Cienegas Vanishing Climax Communities of the American
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
USGS Open-File Report 2009-1269, Appendix 1
Appendix 1. Summary of location, basin, and hydrological-regime characteristics for U.S. Geological Survey streamflow-gaging stations in Arizona and parts of adjacent states that were used to calibrate hydrological-regime models [Hydrologic provinces: 1, Plateau Uplands; 2, Central Highlands; 3, Basin and Range Lowlands; e, value not present in database and was estimated for the purpose of model development] Average percent of Latitude, Longitude, Site Complete Number of Percent of year with Hydrologic decimal decimal Hydrologic altitude, Drainage area, years of perennial years no flow, Identifier Name unit code degrees degrees province feet square miles record years perennial 1950-2005 09379050 LUKACHUKAI CREEK NEAR 14080204 36.47750 109.35010 1 5,750 160e 5 1 20% 2% LUKACHUKAI, AZ 09379180 LAGUNA CREEK AT DENNEHOTSO, 14080204 36.85389 109.84595 1 4,985 414.0 9 0 0% 39% AZ 09379200 CHINLE CREEK NEAR MEXICAN 14080204 36.94389 109.71067 1 4,720 3,650.0 41 0 0% 15% WATER, AZ 09382000 PARIA RIVER AT LEES FERRY, AZ 14070007 36.87221 111.59461 1 3,124 1,410.0 56 56 100% 0% 09383200 LEE VALLEY CR AB LEE VALLEY RES 15020001 33.94172 109.50204 1 9,440e 1.3 6 6 100% 0% NR GREER, AZ. 09383220 LEE VALLEY CREEK TRIBUTARY 15020001 33.93894 109.50204 1 9,440e 0.5 6 0 0% 49% NEAR GREER, ARIZ. 09383250 LEE VALLEY CR BL LEE VALLEY RES 15020001 33.94172 109.49787 1 9,400e 1.9 6 6 100% 0% NR GREER, AZ. 09383400 LITTLE COLORADO RIVER AT GREER, 15020001 34.01671 109.45731 1 8,283 29.1 22 22 100% 0% ARIZ. -
Roundtail Chub Repatriated to the Blue River
Volume 1 | Issue 2 | Summer 2015 Roundtail Chub Repatriated to the Blue River Inside this issue: With a fish exclusion barrier in place and a marked decline of catfish, the time was #TRENDINGNOW ................. 2 right for stocking Roundtail Chub into a remote eastern Arizona stream. New Initiative Launched for Southwest Native Trout.......... 2 On April 30, 2015, the Reclamation, and Marsh and Blue River. A total of 222 AZ 6-Species Conservation Department stocked 876 Associates LLC embarked on a Roundtail Chub were Agreement Renewal .............. 2 juvenile Roundtail Chub from mission to find, collect and stocked into the Blue River. IN THE FIELD ........................ 3 ARCC into the Blue River near bring into captivity some During annual monitoring, Recent and Upcoming AZGFD- the Juan Miller Crossing. Roundtail Chub for captive led Activities ........................... 3 five months later, Additional augmentation propagation from the nearest- Department staff captured Spikedace Stocked into Spring stockings to enhance the genetic neighbor population in Eagle Creek ..................................... 3 42 of the stocked chub, representation of the Blue River Creek. The Aquatic Research some of which had travelled BACK AT THE PONDS .......... 4 Roundtail Chub will be and Conservation Center as far as seven miles Native Fish Identification performed later this year. (ARCC) held and raised the upstream from the stocking Workshop at ARCC................ 4 offspring of those chub for Stockings will continue for the location. future stocking into the Blue next several years until that River. population is established in the Department biologists conducted annual Blue River and genetically In 2012, the partners delivered monitoring in subsequent mimics the wild source captive-raised juvenile years, capturing three chub population. -
Environmental Flows and Water Demands in Arizona
Environmental Flows and Water A University of Arizona Water Resources Research Center Project Demands in Arizona ater is an increasingly scarce resource and is essential for Arizona’s future. Figure 1. Elements of Environmental Flow WWith Arizona’s population growth and Occurring in Seasonal Hydrographs continued drought, citizens and water managers have been taking a closer look at water supplies in the state. Municipal, industrial, and agricul- tural water users are well-represented demand sectors, but water supplies and management to benefit the environment are not often consid- ered. This bulletin explains environmental water demands in Arizona and introduces information essential for considering environmental water demands in water management discussions. Considering water for the environment is impor- tant because humans have an interconnected and interdependent relationship with the envi- ronment. Nature provides us recreation oppor- tunities, economic benefits, and water supplies Data Source: to sustain our communities. USGS stream gage data Figure 2: Human Demand and Current Flow in Arizona Environmental water demands (or environmental flow) (circle size indicates relative amount of water) refers to how much water is needed in a watercourse to sustain a healthy ecosystem. Defining environmental water demand goes beyond the ecology and hydrol- Maximum ogy of a system and should include consideration for Flows how much water is required to achieve an agreed Industrial 40.8 maf Industrial SW Municipal upon level of river health, as determined by the GW 1% GW 8% water-using community. Arizona’s native ani- 4% mals and plants depend upon dynamic flows commonly described according to the natural Municipal SW flow regime. -
Notices of Public Information 3489
Arizona Administrative Register Notices of Public Information NOTICES OF PUBLIC INFORMATION Notices of Public Information contain corrections that agencies wish to make to their notices of rulemaking; miscella- neous rulemaking information that does not fit into any other category of notice; and other types of information required by statute to be published in the Register. Because of the variety of material that is contained in a Notice of Public Information, the Office of the Secretary of State has not established a specific format for these notices. NOTICE OF PUBLIC INFORMATION DEPARTMENT OF ENVIRONMENTAL QUALITY 1. A.R.S. Title and its heading: 49, The Environment A.R.S. Chapter and its heading: 2, Water Quality Control A.R.S. Article and its heading: 2.1, Total Maximum Daily Loads A.R.S. Sections: A.R.S. § 49-232, Lists of Impaired Waters; Data Requirements; Rules 2. The public information relating to the listed statute: A.R.S. § 49-232(A) requires the Department to at least once every five years, prepare a list of impaired waters for the pur- pose of complying with section 303(d) of the Clean Water Act (33 U.S.C. 1313(d)). The Department shall provide public notice and allow for comment on a draft list of impaired waters prior to its submission to the United States Environmental Protection Agency (EPA). The Department shall prepare written responses to comments received on the draft list. The Department shall publish the list of impaired waters that it plans to submit initially to the regional administrator and a summary of the responses to comments on the draft list in the Arizona Administrative Register at least forty-five days before submission of the list to the regional administrator. -
Water, Summer 2008
Restoring Connections Vol. 11 Issue 2 Summer 2008 Newsletter of the Sky Island Alliance In this issue: A River Runs Beneath It by Randy Serraglio 4 Time and the Aquifer: Models and Long-term Thinking Water… by Julia Fonseca 5 Street and Public Rights-of-Way: Community Corridors of Heat & Dehydration OR Green Belts of Coolness & Rehydration by Brad Lancaster 6 A New Path for Water Use by Melissa Lamberton 7 The Power of Water by Janice Przybyl 8 Our special pull-out section on Ciénegas Monitoring Water with Remote Cameras by Sergio Avila 9 Waste Water / Holy Water by Ken Lamberton 10 Coyote Wells by Julia Fonseca 12 Finding Water in the Desert by Gary Williams 12 H2Oly Stories by Doug Bland 13 Restaurant Review: The Adobe Café & Bakery by Mary Rakestraw 14 Volunteers Make It Happen Rio Saracachi at Rancho Agua Fria in Sonora. by Sarah Williams 16 From the Director’s Desk: Swimming Holes and Groundwater by Matt Skroch, Executive Director Rivers and springs have been used to our several decades, or centuries, the water table will agricultural advantage for 12,000 years here, once again seep upwards to ground level, and though unsustainable groundwater mining is a those low points on the landscape we call rivers relatively new phenomena. We’ve discovered will flow once again. other temporary ways around the problem of increasing water scarcity — billions of dollars Either choice will eventually lead nature back to spent to pump water uphill for 330 miles being better days. The difference being that one choice Few experiences compare to the exhilaration of one spectacular example. -
Cole and Cole (2015)
the new mexico botanist Special Issue Number 4 September 2015 proceedings of the fourth Natural History of the Gila Symposium October 25–27, 2012 Western New Mexico University Silver City, New Mexico edited by Kathy Whiteman Department of Natural Sciences, Western New Mexico University William Norris Department of Natural Sciences, Western New Mexico University 2015 The New Mexico Botanist, Special Issue No. 4, September 2015 An Overview of Aridland Ciénagas, with Proposals for Their Classification, Restoration, and Preservation A.T. Cole and Cinda Cole 15.15 Separ Rd., Silver City, NM 88061 [email protected] Abstract important to the Southwest? Will a ciénaga classification sys- Ciénagas are the American Southwest’s most unusual tem and the creation of Ciénaga Coordinators help to restore wetlands, yet they are dwindling. This paper addresses what and preserve them? they are, their uniqueness and importance, how they devel- oped, and the causes for the loss of most ciénaga habitat. Ciénagas Defined We also propose a classification system for ciénagas that will contribute to a more meaningful and better-focused discus- Undamaged ciénagas are freshwater or alkaline wet mead- sion about ciénagas, provide an inventory of known ciénagas, ows with shallow-gradient, permanently saturated soils in and suggest a system of Ciénaga Coordinators with the goal otherwise arid landscapes that in earlier time supported of identifying, restoring, and preserving the few remaining lush meadow grasses and often occupied the entire widths ciénagas. Finally, the inventory from this paper is made avail- of valley bottoms. Ciénagas occur because the geomorphol- able online in an interactive, open, moderated format that ogy forces water to the surface, and historically they covered will allow anyone to contribute to the correction, evolution, large areas rather than occurring as single pools or channels and general improvement and growth of this database, and (Hendrickson and Minckley 1985; Sivinski and Tonne 2011). -
Eyec Sail Dzan
Desert Plants, Volume 6, Number 3 (1984) Item Type Article Authors Hendrickson, Dean A.; Minckley, W. L. Publisher University of Arizona (Tucson, AZ) Journal Desert Plants Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 27/09/2021 19:02:02 Link to Item http://hdl.handle.net/10150/552226 Desert Volume 6. Number 3. 1984. (Issued early 1985) Published by The University of Arizona at the Plants Boyce Thompson Southwestern Arboretum eyec sail Dzan Ciénegas Vanishing Climax Communities of the American Southwest Dean A. Hendrickson and W. L. Minckley O'Donnell Ciénega in Arizona's upper San Pedro basin, now in the Canelo Hills Ciénega Preserve of the Nature Conservancy. Ciénegas of the American Southwest have all but vanished due to environmental changes brought about by man. Being well- watered sites surrounded by dry lands variously classified as "desert," "arid," or "semi- arid," they were of extreme importance to pre- historic and modern Homo sapiens, animals and plants of the Desert Southwest. Photograph by Fritz jandrey. 130 Desert Plants 6(3) 1984 (issued early 1985) Desert Plants Volume 6. Number 3. (Issued early 1985) Published by The University of Arizona A quarterly journal devoted to broadening knowledge of plants indigenous or adaptable to arid and sub -arid regions, P.O. Box AB, Superior, Arizona 85273 to studying the growth thereof and to encouraging an appre- ciation of these as valued components of the landscape. The Boyce Thompson Southwestern Arboretum at Superior, Arizona, is sponsored by The Arizona State Parks Board, The Boyce Thompson Southwestern Arboretum, Inc., and The University of Arizona Frank S. -
San Pedro River Study Area Wild and Scenic River Eligibility Report
Prepared by the USDI Department of the Interior Bureau of Land Management, Tucson Field Office May 2016 The BLM manages more than 245 million acres of public land, the most of any Federal agency. This land, known as the National System of Public Lands, is primarily located in 12 Western states, including Alaska. The BLM also administers 700 million acres of sub-surface mineral estate throughout the nation. The BLM's mission is to manage and conserve the public lands for the use and enjoyment of present and future generations under our mandate of multiple-use and sustained yield. Cover photo – San Pedro River near Charleston courtesy of BLM/Bob Wick 2 San Pedro River Wild and Scenic River Study Area Eligibility Report This document consolidates resource information about the San Pedro River and one of its key tributaries, the Babocomari River. The purpose of this document is to provide a basis for reassessing the eligibility and suitability for inclusion of the San Pedro River and related free- flowing conditions and outstandingly remarkable river values into the National Wild and Scenic River System. I. BACKGROUND: The San Pedro River Wild and Scenic River Study Area Eligibility Report describes the information considered by the Bureau of Land Management (BLM) in the eligibility, and tentative re-classification of the San Pedro River for suitability analysis in the San Pedro Riparian National Conservation Area (SPRNCA) Resource Management Plan (RMP). The SPRNCA was established by Public Law (P.L.) 100-696 on Nov. 18, 1988 to preserve, protect, and enhance the aquatic, wildlife, archaeological, paleontological, scientific, cultural, educational, and recreational resources in the conservation area. -
Appendix a Assessment Units
APPENDIX A ASSESSMENT UNITS SURFACE WATER REACH DESCRIPTION REACH/LAKE NUM WATERSHED Agua Fria River 341853.9 / 1120358.6 - 341804.8 / 15070102-023 Middle Gila 1120319.2 Agua Fria River State Route 169 - Yarber Wash 15070102-031B Middle Gila Alamo 15030204-0040A Bill Williams Alum Gulch Headwaters - 312820/1104351 15050301-561A Santa Cruz Alum Gulch 312820 / 1104351 - 312917 / 1104425 15050301-561B Santa Cruz Alum Gulch 312917 / 1104425 - Sonoita Creek 15050301-561C Santa Cruz Alvord Park Lake 15060106B-0050 Middle Gila American Gulch Headwaters - No. Gila Co. WWTP 15060203-448A Verde River American Gulch No. Gila County WWTP - East Verde River 15060203-448B Verde River Apache Lake 15060106A-0070 Salt River Aravaipa Creek Aravaipa Cyn Wilderness - San Pedro River 15050203-004C San Pedro Aravaipa Creek Stowe Gulch - end Aravaipa C 15050203-004B San Pedro Arivaca Cienega 15050304-0001 Santa Cruz Arivaca Creek Headwaters - Puertocito/Alta Wash 15050304-008 Santa Cruz Arivaca Lake 15050304-0080 Santa Cruz Arnett Creek Headwaters - Queen Creek 15050100-1818 Middle Gila Arrastra Creek Headwaters - Turkey Creek 15070102-848 Middle Gila Ashurst Lake 15020015-0090 Little Colorado Aspen Creek Headwaters - Granite Creek 15060202-769 Verde River Babbit Spring Wash Headwaters - Upper Lake Mary 15020015-210 Little Colorado Babocomari River Banning Creek - San Pedro River 15050202-004 San Pedro Bannon Creek Headwaters - Granite Creek 15060202-774 Verde River Barbershop Canyon Creek Headwaters - East Clear Creek 15020008-537 Little Colorado Bartlett Lake 15060203-0110 Verde River Bear Canyon Lake 15020008-0130 Little Colorado Bear Creek Headwaters - Turkey Creek 15070102-046 Middle Gila Bear Wallow Creek N. and S. Forks Bear Wallow - Indian Res. -
Geothermal Resource Potential for a Portion of the San Pedro River Valley, Arizona
GEOTHERMAL RESOURCE POTENTIAL FOR A PORTION OF THE SAN PEDRO RIVER VALLEY, ARIZONA by W. Richard Rahman, Sr. Arizona Geological Survey Open-File Report 81-6 Apri11981 Arizona Geological Survey 416 W. Congress, Suite #100, Tucson, Arizona 85701 Funded by the u.s. Department ofEnergy Contract Number DE-FC07-79ID12009 This report is preliminary and has not been edited or reviewed for conformity with Arizona Geological Survey standards RECONNAISSANCE STUDY GEOTHERMAL RESOURCE POTENTIAL OF A PORTION OF THE SAN PEDRO RIVER VALLEY INTRODUCTION A preliminary investigation of the geothermal resource potential of the San Pedro River valley was undertaken the latter part of 1980. The area of investigation is situated in Pinal, Pima and Cochise counties, Arizona. It extends from the town of Mammoth, Pinal County, south-southeast along the river valley to just north of the Johnny Lyon 2 2 Hills, an area comprising 2331 km (900 mi ). With the exception of mining and smelting activities in the Mammoth-San Manuel area, the primary business in the valley is agriculture, cattle ranching and forage crops. The majority of the irrigation, livestock, and domestic wells are along the bed of the San Pedro River, an ephemeral stream that flows northward from its headwaters in Mexico. The wells generally vary in depth from 24 m (80 ft) to 36 m (120 ft) and essentially produce from the subsurface river flow. In the Mammoth-San Manuel area there are some warm artesian wells that vary in depth from approximately 244 m (800 ft) to 457 m (1500 ft). The warmest temperature 0 o measured in these wells was 40 C (104 F). -
Flood Insurance Study Vol. 1
SANTA CRUZ COUNTY, ARIZONA AND INCORPORATED AREAS VOLUME 1 OF 3 Community Community Name Number SANTA CRUZ COUNTY, (UNINCORPORATED AREAS) 040090 NOGALES, CITY OF 040091 PATAGONIA, TOWN OF 040092 Santa Cruz County EFFECTIVE: DECEMBER 2, 2011 Federal Emergency Management Agency FLOOD INSURANCE STUDY NUMBER 04023CV001A NOTICE TO FLOOD INSURANCE STUDY USERS Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the repository. Please contact the Community Map Repository for any additional data. Part or all of this FIS may be revised and republished at any time. In addition, part of this FIS report may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS report. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS report components. Selected Flood Insurance Rate Map (FIRM) panels for this community contain information that was previously shown separately on the corresponding Flood Boundary and Floodway Map (FBFM) panels (e.g., floodways, cross sections). In addition, former flood hazard zone designations have been changed as follows: Old Zone(s) New Zone A1 through A30 AE B X C X Initial Countywide FIS Report Effective Date: December 2, 2011 TABLE OF CONTENTS – VOLUME 1 Page 1.0 INTRODUCTION -
The Arizona Department of Water Resources Cochise, Graham and Santa Cruz Counties, Arizona—Dec. 2001- Jan. 2002 by R.L. Barnes
D.W.R HYDROLOGIC MAP SERIES REPORT NO. 34 PREPARED IN COOPERATION WITH THE UNITED STATES GEOLOGICAL SURVEY THE ARIZONA DEPARTMENT OF WATER RESOURCES DEPTH TO WATER AND ALTITUDE OF THE WATER LEVEL SHEET 1 OF 2 114 113 112 111 110 109 Based on 1968 data, a small elliptical cone of depression was first described by Roeske and Werrell, (1973, p.16). The 37 37 With the exception of the Pantano (?) Formation, all of the previously mentioned basin-fill units are also present in Allen Flat, depression was enclosed within the 4,150 foot contour. It encompassed about 5 square miles and was centered in section 33, however, the units are not as thick (Putman and others, 1988, p. 65). Depth to bedrock in the Allen Flat sub-basin has been Township 21 South, Range 20 East. The major axis of the elliptical cone was northeast-southwest in orientation. Data col- estimated to be from 1,600 to 3,200 feet (Oppenheimer and Sumner, 1980, map). lected by the U. S. Geological Survey in the winter of 1977-78 supports Konieczki’s (1980, sheet 1) reference to the small depression centered within the 4,150 foot contour near Sierra Vista-Fort Huachuca. Putman and others (1988, p.98), using GROUNDWATER OCCURRENCE data collected in the winter of 1985-86, stated that the cone of depression within the 4,150 foot contour still extended in a northeast-southwest direction, and had increased areally to the east and southeast of Sierra Vista, to about 7.5 square miles. A T R 21 E The predominant aquifers in the Upper San Pedro Basin are the basin-fill deposits and the floodplain alluvium (Roeske and maximum decline of 9.2 feet was observed between 1985 and 1990 at well (D-21-21) 31CAC, while the minimum observed 36 36 decline was 2.2 feet at well (D-21-20) 35CBC for this period.