Lossoflicensebrochureenglish.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Lossoflicensebrochureenglish.Pdf Unexpected illness or injury can pose many problems for Pilots. GBG’s Loss of License Insurance provides peace of mind with a comprehensive package made to suit your individual needs. • Annual plan that follows pilots worldwide • Maximum benefit amount of USD$500,000 • Covers pilots of commercial airliners and business jets, plus other types of business aircraft including twinjets, corporate helicopters and air taxis • Flexibility of covering both temporary and permanent disabilities • Coverage for For Pilots and First Officers that hold a Commercial Pilots License or an Air Transport License • Sickness and/or Bodily injury Benefits: Eligibility up to age 60 • Upon attainment of age 60, benefits for “accident only” coverage continue up to the sooner of retirement age or age 65. Schedule Of Benefits BENEFIT PLAN BENEFIT MAXIMUM Permanent Total Disablement by A 100% of the Sum Insured Bodily Injury or Sickness Permanent Total Disablement by B 25% of the Sum Insured Classified Illness or Psychological Illness Temporary Total Disablement by C 2% of the Sum Insured per month* Bodily Injury or Sickness Temporary Total Disablement by D 0.5% of the Sum Insured per month* Classified Illness or Psychological Illness *TTD monthly payment not to exceed 75% of monthly salary. Payments made on Temporary Total Disablement will erode the Permanent Total Disablement sum insured. One payment of 100% of the Sum Insured shall exhaust the Sum Insured per Insured Person. In the event the Insured Person holds more than one License, all Licenses must be cancelled for a claim to be considered. Permanent Total Disablement means the Insured Person is totally unable to perform the essential duties of their own previous occupation as a license holder, and which lasts 180 days and at the end of that period is beyond hope of improvement. Temporary Total Disability means the Insured Person being entirely and temporarily prevented from acting in the capacity for which he or she holds a License due to Bodily Injury, General Illness, Classified Illness or Psychological Illness. A Classified Illness is an illness which is directly or indirectly caused by alcohol, drugs or narcotics. A Psychological Illness is defined as when an Insured Person suffering directly or indirectly from stress, anxiety, depression, mental anguish, neurosis or the like and which is diagnosed by a medically or other appropriately qualified practitioner. Such an illness shall imply severe and lasting impairment in personal performance and capable of being diagnosed under the internationally recognized classification system DMS-IV-TR (the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, 2000). ACTIVELY AT WORK CONDITION The Insured Person must be actively at work and mentally and physically capable of conducting the regular duties of their employment, at the inception date of this insurance, provided not having been absent for more than 10 consecutive days in the preceding 12 months. The information contained herein is for illustrative purposes only. Please contact us for policy details or to request a customized proposal. GBG offers Loss of License plans for pilots of the below types of aircraft. To inqure about other types of aircraft, contact your GBG representative. MANUFACTURER AIRCRAFT FAMILY Airbus Airbus 310 Airbus 320 Airbus 340 Airbus 318 Airbus 321 Airbus 350 Airbus 319 Airbus 330 Airbus 380 Antonov AN24 AN70 AN148 AN26 AN72 AN158 AN32 AN124 Ruslan ATR - Avions de Transport Régional ATR-42 ATR-72 Boeing Boeing 707 Boeing 737 Boeing 777 Boeing 717 Boeing 747 Boeing 787 Boeing 720 Boeing 757 Boeing BBJ Boeing 727 Boeing 767 Boeing CH47 Chinook Bombadier Aerospace - Canadair / Bombadier Global Express CRJ 900 DHC8 Aerospace - De Havilland Canada Challengers CRJ 1000 Learjets CRJ 100 DHC6 CRJ 700 DHC7 British Aerospace All types of 146’s BAe ATP All types of Jetstreams Cessna All types of Citations Dassault All types of Falcons Douglas / McDonnel Douglas DC-9 MD-11 MD-90 DC-10 MD-80 Series Dornier / Fairchild-Dornier Do-328 Embraer ERJ-145 Embraer Legacy 450 Legacy 600 ERJ-170 Embraer Legacy 500 Lineage 1000 ERJ-190 Phenom 300 Grob Grob SPn Gulfstream Aerospace All types of Gulfstreams Fokker Fokker 50 Fokker 70 Fokker 60 Fokker 100 Hawker Beechcraft Beechcraft Premier I Hawker 750 Hawker 900XP Hawker400 Hawker 850XP Hawker 4000 Honda HondaJet Honda HA-420 HondaJet Ilyushin IL-76 IL-86 IL-96 Saab Saab 340 Saab 2000 Sino Swearingen SJ30-2 Sukhoi Superjet 100 Sukhoi Business Jet Tupolev TU134 TU204 TU154 TU214 MANUFACTURER HELICOPTER Aerospatiale / Eurocopter AS/EC 332/532/225/725 AS 330 Puma Super Puma/Cougar SA365 Dauphin Agusta Westland EH 101 Merlin AW139 AW169 109 AW149 Boeing CH47 Chinook Sikorsky S76 Spirit S61 Sea King S92 S70 Black Hawk NH Industries NH90 AIRCRAFT LIMITATIONS Loss of License insurance is available for Pilots of commercial aircraft making onshore landings only. For aircraft landing on offshore platforms/vessels, please contact your GBG representative to request a customized proposal. LATAM_LOL_ENG_10AUG2016 Global Benefits Group 27422 Portola Parkway, Suite 110 Foothill Ranch, CA 92610 USA GBG Latin America 7600 Corporate Center Drive, Suite 500 Miami, FL 33126 USA latam.gbg.com.
Recommended publications
  • R&T Activities on Composite Structures
    PUBLIC RELEASE R&T activities on composite structures for existing and future military A/C platforms at Airbus DS, Military Aircraft Mircea Calomfirescu, Rainer Neumaier, Thomas Körwien, Kay Dittrich Airbus Defence and Space GmbH Rechliner Str. 1 85077 Manching GERMANY [email protected] ABSTRACT This paper gives a short overview on the state of the art in composite aerostructures for civil and military aircraft. Major challenges are highlighted in this context and the requirements from military aircraft point of view are illustrated, derived from existing and future military aircraft perspectives. The main objective of the paper is to present the R&T activities in the aerostructure research program called FFS, advanced aerostructures. The activities range here from structural bonding, advanced radomes, new thermoplastic composite technologies and new materials and structures for low observability purposes. A brief insight is given to each of the topic highlighting the challenges and approaches, finishing with a summary of future trends and emerging technologies. 1.0 INTRODUCTION Composites offer several advantages over metallic aerostructures in civil as well as in military aircraft industry including reduced weight, less maintenance effort and costs due to “corrosion-free” composites and a superior fatigue behaviour compared to aluminium. The thermal expansion is much less and the material waste (“buy to fly ratio”) is more advantageous compared to aluminium structures. However, these advantages come along with higher material and manufacturing costs. For the prepreg technology for example the material has to be stored at -18°C, energy and investment intensive autoclaves are necessary and for quality assurance 100% non-destructive testing (NDT) is required in contrast to aluminium structures.
    [Show full text]
  • TAC Register Rev 6 22 Feb 2017
    2/22/2017 Aircraft TAC TAC Register Rev 6 22 Feb 2017 THE REPOSITORY (SPREADSHEET): This data presented in this repository is a list of approved SACAA TACs as conferred to current foreign TC holders. Aircraft Type/Model File No. Conditions Category TAC Issue Issue Date Reissue Date Common Name 328 Support Services GmbH Dornier 328-100 & Dornier 328-300 J15/12/529 As per Type Certficate Data Sheet EASA.A.096 Standard Original 11 April 2007 - 328JET (328-300) Agusta S.p.A. (Now Leonardo Helicopter) A109E, A109K2, A109S, AW109SP and A109C J15/12/395 This certificate is issued as per EASA Type Certificate number EASA.R.005 Standard Reissue 15 September 1996 01 August 2013 AB139 J15/12/493 This certificate is issued as per EASA Type Certificate number EASA.R.006 Standard Original 21 April 2006 - AB139, AW139 AW189 J15/12/625 This certificate is issued as per EASA Type Certificate number EASA.R.510 Standard Original 24 November 2016 AW189 Air Tractor Inc. AT-402, AT-402B, AT-502, AT-502A, AT-502B & AT-504, AT-402A J15/12/327 This certificate is issued as per FAA Type Certificate number A17SW Restricted Original 15 October 2013 28 July 2016 AT-602, AT-802 and AT-802A J15/12/380 This certificate is issued as per FAA Type Certificate number A19SW Restricted Original 15 October 2013 - Airbus SAS A300B4-622R J15/12/565 This certificate is issued as per DGAC Type Certificate number 72. Standard Original 23 December 2009 - A320-232, A320-233 J15/12/593 This certificate is issued as per EASA Type Certificate number EASA.A.064 Standard Original 23 December 2011 - A330-301, A330-321, A330-322, A330- 341, A330-342, A330-202, A330-223, A330-243, A330-323, A330-343, A330- 203, A330-201, A330-302, A330-303, A330-223F and A330-243F J15/12/584 This certificate is issued as per EASA Type Certificate number EASA.A.004 Standard Original 08 December 2010 10 November 2016 A340-200, A340-300 and A340-600 series J15/12/382 As per DGAC Type Certficate number 183.
    [Show full text]
  • NTSB-AAR-72-18 TECHNICAL REPORT STANDARD Title PAGE
    SA-424 FILE NO. 1-0002 AIRCRAFT ACCIDENT REPORT WESTERN AIR LINES, INC. BOEING 720-047B,N3166 ONTARIO INTERNATIONAL AIRPORT ONTARIO, CALIFORNIA MARCH 31, 1971 ADOPTED: JUNE 7, 1972 NATIONAL TRANSPORTATION SAFETY BOARD Washington, 0. C. 20591 REPORT NUMBER: NTSB-AAR-72-18 TECHNICAL REPORT STANDARD TiTLE PAGE . Report No. 2.Government Accession No. 3.Recipient's Catalog No. NTSB-AAR-72-18 I. Title and Subtitle 5.Report Date Aircraft Accident Report - Western Air Lines, InC., Sune 7, 1972 Roeing 720-047B, N3166, Ontario International Airport, 6.Performing Organization Ontario. California, March 31, 1971 Code '. Author(s) 8.Performing Organization Report No. I. Performing Organization Name and Address IO.Work Unit No. Bureau of Aviation Safety 11 .Contract or Grant No. National Transportation Safety Board Washington, D. C. 20591 13.Type of Report and Period Covered 12.Sponsoring Agency Name and Address Aircraft Accident Report March 31, 1971 NATIONAL TRANSPORTATION SAFETY BOARD Washington, 0. C. 20591 14.Sponsoring Agency Code 15.Supplementary Notes I6.Abstract Flight 366, a Boeing 720B, on a proficiency check flight, yawed and rolled out of control, and crashed while in the process of executing a 3-engine missed- approach from a simulated engine-out ILS instrument approach. The five crew- members and only occupants died in the crash. The weather conditions at Ontario were 600 feet overcast, with 3/4-mile visibility in fog, haze, and smoke. The National Transportation Safety Board determines that the probable cause of this accident was the failure of the aircraft rudder hydraulic actuator support fitting. The failure of the fitting resulted in the inapparent loss Of left rudder control which, under the conditions of this flight, precluded the pilotk ability to maintain directional control during a simlated engine-out missed- approach.
    [Show full text]
  • Project Department of Automotive and Aeronautical
    Project Department of Automotive and Aeronautical Engineering Aircraft Design Studies Based on the ATR 72 Author: Mihaela Florentina Niţă Examiner: Prof. Dr.-Ing. Dieter Scholz, MSME Delivered: 13.06.2008 Abstract This project gives a practical description of a preliminary aircraft design sequence. The sequence starts with a preliminary sizing method. The design sequence is illustrated with a redesign study of the ATR 72 turboprop aircraft. The requirements for the redesign aircraft are those of the ATR 72. The ATR 72 serves also as the reference during the redesign. The Preliminary sizing method was available (at the university) only for jet-powered aircraft. Therefore the method was adapted to work also with propeller driven aircrafts. The sizing method ensures that all requirements are met: take-off and landing field length, 2nd segment and missed approach gradients as well as cruise Mach number. The sizing method yields the best (low) power/weight ratio and the best wing loading. The redesign process covers all the aircraft components: fuselage, wing, empennage and landing gear. The aircraft design sequence defines the cabin layout, the wing parameters, the type of high lift system, the configuration and surface of the empennage. A mass distribution analysis is made, the position of the CG is calculated and the wing position determined. Finally the Direct Operating Costs (DOC) are calculated. DOCs are calculated applying the method from the Association of European Airlines (AEA). The DOCs serve for an aircraft evaluation. In order to meet requirements, the redesigned ATR 72 had to be slightly modified compared to the original ATR.
    [Show full text]
  • Avation Increases to 35 Its Fleet of ATR 72S
    Avation increases to 35 its fleet of ATR 72s ATR and the Singapore-based lessor announce 5 additional ATR 72-600s Singapore, February 16, 2016 – The world’s leading turboprop manufacturer ATR and the Singapore-based commercial aircraft lessor Avation PLC announced an agreement for the purchase of five new ATR 72-600 aircraft. At list prices the acquisition is valued at about US $130 million and brings to 35 the total number of firm ATR 72s ordered by Avation PLC since their first ATR purchase in 2011. As of today, Avation has already taken delivery of over 20 ATR 72s, mostly ATR 72-600s, which currently fly in the liveries of Virgin Australia, Flybe (for Scandinavian Airlines), UNI Air (Taiwan), Air India and Fiji Airways. Deliveries of the remaining ATR 72-600s on order extend out to 2018. ATR aircraft are the best-selling regional aircraft for below-90-seats size since 2010, representing 77% of global orders for turboprops. ATR is also experiencing an outstanding success among leasing firms in the same period, booking 87% of all their orders for below-90-seat regional aircraft. Avation is the second largest lessor by number of new ATRs ordered. According to Jeff Chatfield, Avation’s Executive Chairman, “We believe the ATR 72 is the most efficient aircraft type for regional routes. It provides the lowest fuel burn and the most reduced operating costs among all regional aircraft of its category. ATRs are superb assets for lessors, they offer great returns and also allow portfolio diversification. Avation raises equity and debt with the London and New York markets and we are proud to promote the ATR in these essential forums”.
    [Show full text]
  • E N a C / Eetac Atr
    E N A C / EETAC ATR FAA regulation analysis for ATR ETOPS validation Jordi CLARAMUNT SEGURA IENAC14 - Erasmus End of studies report / Treball Final de Grau 11/08/2017 FAA regulation analysis for ATR ETOPS validation 2 3 FAA regulation analysis for ATR ETOPS validation Acknowledgements With deepest gratitude and appreciation, I humbly give thanks to the people who helped me in making this end of studies project a possible one. First of all, I would like to offer my special thanks to Souhir Charfeddine, my internship tutor in ATR, for choosing me among the other candidates and giving me the possibility to perform this internship. Thanks for her valuable and constructive help during the planning and development of this internship. I really appreciate all the time she has dedicated to me with all the different meetings we have had inside the company. I have learnt a lot at her side, she has been an amazing tutor. Thank you. I am also grateful to all of those with whom I have had the pleasure to work with during this project. Each of the members I have worked with have provided me extensive and professional guidance and taught me a great deal about certification aspects, as well as other domains. Those include Antonio Paradies, Didier Cailhol, Eric Bédessem, Ciro Manco, Fabien Vançon, Jean-Paul Delpont, Nadège Gualina and Lucille Mitchell. Also, I would like to offer my gratitude to ENAC for first, giving me the possibility to join their Erasmus programme in its great university and then, for allowing me having the chance to do the internship, which has been the best election of my life so far.
    [Show full text]
  • B-162897 Aircraft Owned Or Leased By
    Dear Mr, Thompson: Reference is made to your letter of February 10, 1970, requesting that we update information which we furnished to you in a report dated March 4, 1968, relative to aircraft owned or leased by the Federal Avia- 1 tion Administration (FAA). In accordance with this request, we are fur- nishing you the following information. 1. Inventory of active aircraft owned as of June 30, 1967, 1968, 1969, and January 1, 1970 (enclosure I). 2. Installed passenger capacity and cost of aircraft owned as of June 30, 1967, and January 1, 1970 (enclosure II). 3. Aircraft leased or on loan during the period July 1, 1967, through June 30, 1969 (enclosure III). 4. Aircraft mazntenance, maJor overhaul, and modification costs by aircraft type, for fiscal years 1968 and 1969 (enclosure IV). 5. Average cost per flxght hour by aircraft type, fiscal years 1968 and 1969 (enclosure V>. 6. Aircraft utilization by aircraft type and maJor cate- gories, fiscal years 1968 and 1969 (enclosure VI). 7. Utilization and cost of open market rental aircraft, fiscal years 1968 and 1969 (enclosure VII). In addition, you requested that we advise you of the progress that has been made in establishing a uniform maintenance and operating cost re- porting system for all FAA owned and leased aircraft. As shown zn our March 4, 1968, report, FhCl had 101 aircraft which cost approximately $46 mzlllon 1n its inventory of active aircraft as of June 30, 1967. On January 1, 1970, the number of active air craft had decreased Co 98; however, the cost of the aircraft in the inventory was approximately $52 million, This increase was the net result of.
    [Show full text]
  • Canada Aviation and Space Museum
    CANADA AVIATION AND SPACE MUSEUM BOEING MODEL 720B PRATT & WHITNEY CANADA FLYING EXPERIMENTAL TEST BED REGISTRATION C-FETB Introduction The practical era of jet-age passenger transport aircraft officially dawned when the British de Havilland Company D.H.106 Comet made its premiere flight to great acclaim from the Hatfield, Hertfordshire aerodrome in England on 27 July 1949. Catering to British and mid to long-range routes to European, Middle Eastern and overseas destinations, the Comet series of airliners carried their passengers aloft in luxurious opulence for more than twenty years. Military and test derivatives followed suit and these continued flying for many decades, including two Comets for the Royal Canadian Air Force (RCAF). Just 14 days later, across the vast Atlantic Ocean, in the small town of Malton, Ontario, Canada, a new aviation company called Avro Canada successfully accomplished the same task with much less fanfare and accolades. Avro sent its small, medium-range, turbo-jet transport, called the C-102 Jetliner, aloft for its first flight, inaugurating the dreamed potential for such a unique travel experience for the public on the North American continent. United States Air Force personnel found the aircraft favourable when they tried it out on flights at Wright Field, Ohio in March 1951. However, this Canadian dream didn’t last for long. The modestly successful Comet-series didn’t shine as brightly as its popular name when a series of tragic, fatal accidents to production civil aircraft nearly snuffed out its very existence. Following design rectification’s, the Royal Air Force continued to employ Comets in versatile roles, such as modifying the design into the Nimrod.
    [Show full text]
  • European Aviation Safety Agency
    TCDS No.: EASA.A.084 ATR 42 - ATR 72 Page 1 of 35 Issue: 03 Date: 17 October 2012 European Aviation Safety Agency EASA TYPE-CERTIFICATE DATA SHEET No. EASA.A.084 for ATR 42 and ATR 72 Type Certificate Holder: ATR-GIE Avions de Transport Régional 1, Allée Pierre Nadot 31712 Blagnac Cedex FRANCE Transport Category: Large Aeroplanes For Models: ATR 42-200, ATR 42-300, ATR 42-320, ATR 42-400, ATR 42-500 ATR 72-101, ATR 72-102, ATR 72-201, ATR 72-202, ATR 72-211, ATR 72-212, ATR 72-212A TCDS No.: EASA.A.084 ATR 42 - ATR 72 Page 2 of 35 Issue: 03 Date: 17 October 2012 Intentionally left blank TCDS No.: EASA.A.084 ATR 42 - ATR 72 Page 3 of 35 Issue: 03 Date: 17 October 2012 TABLE OF CONTENTS SECTION 1: ATR 42 Series ...................................................................................... 4 I. General .......................................................................................................................... 4 II. Certification Basis .......................................................................................................... 5 III. Technical Characteristics and Operational Limitations .................................................11 IV. Operating and Service Instructions ..............................................................................18 SECTION 2: ATR 72 Series .................................................................................... 19 I. General .........................................................................................................................19 II. Certification
    [Show full text]
  • Aircraft Tire Data
    Aircraft tire Engineering Data Introduction Michelin manufactures a wide variety of sizes and types of tires to the exacting standards of the aircraft industry. The information included in this Data Book has been put together as an engineering and technical reference to support the users of Michelin tires. The data is, to the best of our knowledge, accurate and complete at the time of publication. To be as useful a reference tool as possible, we have chosen to include data on as many industry tire sizes as possible. Particular sizes may not be currently available from Michelin. It is advised that all critical data be verified with your Michelin representative prior to making final tire selections. The data contained herein should be used in conjunction with the various standards ; T&RA1, ETRTO2, MIL-PRF- 50413, AIR 8505 - A4 or with the airframer specifications or military design drawings. For those instances where a contradiction exists between T&RA and ETRTO, the T&RA standard has been referenced. In some cases, a tire is used for both civil and military applications. In most cases they follow the same standard. Where they do not, data for both tires are listed and identified. The aircraft application information provided in the tables is based on the most current information supplied by airframe manufacturers and/or contained in published documents. It is intended for use as general reference only. Your requirements may vary depending on the actual configuration of your aircraft. Accordingly, inquiries regarding specific models of aircraft should be directed to the applicable airframe manufacturer.
    [Show full text]
  • Fuel Consumption Fc (SFC) PERFORMANCE of CIVIL AIRCRAFTS in 1960S
    Inspired by Physics – Just How Big is Disruptive? Design a FlyingJumbo Jet in Just One Hour ESADE Executive Program, Markus Nordberg November 15, 2017 Development & Innovation Unit (CERN) WHY ARE WE DOING THIS EXERCISE? • Like the experiments at CERN, the aerodynamic design of aircraft are also much determined by the was of physics • We wish to give an example of physics-driven experimentation process, requiring cross-disciplinary collaboration • Here, we wish to bring in business management, engineering and design • They all contribute, even if emphasis is here on aerodynamics • Prototyping is a good way to start to learn about the design process (even if incremental) • If I am able to design a stupid jumbo, well, then I can …. • Physics and Design Thinking is Fun PLEASE REMEMBER THAT … • … Modern aircraft designers are not taught like this • (The difference between this intro and designing real airliners is only about 10 000 hours … But make no mistake, our jumbo will fly) • … Modern aircrafts are not designed by beginners • … You will not be a certified aircraft designer after this course • … Folks at CERN can’t do anything • (Alas - but they do know how far the laws of physics will take you) WHO DESIGNED THIS? OR THIS? NATURE SEEMS TO KNOW ITS SHAPES WELL ALL YOU NEED TODAY TO KNOW ABOUT FLYING Finesse F = L/D Aspect Ratio Ar = b²/S b S Shape (F) Performance (engines) codecogs Well, Almost … F = ma or, in terms of pressure (assuming air ~ fluid) W/S ~ 0.3 x σ x v² Where: W = weight of the object (N) S = wing area (m²) σ = density of
    [Show full text]
  • Air Transport
    The History of Air Transport KOSTAS IATROU Dedicated to my wife Evgenia and my sons George and Yianni Copyright © 2020: Kostas Iatrou First Edition: July 2020 Published by: Hermes – Air Transport Organisation Graphic Design – Layout: Sophia Darviris Material (either in whole or in part) from this publication may not be published, photocopied, rewritten, transferred through any electronical or other means, without prior permission by the publisher. Preface ommercial aviation recently celebrated its first centennial. Over the more than 100 years since the first Ctake off, aviation has witnessed challenges and changes that have made it a critical component of mod- ern societies. Most importantly, air transport brings humans closer together, promoting peace and harmo- ny through connectivity and social exchange. A key role for Hermes Air Transport Organisation is to contribute to the development, progress and promo- tion of air transport at the global level. This would not be possible without knowing the history and evolu- tion of the industry. Once a luxury service, affordable to only a few, aviation has evolved to become accessible to billions of peo- ple. But how did this evolution occur? This book provides an updated timeline of the key moments of air transport. It is based on the first aviation history book Hermes published in 2014 in partnership with ICAO, ACI, CANSO & IATA. I would like to express my appreciation to Professor Martin Dresner, Chair of the Hermes Report Committee, for his important role in editing the contents of the book. I would also like to thank Hermes members and partners who have helped to make Hermes a key organisa- tion in the air transport field.
    [Show full text]