University of Tartu Faculty of Science and Technology Institute of Ecology and Earth Sciences Department of Geography a GIS-Base

Total Page:16

File Type:pdf, Size:1020Kb

University of Tartu Faculty of Science and Technology Institute of Ecology and Earth Sciences Department of Geography a GIS-Base University of Tartu Faculty of Science and Technology Institute of Ecology and Earth Sciences Department of Geography Master’s thesis in Geoinformatics for Urbanised Society (30 ECTS) A GIS-based multi-criteria evaluation of the wind energy potential of Kherson and Zaporizhzhia oblasts of Ukraine Denys Dmytrenko Supervisor: PhD Ain Kull, Senior Research Fellow Approved for defence: Supervisor: Head of Department: Tartu 2020 Abstract (Annotation) The aim of the thesis is to determine regulations for wind farm siting in Ukraine and to create a suitability map of the most perspective region in terms of wind conditions. These regions are Zaporizhzhia and Kherson oblasts (counties) of Ukraine. Legislation analysis was conducted for wind energy regulations in Ukraine. Analysis of foreign legislation was done in the aspects where the correspondent Ukrainian legislation doesn’t exist yet (e.g. about bird reserves). Otherwise, standards of international researchers were used. I made analysis of works of other researchers to define factors and distances for suitability map. The most important and commonly used factors are: settlements, road network, nature protection areas, bird reserves, power lines, railways, slope degree, airports, water bodies, wind speed and land use. Data is taken from different sources (open data, international, governmental), depending on quality. Methods used in my research are GIS analysis, multi-criteria decision-making (MCDM) and analytical hierarchy process (AHP). I chose the most important factors using MCDM method and graded them according to their importance using AHP method. Unsuitable areas excluded and maps for each criteria were made. As final result, two maps were created: Equal Weights map and map with factors graded by AHP. Percentage of suitable areas were calculated and the analysis of the most influential factors after analysis was made. Key words: wind farm siting, wind farm suitability, wind energy regulations, multi-criteria decision making, analytical hierarchy process analysis. CERCS code: P510 - Physical geography, geomorphology, pedology, cartography, climatology. Abstrakt (Annotatsioon) Uurimistöö eesmärk on varasemate rahvusvaheliste uuringute eeskujul töötada välja reeglistik tuulikuparkide asukoha valikuks Ukrainas ning koostada selle alusel tuuletingimuste poolest kõige sobivamate piirkondade Zaporižžja ja Hersoni oblasti kohta sobivuskaart. Tuuleenergia kasutussobivuse määratlemiseks oli tarvis läbi viia Ukraina seadusandluse analüüs. Valdkondades, kus vastavaid Ukraina õigusakte veel ei eksisteeri (nt linnukaitsealade osas) analüüsiti ja rakendati välisriikide seadusandluse alusel loodud reeglistikku. Seadusandlusega reguleerimata juhtudel kasutati reeglistiku loomisel rahvusvahelisi teadusuuringute tulemusi. Teadusartiklite põhjal loodud andmebaasi alusel analüüsisin teiste riikide näiteid, et määrata tuuleenergia kasutamist enam mõjutavad tegurid ja vajalikud vahemaad või kaalud sobivuskaardi loomiseks. Kõige tähtsamad ja enamkasutatud tegurid on asustus, teedevõrk, looduskaitsealad (eriti linnukaitsealad), kõrgepingeelektriliinid, raudteed, nõlvakalle kraadides, lennujaamad, veekogud, tuule kiirus ja maakasutus. Sõltuvalt andmete kvaliteedist on kasutatud erinevaid allikaid (avaandmed, rahvusvahelised ja riiklikud andmekogud). Meetoditena kasutasin oma uurimistöös mitmekriteeriumilist otsustamist (MCDM) ja analüütilise hierarhia protsessi (AHP) GIS-analüüsil. Kõige tähtsamad tegurid tuvastasin MCDM-meetodi abil ning seejärel sorteerisin neid olulisuse alusel AHP-meetodiga. Tuuleenergia arendamiseks sobimatud alad jäeti välja ning iga kriteeriumi alusel koostati eraldi kaardikihid. Kihtide kombineerimisel sündisid lõpptulemusena kaks kaarti: võrdsete kaalude (Equal Weights) sobivuskaart ja sobivuskaart, mille loomisel kasutatud tegurid järjestati AHP alusel. Zaporižžja ja Hersoni oblasti kohta leiti tuuleenergia arendamiseks sobivate alade protsent, 2 täiendavalt analüüsiti piirangute põhjustajatena kõige olulisemaid tegureid ja nende osakaalu. Võtmesõnad: tuulikuparkide asukoha valik, tuulikuparkide rajamise sobivusanalüüs, planeerimisreeglistik tuuleenergia kasutuselevõtuks, mitmekriteeriumiline otsustamine, analüütilise hierarhia protsess. CERCS kood: P510 – füüsiline geograafia, geomorfoloogia, pedoloogia, kartograafia, klimatoloogia (physical geography, geomorphology, pedology, cartography, climatology) 3 Table of contents Table of contents ............................................................................................................................. 4 List of abbreviations ........................................................................................................................ 4 INTRODUCTION ........................................................................................................................... 5 1. Theoretical overview ................................................................................................................ 7 1.1. Wind energy in Ukraine and factors................................................................................... 7 1.2. Overview of previous research .......................................................................................... 8 1.2.1. Similar research in Ukraine ........................................................................................ 9 1.3. Study area ....................................................................................................................... 10 1.3.1. Choice of study area ................................................................................................. 10 1.3.2. Description of study area .......................................................................................... 11 2. Results - Factors ..................................................................................................................... 13 3. Data and methods ...................................................................................................................... 25 3.1. Data .................................................................................................................................... 25 3.2. Methods .............................................................................................................................. 28 3.2.1. GIS method .................................................................................................................. 29 3.2.2. Multi-criteria decision making (MCDM) analysis ..................................................... 30 3.2.3. Analythic hierarchy process (AHP) .......................................................................... 30 3.2.4. Other methods .......................................................................................................... 32 4. Results – Suitability map ........................................................................................................ 33 4.1. Projection (Coordinate system) .................................................................................... 33 4.2. Buffer zones and distances ........................................................................................... 33 4.3. Exclusion areas ............................................................................................................ 33 4.4. Graded factors ............................................................................................................. 37 4.5. Final suitability maps ................................................................................................... 44 5. Discussion and conclusions .................................................................................................... 48 Summary ....................................................................................................................................... 51 Kokkuvõte ..................................................................................................................................... 53 Acknowledgements ....................................................................................................................... 56 References ..................................................................................................................................... 57 Annexes ........................................................................................................................................ 64 Annex 1 - Current setback distances from housing in EU countries (Dalla Longa et.al. 2018) .... 64 List of abbreviations MW – megawatt kV - kilovolt GWA – Global Wind Atlas EIA – environmental impact assessment 4 Introduction Wind energy (along with solar) is a most perspective type of renewable energy in today’s world. It has a second largest installed capacity in EU (after natural gas) and the pace of its growth is higher than of any other source of power generation in Europe (WindEurope 2018). By the end of 2018, the total of 591,549 MW of wind power were installed in the world, with growth rate of 9,6% annually. (GWEA 2019) Installing new renewable energy capacities can make power system of Ukraine more sustainable and less dependent on external supply of resources. Ukraine has a big territory and good wind conditions in many regions, but the best conditions are in the South and in the East. Development of wind power is one of the key priorities in the energy policy of Ukrainian government. Developing of renewable energy can reduce the dependence of Ukrainian
Recommended publications
  • Epidemiology of Parkinson's Disease in the Southern Ukraine
    — !!!cifra_MNJ_№5_(tom16)_2020 01.07. Белоусова 07.07.Евдокимова ОРИГІНАЛЬНІ ДОСЛІДЖЕННЯ /ORIGINAL RESEARCHES/ UDC 616.858-036.22 DOI: 10.22141/2224-0713.16.5.2020.209248 I.V. Hubetova Odessa Regional Clinical Hospital, Odesa, Ukraine Odessa National Medical University, Odesa, Ukraine Epidemiology of Parkinson’s disease in the Southern Ukraine Abstract. Background. Parkinson’s disease (PD) is a slowly progressing neurodegenerative disease with accumulation of alpha-synuclein and the formation of Lewy bodies inside nerve cells. The prevalence of PD ranges from 100 to 200 cases per 100,000 population. However, in the Ukrainian reality, many cases of the disease remain undiagnosed, which affects the statistical indicators of incidence and prevalence. The purpose of the study is to compare PD epidemiological indices in the Southern Ukraine with all-Ukrainian rates. Material and methods. Statistical data of the Ministry of Health of Ukraine, public health departments of Odesa, Mykolaiv and Kherson regions for 2015–2017 were analyzed. There were used the methods of descriptive statistics and analysis of variance. Results. Average prevalence of PD in Ukraine is 67.5 per 100,000 population — it is close to the Eastern European rate. The highest prevalence was registered in Lviv (142.5 per 100,000), Vinnytsia (135.9 per 100,000), Cherkasy (108.6 per 100,000) and Kyiv (107.1 per 100,000) regions. The lowest rates were in Luhansk (37.9 per 100,000), Kyrovohrad (42.5 per 100,000), Chernivtsi (49.0 per 100,000) and Ternopil (49.6 per 100,000) regions. In the Southern Ukraine, the highest prevalence of PD was found in Mykolaiv region.
    [Show full text]
  • Distribution and New Findings of Newts (Triturus and Lissotriton) In
    2018 • vol. 16, pp 83–88 GEO&BIO https://doi.org/10.15407/gb.2018.16.083 UDC 597.6:574.3(477.7) Distribution and new findings of newts (Triturus and Lissotriton) in the Lower Dnipro river area, Ukraine Nataliia Suriadna1, Galyna Mykytynets2 1 Melitopol Institute of Ecology and Social Technologies, University “Ukraine” (Melitopol, Ukraine) 2 Pryazovsky National Nature Park (Melitopol, Ukraine) Distribution and new findings of newts (Triturus and Lissotriton) in the Lower Dnipro river area, Ukraine. — N. Surіadna, G. Mykytynets. — New findings of Triturus dobrogicus and Lissotriton vulgaris are recorded in the Lower Dnipro river area, Kherson region, Ukraine. The species T. dobrogicus and L. vul­ garis were found for the first time in Pravi Solonets village, Oleshkovsky district, Kherson region (46°34´0˝N 32°39´29˝E) in spring 2017. We clarified the south­eastern range edge of the studied species. The newts were collected during night­time surveys in a riparian gallery forest dominated by Quercus, Ulmus, and Fraxinus. The abundance of newts was low, seven individuals were observed on 20–30 m of route: four specimens of T. dobrogicus and one of L. vulgaris in March, one specimen of T. dobrogicus and one of L. vulgaris in May. Collected specimens do not differ in external morphology, size, body shape, and colour pattern from other conspecific populations. The populations are threatened, especially during their migrations. We propose to include these newt species into the Regional Red Data List of Kherson region. We also suggest including the described biotope into the Oleshkivski Pisky National Nature Park for protection and effective conservation of unique amphibian populations in the Lower Dnipro area of the Kherson region, Ukraine.
    [Show full text]
  • Dossier Romanenko Vitalii Vitaliiovych, Регіональний Сервісний
    Romanenko Vitalii Vitaliiovych Сategory Family member Регіональний сервісний центр МВС в Херсонській Last position області, Адміністратор ТСЦ № 6541 (на правах відділу, м. Херсон) Scoring of unexplained wealth risk based on 2019 annual asset declaration 0.16 Expand risks 1. declared amount of land plots owned since 2015 1; out of them 1 without indicated value 1 CONNECTIONS TO INDIVIDUALS Name Type of connection Period Romanenko Ella Mykolaivna wife — Sector of the State Regulatory Service in Kherson oblast (region), in the AR of Crimea and Sevastopol city , Head of the sector Romanenko Volodymyr Vitaliiovych son — INCOME AND EXPENDITURES 3 Family Expenses and other Declarant's Year Position income, transactions of the income, USD USD declarant, USD 2019 Регіональний сервісний 6 451,26 9 262,74 центр МВС в Херсонській області, Адміністратор ТСЦ № 6541 (на правах відділу, м. Херсон) 2019 Регіональний сервісний 6 451,26 9 262,74 центр МВС в Херсонській області, Адміністратор ТСЦ № 6541 (на правах відділу, м. Херсон) 2018 Декларація після звільнення, 1 588,00 8 073,46 Декларація після звільнення 2017 Oleshky Police Office of the 3 322,53 5 818,86 Nova Kakhovka Police Department of the Main Department of the National Police of Ukraine in Kherson oblast (region), Інспектор сектору реагування патрульної поліції Олешківського ВП Новокаховського ВП ГУ НП в Херсонській області Family Expenses and other Declarant's Year Position income, transactions of the income, USD USD declarant, USD 2016 Oleshky Police Office of the 1 910,02 3 565,00 Nova Kakhovka
    [Show full text]
  • Decision-Support System for Spatially Distributed Multi-Hazard Risk Analysis
    Decision-Support System for Spatially Distributed Multi-Hazard Risk Analysis Maryna Zharikovaa, Volodymyr Sherstjuka, Bohdan Sakovycha a Kherson National Technical University, 24 Berislav Road, Kherson, 73008, Ukraine Abstract The paper dwells on a dynamic spatially distributed model of multi-hazard risk analysis for critical infrastructure elements, which is meant to assess risk indecision-support systems. Multi-hazard risk is centered around a model of the socio-economic system, hazard dynamics model, a model of the dynamic vulnerability of critical infrastructure elements, and a model of multi-hazard risk assessment. The hazard dynamics model represents the knowledge about the dynamics of hazards, their interactions and cascading effects using plausible event-tree networks with the events having both temporal and spatial reference. Multi-hazard risk analysis model allows assessing integrated dynamic spatially distributed multi-hazard risk in decision-support systems dealing with a threat, vulnerability, damage, cascading and domino effects. The risk scenarios within the decision-support system can describe multi-hazard risk as a multitude of spatially distributed dynamic processes influenced by a various range of drivers. The practical use of the proposed model is also considered. Keywords1 Decision-support system, risk assessment, critical infrastructure, multi-hazard risk, risk scenario, cascading effect, domino effect, event. 1. Introduction Imagine our world being impeccable, without any disasters, losses and risks – it is hardly possible, isn’t it? Unfortunately, natural disasters are quite ubiquitous, and the forests, sabulous and marine areas, such as rivers, lakes or coasts are no exception. For instance, sandy or arenaceous areas suffer from erosion, which can provoke landslides or coastal fade; rivers and lakes may be prone to shallowing and drying out, and constructing dams on rivers cause coastal erosion and wildfires that make slopes and cliffs more susceptible to floods, sinkage, landslides, mudflows and so on.
    [Show full text]
  • UDC 94(477.7)“17/18” DOI: 10.24919/2519-058X.14.197177
    Halyna MYKHAILENKO, Oleksandr CHEREMISIN UDC 94(477.7)“17/18” DOI: 10.24919/2519-058x.14.197177 Halyna MYKHAILENKO PhD (History), Assistant Professor of History, Archeology and Teaching methodology Department of Kherson State University, 27 University Street, Kherson, Ukraine, postal code 73000 ([email protected]) ORCID: http://orcid.org/0000-0002-1160-8754 ResearcherID: https://publons.com/researcher/3338089/galina-mykhailenko/ Oleksandr CHEREMISIN PhD hab. (History), Professor of Professional Education Department of Kherson State Agrarian University, 23 Stretenskaya Street, Kherson, Ukraine, postal code 73024 ([email protected]) ORCID: http://orcid.org/0000-0003-0173-0489 ResearcherID: https://publons.com/researcher/3338109// Scopus Author ID: 209245196 (https://www.scopus.com/authid/detail.uri?authorId=57209245196) Галина МИХАЙЛЕНКО кандидат історичних наук, доцент кафедри історії, археології та методики викладання Херсонського державного університету вул. Університетська, 27, м. Херсон, Україна, індекс 73000 ([email protected]) Олександр ЧЕРЕМІСІН доктор історичних наук, професор кафедри професійної освіти Херсонського державного аграрного університету, вул. Стрітенська, 23, м. Херсон, Україна, індекс 73024 ([email protected]) Бібліографічний опис статті: Mykhailenko, H., Cheremisin, O. (2020). New Ukraine vs Novorossia: myths and realities of geopolitical changes during the second half of the XVIIIth – at the end of the XIXth century. Skhidnoievropeiskyi Istorychnyi Visnyk [East European Historical Bulletin], 14, 36–45. doi: 10.24919/2519-058x.14.197177 NEW UKRAINE VS NOVORUSSIA: MYTHS AND REALITIES OF GEOPOLITICAL CHANGES DURING THE SECOND HALF OF THE XVIIITH – AT THE END OF THE XIXTH CENTURY Abstract. The aim of the research is to reconstruct the peculiarities of geopolitical changes, which took place on the territory of southern Ukraine during the second part of the XVIIIth – the end of the XIXth century.
    [Show full text]
  • Ukraine on the Implementation of the Convention on Biological Diversity
    Sixth National Report of Ukraine on the Implementation of the Convention on Biological Diversity English version December, 2018 Kyiv – 2018 Contents Introduction .................................................................................................................................. 4 Acknowledgements........................................................................................................................ 4 Abbreviations ................................................................................................................................ 5 Section I. Information on the targets being pursued at the national level .................................. 7 National Target 1 (NT1). Increasing the level of public environmental consciousness ............................... 7 National Target 2 (NT 2). Improving the environmental situation and increasing the level of environmental security ......................................................................................................................... 8 National Target 3 (NT 3). Attaining the environmental conditions safe for human health ..........................10 National Target 4 (NT 4). Integrating the environmental policy and improving the integrated environmental management system ......................................................................................................... 11 National Target 5 (NT 5). Halting the loss of biological and landscape diversity and establishing the ecological network .........................................................................................................12
    [Show full text]
  • Important Plant Areas of Ukraine
    Important Plant Areas of Ukraine Editor: V.A. Onyshchenko പ ˄ʪʶϱϬϮ͘ϳϱ;ϰϳϳͿ ʦϭϮ ^ĞůĞĐƟŽŶĐƌŝƚĞƌŝĂ Important Plant Areas of Ukraine / V.A. Onyshchenko (editor). – Kyiv: Alterpress, 2017. – 376 p. dŚĞŬĐŽŶƚĂŝŶƐĚĞƐĐƌŝƉƟŽŶƐŽĨϭϳϯ/ŵƉŽƌƚĂŶƚWůĂŶƚƌĞĂƐŽĨhŬƌĂŝŶĞ͘ĂƚĂŽŶĞĂĐŚƐŝƚĞ dŚĞĂŝŵŽĨƚŚĞ/ŵƉŽƌƚĂŶƚWůĂŶƚƌĞĂƐ;/WƐͿƉƌŽŐƌĂŵŵĞŝƐƚŽŝĚĞŶƟĨLJĂŶĚƉƌŽƚĞĐƚ ŝŶĐůƵĚĞŝƚƐĂƌĞĂ͕ŐĞŽŐƌĂƉŚŝĐĂůĐŽŽƌĚŝŶĂƚĞƐ͕ƐĞůĞĐƟŽŶĐƌŝƚĞƌŝĂ͕ĂƌĞĂƐŽĨhE/^ŚĂďŝƚĂƚƚLJƉĞƐ͕ ĂŶĞƚǁŽƌŬŽĨƚŚĞďĞƐƚƐŝƚĞƐĨŽƌƉůĂŶƚĐŽŶƐĞƌǀĂƟŽŶƚŚƌŽƵŐŚŽƵƚƵƌŽƉĞĂŶĚƚŚĞƌĞƐƚŽĨƚŚĞ ĐŚĂƌĂĐƚĞƌŝnjĂƟŽŶŽĨǀĞŐĞƚĂƟŽŶ͕ƚŚƌĞĂƚƐ͕ŚƵŵĂŶĂĐƟǀŝƟĞƐ͕ŝŶĨŽƌŵĂƟŽŶĂďŽƵƚƉƌŽƚĞĐƚĞĚĂƌͲ ǁŽƌůĚ͕ ƵƐŝŶŐ ĐŽŶƐŝƐƚĞŶƚ ĐƌŝƚĞƌŝĂ ;ŶĚĞƌƐŽŶ͕ ϮϬϬϮͿ͘ dŚĞ ŝĚĞŶƟĮĐĂƟŽŶ ŽĨ /WƐ ŝƐ ďĂƐĞĚ ŽŶ ĞĂƐ͕ƌĞĨĞƌĞŶĐĞƐ͕ĂŶĚĂŵĂƉŽŶƚŚĞƐĂƩĞůŝƚĞŝŵĂŐĞďĂĐŬŐƌŽƵŶĚ͘ ƚŚƌĞĞĐƌŝƚĞƌŝĂ͘ƌŝƚĞƌŝŽŶʹWƌĞƐĞŶĐĞŽĨƚŚƌĞĂƚĞŶĞĚƉůĂŶƚƐƉĞĐŝĞƐ͗ƚŚĞƐŝƚĞŚŽůĚƐƐŝŐŶŝĮĐĂŶƚ ƉŽƉƵůĂƟŽŶƐŽĨŽŶĞŽƌŵŽƌĞƐƉĞĐŝĞƐƚŚĂƚĂƌĞŽĨŐůŽďĂůŽƌƌĞŐŝŽŶĂůĐŽŶƐĞƌǀĂƟŽŶĐŽŶĐĞƌŶ͘ ʦ̸̨̛̙̣̞̯̦̞̦̞̌̏̍̌ ̨̛̯̖̬̯̬̞̟˄̡̛̬̟̦̌ͬ ̬̖̌̔̚͘ ʦ͘ʤ͘ ʽ̡̛̦̺̖̦̌͘ ʹ ʶ̛̟̏͗ ʤ̣̯̖̬̪̬̖̭͕̽ ƌŝƚĞƌŝŽŶʹWƌĞƐĞŶĐĞŽĨďŽƚĂŶŝĐĂůƌŝĐŚŶĞƐƐ͗ƚŚĞƐŝƚĞŚĂƐĂŶĞdžĐĞƉƟŽŶĂůůLJƌŝĐŚŇŽƌĂŝŶĂ ϮϬϭϳ͘ʹϯϳϲ̭͘ ƌĞŐŝŽŶĂůĐŽŶƚĞdžƚŝŶƌĞůĂƟŽŶƚŽŝƚƐďŝŽŐĞŽŐƌĂƉŚŝĐnjŽŶĞ͘ƌŝƚĞƌŝŽŶʹWƌĞƐĞŶĐĞŽĨƚŚƌĞĂƚĞŶĞĚ /^EϵϳϴͲϵϲϲͲϱϰϮͲϲϮϮͲϲ ŚĂďŝƚĂƚƐ͗ƚŚĞƐŝƚĞŝƐĂŶŽƵƚƐƚĂŶĚŝŶŐĞdžĂŵƉůĞŽĨĂŚĂďŝƚĂƚŽƌ ǀĞŐĞƚĂƟŽŶƚLJƉĞŽĨŐůŽďĂůŽƌ ʶ̛̦̐̌ ̛̥̞̭̯̯̽ ̨̛̛̪̭ ϭϳϯ ʦ̵̛̛̙̣̌̏ ̸̵̨̛̯̦̞̦̍̌ ̨̛̯̖̬̯̬̞̜ ˄̡̛̬̟̦̌͘ ʪ̦̞̌ ̨̪̬ ̡̨̙̦̱ ƌĞŐŝŽŶĂůƉůĂŶƚĐŽŶƐĞƌǀĂƟŽŶĂŶĚďŽƚĂŶŝĐĂůŝŵƉŽƌƚĂŶĐĞ͘Η/WΗŝƐŶŽƚĂŶŽĸĐŝĂůĚĞƐŝŐŶĂƟŽŶ͘ ̨̛̯̖̬̯̬̞̀ ̸̡̣̯̏̀̌̀̽ ̟̟ ̨̪̣̺̱͕ ̴̸̨̖̬̞̦̞̐̐̌ ̡̨̨̛̛̬̦̯͕̔̌ ̡̛̬̯̖̬̞̟ ̛̞̣̖̦̦͕̏̔́ ̨̪̣̺̞ /WƐĂƌĞƐĞůĞĐƚĞĚƐĐŝĞŶƟĮĐĂůůLJƵƐŝŶŐĐƌŝƚĞƌŝĂƐƵƉƉŽƌƚĞĚďLJĞdžƉĞƌƚƐĐŝĞŶƟĮĐũƵĚŐĞŵĞŶƚ͘ ̴̶̨̡̡̛̛̭̖̣̺̣̭̞̞̌̌̌̿̀̚hE/^̵̡̡̨̨̨̡̨̛̛̛̛̛̛͕̬̯̖̬̭̯̱̬̭̣̦̦̭̯̞͕̬͕̣̭̟̌̌̌̐̏̔̀̔̽̚̚
    [Show full text]
  • Shooting Locations Guide Ukraine Contents
    SHOOTING LOCATIONS GUIDE UKRAINE CONTENTS Cherkasy Oblast ........................................... 3 Chernihiv Oblast .......................................... 6 Chernivtsi Oblast .......................................... 9 Dnipro Oblast ............................................... 11 Ivano-Frankivsk Oblast ................................ 12 Kharkiv Oblast .............................................. 15 Kherson Oblast ............................................. 17 Khmelnytskyi Oblast .................................... 20 Kyiv Oblast .................................................... 22 Lviv Oblast ..................................................... 27 Mykolaiv Oblast ............................................ 31 Odesa Oblast ................................................ 33 Poltava Oblast ............................................... 35 Rivne Oblast ................................................ 36 Sumy Oblast ................................................ 38 Vinnytsia Oblast ............................................ 40 Volyn Oblast ................................................ 41 Zakarpattia Oblast ........................................ 43 Zaporizhzhia Oblast ..................................... 46 Zhytomyr Oblast ........................................... 48 Ternopil Oblast ............................................. 49 — Nature reserve — Biosphere reserve — Industry building — National park — Historical and cultural reserve CHERKASY OBLAST Local authorities Cherkasy city Council 36 Baidy Vyshnevetskoho
    [Show full text]
  • 1 Report: Results of the Long-Term Election Monitoring of the Local
    Report: results of the long-term election monitoring of the local elections in Ukraine on 25 October 2020 CONCLUSIONS 1. The CVU believes that the Electoral Code of Ukraine make it generally possible for the local elections to be held in accordance with international standards, although it contains a number of significant drawbacks and deficiencies. The CVU is quite critical of the practice of making amendments to the election legislation a short time before the election. It not only gives the subjects of the election process insufficient time to get familiarized with the election legislation, but it is also a cause of errors and shortcomings in the text of the act. 2. The CVU believes that the Electoral Code of Ukraine should be substantially revised after the end of the local election campaign. In the opinion of the Committee of Voters, it is necessary to abandon the proportional electoral system in smaller communities and provide the residents of such communities with the right to self- nominate. 3. Although the law has provided citizens with ample opportunities to change their voting address, only a relatively small number of voters have taken advantage of the procedure. In total, 100,081 voters have changed their voting address. This is less than 2% of the number of citizens who could have used such a procedure. It is estimated that 5.5 to 6 million people in Ukraine do not reside at their place of registration. 4. The CVU believes that the public authorities have made inadequate arrangements for holding elections at the time of the pandemic.
    [Show full text]
  • Admin 2 Number of Partners with Ongoing
    UKRAINE, Multipurpose Cash - Admin 2 Number of Partners with ongoing/completed Projects ( as of 2Sem8en iDvkaecembeSerre d2yna0-B1uda6) Novhorod-Siverskyi Yampil BELARUS Horodnia Ripky Shostka Liubeshiv Zarichne Ratne Snovsk Koriukivka Hlukhiv Kamin-Kashyrskyi Dubrovytsia Korop Shatsk Stara Chernihiv Sosnytsia Krolevets Volodymyrets Vyzhivka Kulykivka Mena Ovruch Putyvl Manevychi Sarny Rokytne Borzna Liuboml Kovel Narodychi Olevsk Konotop Buryn Bilopillia Turiisk Luhyny Krasiatychi Nizhyn Berezne Bakhmach Ivankiv Nosivka Rozhyshche Kostopil Yemilchyne Kozelets Sumy Volodymyr-Volynskyi Korosten Ichnia Talalaivka Nedryhailiv Lokachi Kivertsi Malyn Bobrovytsia Krasnopillia Romny RUSSIAN Ivanychi Lypova Lutsk Rivne Korets Novohrad-Volynskyi Borodianka Vyshhorod Pryluky Lebedyn FEDERATION Zdolbuniv Sribne Dolyna Sokal Mlyniv Radomyshl Brovary Zghurivka Demydivka Hoshcha Pulyny Cherniakhiv Makariv Trostianets Horokhiv Varva Dubno Ostroh Kyiv Baryshivka Lokhvytsia Radekhiv Baranivka Zhytomyr Brusyliv Okhtyrka Velyka Pysarivka Zolochiv Vovchansk Slavuta Boryspil Yahotyn Pyriatyn Chornukhy Hadiach Shepetivka Romaniv Korostyshiv Vasylkiv Bohodukhiv Velykyi Kamianka-buzka Radyvyliv Iziaslav Kremenets Fastiv Pereiaslav-Khmelnytskyi Hrebinka Zinkiv Krasnokutsk Burluk Bilohiria Polonne Chudniv Andrushivka Derhachi Zhovkva Busk Brody Shumsk Popilnia Obukhiv Myrhorod Kharkiv Liubar Berdychiv Bila Drabiv Kotelva Lviv Lanivtsi Kaharlyk Kolomak Valky Chuhuiv Dvorichna Troitske Zolochiv Tserkva Orzhytsia Khorol Dykanka Pechenihy Teofipol Starokostiantyniv
    [Show full text]
  • Ukrainian Scythia Ecological Tour to the South of Ukraine (13 Days) (Donetsk, Kherson, Zaporizhzhya, Odesa and Mykolayiv Regions)
    Ukrainian Scythia Ecological tour to the South of Ukraine (13 days) (Donetsk, Kherson, Zaporizhzhya, Odesa and Mykolayiv regions) This unique route will take you through the centuries to the ancient times, billions, thousands and hundreds years ago…The Southern and the Southeastern parts of Ukraine are hiding a great number of mysterious and enigmatic places. The flowing rivers formed the magnificent and extremely picturesque canyons with the interesting rapids, whimsical rocks, rich flora and fauna in the surroundings. Here on Khortytsya island the capital of the Cossack state used to be, somewhere in this area the legendary Scythian Escampey was lost, the Stone Tombs (Kamyani mogyly) in Donetsk region and the Stone Tomb (Kamyana Mogyla) – an ancient sanctuary with rock inscriptions near Melitopol – are associated with the so called “places of power”. The route goes through the biggest desert in Europe – Oleshkivska and a number of the unique areas of the reserves – the steppe reserve Askaniya Nova, the Danube Biosphere Reserve. Program Day 1 Leaving from Kyiv. Visiting the national reserve “Khortytsya” (the biggest island on the Dnipro river, the most important cradle of Ukrainian Cossackdom). During the excursion we are going to visit the historic-cultural complex “Zaporizhska Sich”, the memorial and tourist complexes and the unique and extremely interesting folklore- ethnographic “Mounted Zaporizhsky Cossacks” performance. Optionally: “Protovche” tract with the Dnipro floodplains and a panoramic view on the legendary Bayda island from the rocky Khortytsya banks. Arrival to the camp. Dinner. Day 2 Breakfast. The Stone Tombs (Kamyani mogyly). When you find yourself in this place for the first time, a thought that you’re looking at the ambrosial landscapes suddenly occur.
    [Show full text]
  • 2017 Nina 001 003 Title.P65
    N.Yu. Polchaninova, E.V. Prokopenko Catalogue of the spiders (Arachnida, Aranei) of Left-Bank Ukraine. Addendum 1. 20132016 Arthropoda Selecta. Supplement No. 4. K.G. Mikhailov (Responsible Editor) KMK Scientific Press Ltd. Moscow v 2017 N.Yu. Polchaninova1, E.V. Prokopenko2. Catalogue of the spiders (Arachnida, Aranei) of Left-Bank Ukraine. Addendum 1. 20132016. / K.G. Mikhailov (resp. ed.). Arthropoda Selecta. Supplement No. 4. Moscow: KMK Scientific Press. 2017. 115 p. 1 Kharkiv branch of the Ukrainian Entomological Society; 2 Donetsk branch of the Ukrainian Entomological Society, Ukraine. The Supplement to the Catalogue of spiders of Left-Bank Ukraine presents new data obtained during January 2013 December 2016, and corrects mistakes and omissions of the Catalogue 2013. The updated list includes 728 spider species from 266 genera and 35 families collected in 263 localities. Two species are excluded from the previous list as erroneous identification, and two species as needed further examination; 23 species and 49 collecting localities are new to the area in question. Each species is provided with the published and original records from Left-Bank Ukraine, habitat preferences in different natural zones and subzones, erroneous and doubtful records, inaccurate citations, and synonyms used in literature. The catalogue is intended for zoologists, zoogeographers, local biologists and naturalists. KEY WORDS: Aranei, spiders, catalogue, Left-Bank Ukraine. Í.Þ. Ïîë÷àíèíîâà1, Å.Â. Ïðîêîïåíêî2. Êàòàëîã ïàóêîâ (Arachnida, Aranei) Ëåâîáå- ðåæíîé Óêðàèíû. Äîïîëíåíèå 1. 20132016. / Ê.Ã. Ìèõàéëîâ (îòâ. ðåä.). Arthropoda Selecta. Ïðèëîæåíèå ¹ 4. Ìîñêâà: Òîâàðèùåñòâî íàó÷íûõ èçäàíèé ÊÌÊ. 2017. 115 ñ. 1 Õàðüêîâñêîå îòäåëåíèå Óêðàèíñêîãî ýíòîìîëîãè÷åñêîãî îáùåñòâà; 2 Äîíåöêîå îòäåëåíèå Óêðàèíñêîãî ýíòîìîëîãè÷åñêîãî îáùåñòâà, Óêðàèíà.
    [Show full text]