) was expressed, with a polyhistide tag at the N-terminus. Source: Human Expression Host: E. coli QC Testing Purity: > 97 % as determined by SDS-PAGE Endotoxin: Protein Description Please contact us for more information. Ubiquitin thioesterase OTUB1, also known as Deubiquitinating enzyme Stability: OTUB1, OTU domain-containing ubiquitin aldehyde-binding protein 1, Otubain-1, Ubiquitin-specific-processing protease OTUB1, OTUB1 and ℃ Samples are stable for up to twelve months from date of receipt at -70 OTB1, is a cytoplasm protein which belongs to thepeptidase C65 family. OTUB1 is a hydrolase that can remove conjugated ubiquitin from proteins Met Predicted N terminal: and plays an important regulatory role at the level of protein turnover by Molecular Mass: preventing degradation. OTUB1 is a regulator of T-cell anergy, a phenomenon that occurs when T-cells are rendered unresponsive to The recombinant human OTUB1 consisting of 282 amino acids and has a antigen rechallenge and no longer respond to their cognate antigen. calculated molecular mass of 32.8 kDa. The apparent molecular mass of OTUB1 acts via its interaction with RNF128 / GRAIL, a crucial inductor of the protein is approximately 37 kDa in SDS-PAGE under reducing CD4 T-cell anergy. Isoform1 of OTUB1 destabilizes RNF128, leading to conditions. prevent anergy. In contrast, isoform2of OTUB1 stabilizes RNF128 and promotes anergy. OTUB1 regulates RNF128-mediated ubiquitination, but Formulation: does not deubiquitinate polyubiquitinated RNF128.
    [Show full text]
  • Hypoxia Induced NF-Κb
    cells Review Hypoxia Induced NF-κB Laura D’Ignazio and Sonia Rocha * Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow street, Dundee DD1 5EH, UK; [email protected] * Correspondence: [email protected] Academic Editor: Ruaidhri Carmody Received: 28 January 2016; Accepted: 3 March 2016; Published: 8 March 2016 Abstract: As Nuclear Factor-κB (NF-κB) is a major transcription factor responding to cellular stress, it is perhaps not surprising that is activated by hypoxia, or decreased oxygen availability. However, how NF-κB becomes activated in hypoxia is still not completely understood. Several mechanisms have been proposed and this review will focus on the main findings highlighting the molecules that have been identified in the process of hypoxia induced NF-κB. In addition, we will discuss the role of NF-κB in the control of the cellular response to hypoxia. Keywords: Hypoxia; NF-κB; IKK; HIF-1; PHDs; FIH; TAK; ubiquitin 1. Introduction Hypoxia, or a decrease in oxygen availability, is both a physiological and pathological stimulus for cells [1]. Different tissues are exposed to different oxygen tensions, and when the demand for oxygen exceeds its supply, hypoxia ensues. This can be the case following tissue wounding, ischeamic stroke or intense metabolic activity, such as the one encountered following pathogenic related infections associated with increased macrophage infiltration. Hypoxia induces a comprehensive transcriptional program that involves the activation of the transcription factor Hypoxia Inducible Factor family (HIF). HIF is responsible for the induction of numerous genes involved in many different processes such as angiogenesis, cell proliferation, cell death and autophagy [2,3].
    [Show full text]
  • Genome-Wide Association Analysis Identifies Multiple Loci Associated with Kidney Disease- Related Traits in Korean Populations
    RESEARCH ARTICLE Genome-wide association analysis identifies multiple loci associated with kidney disease- related traits in Korean populations Jeonghwan Lee1, Young Lee2, Boram Park3, Sungho Won3,4,5, Jin Suk Han6, Nam Ju Heo7* 1 Department of Internal Medicine, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea, 2 Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Korea, 3 Department of Public Health Science, Seoul National University, Seoul, Korea, 4 Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Korea, 5 Institute of Health and Environment, Seoul a1111111111 National University, Seoul, Korea, 6 Department of Internal Medicine, Seoul National University College of a1111111111 Medicine, Seoul, Korea, 7 Division of Nephrology, Department of Internal Medicine, Healthcare System a1111111111 Gangnam Center, Seoul National University Hospital, Seoul, Korea a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Chronic kidney disease (CKD) is an important social health problem characterized by a Citation: Lee J, Lee Y, Park B, Won S, Han JS, Heo decrease in the kidney glomerular filtration rate (GFR). In this study, we analyzed genome- NJ (2018) Genome-wide association analysis wide association studies for kidney disease-related traits using data from a Korean adult identifies multiple loci associated with kidney health screening cohort comprising 7,064 participants. Kidney disease-related traits analyzed disease-related traits in Korean populations. PLoS ONE
    [Show full text]