Modulation of the JAK2/STAT3 Pathway in Vivo: Understanding Reactive Astrocyte Functional Features and Contribution to Neurodegenerative Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Modulation of the JAK2/STAT3 Pathway in Vivo: Understanding Reactive Astrocyte Functional Features and Contribution to Neurodegenerative Diseases Modulation of the JAK2/STAT3 pathway in vivo : understanding reactive astrocyte functional features and contribution to neurodegenerative diseases Lucile Ben Haim To cite this version: Lucile Ben Haim. Modulation of the JAK2/STAT3 pathway in vivo : understanding reactive astrocyte functional features and contribution to neurodegenerative diseases. Neurons and Cognition [q-bio.NC]. Université Pierre et Marie Curie - Paris VI, 2014. English. NNT : 2014PA066534. tel-01165032 HAL Id: tel-01165032 https://tel.archives-ouvertes.fr/tel-01165032 Submitted on 18 Jun 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Ecole Doctorale Cerveau, Cognition, Comportement Laboratoire des maladies neurodégénératives, CEA-CNRS URA2210 Thèse de doctorat de Neurosciences Lucile BEN HAIM Modulation of the JAK2/STAT3 pathway in vivo: understanding reactive astrocyte functional features and contribution to neurodegenerative diseases. Dirigée par Dr. Carole Escartin Soutenue publiquement le 11 décembre 2014 Composition du jury Président Pr. Jean Mariani CNRS UMR 7102 UPMC Rapporteurs Dr. Jean-Charles Liévens CNRS UMR 7286 CRN2M Dr. Frank Pfrieger CNRS UPR 3212 INCI Examinateurs Dr. Christian Lobsiger INSERM U-1127 UPMC Dr. Stéphane Oliet INSERM Neurocentre Magendie Directrice de thèse Dr. Carole Escartin CEA-CNRS URA2210 1 « Before you know, you must imagine » Nobel laureate Richard Axel 2 Abstract Astrocytes become reactive in response to pathological conditions in the CNS including neurodegenerative diseases (ND) such as Alzheimer’s (AD) and Huntington’s (HD) diseases. Reactive astrocytes (RA) are identified by morphological changes but their functional features and influence on neuronal survival are poorly understood. They have mainly been studied in acute injuries, but less is known for chronic diseases like ND. In this context, we aimed at 1) identifying the signaling cascades involved in astrocyte reactivity in ND conditions, 2) evaluating RA contribution to chronic neuronal dysfunction in ND models and 3) deciphering RA functional features. The JAK2/STAT3 pathway is a known trigger of astrocyte reactivity in many CNS acute injury models. Here, we show that this pathway is a universal inducer of astrocyte reactivity in several ND mouse models of both AD and HD. We developed new viral vectors that target the JAK2/STAT3 cascade in vivo, in astrocytes of the adult rodent brain, to selectively modulate astrocyte reactivity. Using these original tools, we were able to investigate the contribution of RA to disease progression and neuronal dysfunction in two different models of HD: the lentiviral-based model of HD and the N171-82Q HD mice. Our results show that RA do not primarily influence disease phenotype in these models. Finally, we manipulated the JAK2/STAT3 pathway to activate astrocytes in WT mice in order to characterize the functional features of RA in vivo. We show that astrocyte activation through the JAK2/STAT3 pathway triggers transcriptional changes of numerous genes involved in important cellular functions such as metabolism, protein degradation pathways and immune response. Furthermore, we show that astrocyte reactivity alters synaptic plasticity in the mouse hippocampus. Our results identify the JAK2/STAT3 pathway as a central cascade for astrocyte reactivity. The viral vectors developed in this project represent powerful tools to 1) manipulate this pathway and decipher RA contribution to chronic neuronal dysfunction in various ND models and 2) characterize RA functional features in vivo. Better understanding RA functions may eventually lead to the identification of new therapeutic targets for ND. Key words: Reactive astrocytes, JAK2/STAT3 pathway, Neuroinflammation, Huntington’s disease, Alzheimer’s disease, Viral vectors, Transcription regulation. Résumé Les astrocytes deviennent réactifs en réponse à toute situation pathologique dans le SNC, en particulier dans les maladies neurodégératives (MND) comme la maladie d’Alzheimer (MA) et de Huntington (MH). Les astrocytes réactifs (AR) sont identifiés par des changements morphologiques bien caractérisés mais les conséquences fonctionnelles de leur réactivité sont peu connues, notamment dans les MND. La contribution des AR dans les situations pathologiques a principalement été étudiée dans des modèles de lésions aigües mais leur rôle dans les MND est peu connu. Dans cette étude, nous avons évalué 1) les voies de signalisation impliquées dans la réactivité astrocytaire, 2) la contribution des AR à la dysfonction neuronale dans des modèles de MND et 3) les caractéristiques fonctionnelles des AR. La voie JAK2/STAT3 est une voie de signalisation impliquée dans la réactivité astrocytaire, dans des conditions pathologiques aigües. Dans cette étude, nous avons montré que cette voie universelle induit également la réactivité astrocytaire des modèles murins de MA et MH. Nous avons développé de nouveaux vecteurs viraux permettant de cibler la voie JAK2/STAT3, in vivo, sélectivement dans les astrocytes, dans le cerveau de rongeur adulte. A l’aide de ces outils, nous avons étudié la contribution des AR à la dysfonction neuronale observée dans deux modèles murins de la MH. Nos résultats suggèrent que les AR ne jouent pas un rôle central dans la dysfonction neuronale et la progression de la maladie dans ces deux modèles. Enfin, nous avons induit la réactivité dans les astrocytes de souris sauvages, en ciblant la voie JAK2/STAT3. L’activation de la voie JAK2/STAT3 dans les astrocytes du striatum module très fortement l’expression de gènes impliqués dans des fonctions cellulaires importantes comme le métabolisme oxydatif, les voies de dégradation des protéines ou la réponse immunitaire. De plus, nous avons observé que l’induction de la réactivité astrocytaire dans l’hippocampe de souris sauvage conduit à une diminution de la plasticité synaptique. En conclusion, nous avons montré que la voie JAK2/STAT3 est une voie centrale et conservée dans les AR. Les vecteurs viraux développés au cours de ce projet représentent des outils innovants pour évaluer 1) la contribution des AR à la dysfonction neuronale dans de nombreux modèles de MND et 2) caractériser les propriétés fonctionnelles des AR in vivo. L’étude des AR pourra permettre d’identifier de nouvelles cibles moléculaires pour manipuler ces cellules pléiotropes à des fins thérapeutiques. Mots-clés : Astrocytes réactifs, Voie de signalisation JAK2/STAT3, Neuroinflammation, Maladie de Huntington, Maladie d’Alzheimer, Vecteurs viraux, Régulation transcriptionnelle 3 Remerciements Je tiens à remercier les membres de mon jury pour avoir accepté d’examiner mon travail et de participer à ma soutenance de thèse. En particulier mes rapporteurs Jean-Charles Liévens et Frank Pfrieger pour l’évaluation de mon manuscrit. Je voudrais remercier toutes les personnes qui m’ont aidé, de toutes les manières que ce soit, au cours de ma thèse. Je remercie Philippe Hantraye pour avoir accepté que je réalise mon stage de Master 2 et ma thèse à MIRCen. Je voudrais remercier ma directrice de thèse, Carole, qui aura éprouvé, en plus de ces deux grossesses, une sorte de troisième accouchement en encadrant officiellement sa première thèse. Merci pour tes encouragements constants, à l’épreuve de mon pessimiste et de mon instatisfaction. Merci pour ton encadrement, pour la confiance que tu m’as accordé, dès le Master 2 sur ce projet. Merci de m’avoir permis de présenter mon travail et de le défendre à de nombreux congrès. Merci de ton aide, de ton soutien et de tes conseils pour la thèse et aussi pour la suite. Je tiens à remercier Gilles pour avoir été mon maître de stage de Master 2 par intérim, pour ton expérience, tes conseils, tes encouragements et pour l’organisation des team-meetings qui m’ont fait beaucoup progressé sur la communication de mes résultats (pour la partie valorisation, ça vient petit à petit). Merci à Emmanuel pour m’avoir accueillie dans le laboratoire et encadré au cours de mon stage de Master 1. Merci pour ta gentillesse, pour le temps que tu as toujours su m’accorder pour parler de mon projet de thèse, de science en général ou de la carrière de chercheur. Merci aux différentes personnes qui ont partagé mon bureau pour avoir éprouvé ma taciturnité au cours de ces trois ans et demi. Laetitia, merci pour ton optimisme, ton calme et ton humour (pas toujours bien placé), pour nos discussions existentielles sur la thèse et sur la suite. Merci à Noémie pour ta bonne humeur et ton humour, malgré que tu aies partagé notre bureau au cours des mois les plus stressants de ces 3 ans. Bon courage pour la suite. Merci à María pour ton soutien, tes encouragements et ta sagesse, de laquelle je vais m’efforcer de m’inspirer en recherche et dans la vie en général. Merci à Fabien pour ton aide, qui a été très précieuse pour mon projet de thèse mais surtout merci pour ton humour qui nous manque à tous. Merci à Juliette et Emilie pour leur soutien, leur humour et tous les moments qu’on a partagé. Juliette, nos échanges 9gag resteront associés à ma thèse pour toujours. Emilie, tu es un exemple de courage et de persévérance (et aussi de résistance à la bière). Merci à Karine pour m’avoir formée et pour ton aide pour les expériences de comportement. Je garde un souvenir tout particulier de l’atelier peinture pour le test de la marche. Merci à Marie-Claude pour m’avoir formée à la qPCR, pour ton aide et tes nombreux conseils. Merci à Noëlle, Charlène, Nicole et Alexis pour le design et la production des quelqu…nombreux virus dont je me suis servie au cours de ma thèse.
Recommended publications
  • Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
    531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant.
    [Show full text]
  • Determining HDAC8 Substrate Specificity by Noah Ariel Wolfson A
    Determining HDAC8 substrate specificity by Noah Ariel Wolfson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2014 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Robert S. Fuller Professor Anna K. Mapp Associate Professor Patrick J. O’Brien Associate Professor Raymond C. Trievel Dedication My thesis is dedicated to all my family, mentors, and friends who made getting to this point possible. ii Table of Contents Dedication ....................................................................................................................................... ii List of Figures .............................................................................................................................. viii List of Tables .................................................................................................................................. x List of Appendices ......................................................................................................................... xi Abstract ......................................................................................................................................... xii Chapter 1 HDAC8 substrates: Histones and beyond ...................................................................... 1 Overview ..................................................................................................................................... 1 HDAC introduction
    [Show full text]
  • ASPA Gene Aspartoacylase
    ASPA gene aspartoacylase Normal Function The ASPA gene provides instructions for making an enzyme called aspartoacylase. In the brain, this enzyme breaks down a compound called N-acetyl-L-aspartic acid (NAA) into aspartic acid (an amino acid that is a building block of many proteins) and another molecule called acetic acid. The production and breakdown of NAA appears to be critical for maintaining the brain's white matter, which consists of nerve fibers surrounded by a myelin sheath. The myelin sheath is the covering that protects nerve fibers and promotes the efficient transmission of nerve impulses. The precise function of NAA is unclear. Researchers had suspected that it played a role in the production of the myelin sheath, but recent studies suggest that NAA does not have this function. The enzyme may instead be involved in the transport of water molecules out of nerve cells (neurons). Health Conditions Related to Genetic Changes Canavan disease More than 80 mutations in the ASPA gene are known to cause Canavan disease, which is a rare inherited disorder that affects brain development. Researchers have described two major forms of this condition: neonatal/infantile Canavan disease, which is the most common and most severe form, and mild/juvenile Canavan disease. The ASPA gene mutations that cause the neonatal/infantile form severely impair the activity of aspartoacylase, preventing the breakdown of NAA and allowing this substance to build up to high levels in the brain. The mutations that cause the mild/juvenile form have milder effects on the enzyme's activity, leading to less accumulation of NAA.
    [Show full text]
  • Transcriptional Analysis of Sodium Valproate in a Serotonergic Cell Line Reveals Gene Regulation Through Both HDAC Inhibition-Dependent and Independent Mechanisms
    bioRxiv preprint doi: https://doi.org/10.1101/837732; this version posted November 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptional analysis of sodium valproate in a serotonergic cell line reveals gene regulation through both HDAC inhibition-dependent and independent mechanisms Priyanka Sinha1,2, Simone Cree1,2, Allison L. Miller1,2, John F. Pearson1,2,3, Martin A. Kennedy1,2. 1Gene Structure and Function Laboratory, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand. 2Carney Centre for Pharmacogenomics, University of Otago, Christchurch, New Zealand. 3Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand. Correspondence to: Prof. M. A. Kennedy Department of Pathology and Biomedical Science University of Otago, Christchurch Christchurch, New Zealand Email: [email protected] Keywords: RNA-Seq, NanoString, lithium, valproate, HDAC inhibitor, mood stabilizer 1 bioRxiv preprint doi: https://doi.org/10.1101/837732; this version posted November 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Sodium valproate (VPA) is a histone deacetylase (HDAC) inhibitor, widely prescribed in the treatment of bipolar disorder, and yet the precise modes of therapeutic action for this drug are not fully understood.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Histone Deacetylase 3 As a Novel Therapeutic Target in Multiple Myeloma
    Leukemia (2014) 28, 680–689 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE Histone deacetylase 3 as a novel therapeutic target in multiple myeloma J Minami1,4, R Suzuki1,4, R Mazitschek2, G Gorgun1, B Ghosh2,3, D Cirstea1,YHu1, N Mimura1, H Ohguchi1, F Cottini1, J Jakubikova1, NC Munshi1, SJ Haggarty3, PG Richardson1, T Hideshima1 and KC Anderson1 Histone deacetylases (HDACs) represent novel molecular targets for the treatment of various types of cancers, including multiple myeloma (MM). Many HDAC inhibitors have already shown remarkable antitumor activities in the preclinical setting; however, their clinical utility is limited because of unfavorable toxicities associated with their broad range HDAC inhibitory effects. Isoform- selective HDAC inhibition may allow for MM cytotoxicity without attendant side effects. In this study, we demonstrated that HDAC3 knockdown and a small-molecule HDAC3 inhibitor BG45 trigger significant MM cell growth inhibition via apoptosis, evidenced by caspase and poly (ADP-ribose) polymerase cleavage. Importantly, HDAC3 inhibition downregulates phosphorylation (tyrosine 705 and serine 727) of signal transducers and activators of transcription 3 (STAT3). Neither interleukin-6 nor bone marrow stromal cells overcome this inhibitory effect of HDAC3 inhibition on phospho-STAT3 and MM cell growth. Moreover, HDAC3 inhibition also triggers hyperacetylation of STAT3, suggesting crosstalk signaling between phosphorylation and acetylation of STAT3. Importantly, inhibition of HDAC3, but not HDAC1 or 2, significantly enhances bortezomib-induced cytotoxicity. Finally, we confirm that BG45 alone and in combination with bortezomib trigger significant tumor growth inhibition in vivo in a murine xenograft model of human MM.
    [Show full text]
  • Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
    Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L.
    [Show full text]
  • Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-Γ Production Via the Generation of Reactive Oxygen Species
    UCSF UC San Francisco Previously Published Works Title Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-γ Production via the Generation of Reactive Oxygen Species Permalink https://escholarship.org/uc/item/3dn9r8j2 Journal Cell Reports, 12(7) ISSN 0022-1767 Authors Huang, X Li, J Dorta-Estremera, S et al. Publication Date 2015-08-18 DOI 10.1016/j.celrep.2015.07.021 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Article Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-g Production via the Generation of Reactive Oxygen Species Graphical Abstract Authors Xinfang Huang, Jingjing Li, Stephanie Dorta-Estremera, ..., Kimberly S. Schluns, Lewis L. Lanier, Wei Cao Correspondence [email protected] In Brief Huang et al. find that IFN-a/b produced by plasmacytoid dendritic cells (pDCs) stimulates NK cells to secrete IFN-g, which is essential for the development of autoantibodies. ROS-producing neutrophils negatively regulate this NK- IFN-g pathway and control autoimmune progression in lupus-prone mice. Highlights d Mice pre-depleted of neutrophils develop more autoantibodies after pDC activation d The pDC-IFN-a/b pathway stimulates NK cells to produce IFN-g by inducing IL-15 d ROS released by neutrophils decreases IL-15 and thus inhibits IFN-g production d Neutrophils in male NZB/W F1 mice suppress NK cell and autoimmune B cell activation Huang et al., 2015, Cell Reports 12, 1120–1132 August 18, 2015 ª2015 The Authors http://dx.doi.org/10.1016/j.celrep.2015.07.021 Cell Reports Article Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-g Production via the Generation of Reactive Oxygen Species Xinfang Huang,1,2,7 Jingjing Li,1,7 Stephanie Dorta-Estremera,1,3 Jeremy Di Domizio,1,8 Scott M.
    [Show full text]
  • Genetic Testing Policy Number: PG0041 ADVANTAGE | ELITE | HMO Last Review: 04/11/2021
    Genetic Testing Policy Number: PG0041 ADVANTAGE | ELITE | HMO Last Review: 04/11/2021 INDIVIDUAL MARKETPLACE | PROMEDICA MEDICARE PLAN | PPO GUIDELINES This policy does not certify benefits or authorization of benefits, which is designated by each individual policyholder terms, conditions, exclusions and limitations contract. It does not constitute a contract or guarantee regarding coverage or reimbursement/payment. Paramount applies coding edits to all medical claims through coding logic software to evaluate the accuracy and adherence to accepted national standards. This medical policy is solely for guiding medical necessity and explaining correct procedure reporting used to assist in making coverage decisions and administering benefits. SCOPE X Professional X Facility DESCRIPTION A genetic test is the analysis of human DNA, RNA, chromosomes, proteins, or certain metabolites in order to detect alterations related to a heritable or acquired disorder. This can be accomplished by directly examining the DNA or RNA that makes up a gene (direct testing), looking at markers co-inherited with a disease-causing gene (linkage testing), assaying certain metabolites (biochemical testing), or examining the chromosomes (cytogenetic testing). Clinical genetic tests are those in which specimens are examined and results reported to the provider or patient for the purpose of diagnosis, prevention or treatment in the care of individual patients. Genetic testing is performed for a variety of intended uses: Diagnostic testing (to diagnose disease) Predictive
    [Show full text]
  • Canavan Disease: a Neurometabolic Disease Caused by Aspartoacylase Deficiency
    Journal of Pediatric Sciences SPECIAL ISSUE Current opinion in pediatric metabolic disease Editor: Ertan MAYATEPEK Canavan Disease: A Neurometabolic Disease Caused By Aspartoacylase Deficiency Ute Lienhard and Jörn Oliver Sass Journal of Pediatric Sciences 2011;3(1):e71 How to cite this article: Lienhard U, Sass JO. Canavan disease: a neurometabolic disease caused by aspartoacylase deficiency. Journal of Pediatric Sciences. 2011;3(1):e71 JPS 2 REVIEW ARTICLE Canavan Disease: A Neurometabolic Disease Caused By Aspartoacylase Deficiency Ute Lienhard and Jörn Oliver Sass Abstract: Canavan disease is a genetic neurodegenerative disorder caused by mutations in the ASPA gene encoding aspartoacylase, also known as aminoacylase 2. Important clinical features comprise progressive psychomotor delay, macrocephaly, muscular hypotonia as well as spasticity and visual impairment. Cerebral imaging usually reveals leukodystrophy. While it is often expected that patients with Canavan disease will die in childhood, there is increasing evidence for heterogeneity of the clinical phenotype. Aspartoacylase catalyzes the hydrolysis of N- acetylaspartate (NAA) to aspartate and acetate. Its deficiency leads to accumulation of NAA in the brain, blood, cerebrospinal fluid and in the urine of the patients. High levels of NAA in urine are detectable via the assessment of organic acids by gas chromatography - mass spectrometry. Confirmation is available by enzyme activity tests and mutation analyses. Up to now, treatment of patients with Canavan disease is only symptomatic. Although it is a panethnic disorder, information on affected individuals in populations of other than Ashkenazi Jewish origin is rather limited. Ongoing research aims at a better understanding of Canavan disease (and of related inborn errors of metabolism such as aminoacylase 1 deficiency).
    [Show full text]
  • HDAC3: Taking the SMRT-N-Correct Road to Repression
    Oncogene (2007) 26, 5439–5449 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW HDAC3: taking the SMRT-N-CoRrect road to repression P Karagianni and J Wong1 Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA Known histone deacetylases (HDACs) are divided into repression when targeted to promoters, as well as different classes, and HDAC3 belongs to Class I. Through physical association with the DNA-binding factor forming multiprotein complexes with the corepressors YY1 (Yang et al., 1997; Dangond et al., 1998; Emiliani SMRT and N-CoR, HDAC3 regulates the transcription et al., 1998). Together, these findings suggested that this of a plethora of genes. A growing list of nonhistone ubiquitously expressed protein could be involved in the substrates extends the role of HDAC3 beyond transcrip- regulation of mammalian gene expression. On the other tional repression. Here, we review data on the composi- hand, HDAC3 contains an intriguingly variable C tion, regulation and mechanism of action of the SMRT/ terminus, with no apparent similarity with other N-CoR-HDAC3 complexes and provide several examples HDACs. This observation led to the hypothesis that of nontranscriptional functions, to illustrate the wide HDAC3 may have some unique properties and may variety of physiological processes affected by this deacety- not be completely redundant with the other HDACs lase. Furthermore, we discuss the implication of HDAC3 (Yang et al., 1997). This is also suggested by the in cancer, focusing on leukemia. We conclude with some differential localization of HDAC3, which, unlike the thoughts about the potential therapeutic efficacies of predominantly nuclear HDACs 1 and 2, can be found in HDAC3 activity modulation.
    [Show full text]
  • Aspartoacylase Is a Regulated Nuclear-Cytoplasmic Enzyme
    The FASEB Journal • FJ Express Full-Length Article Aspartoacylase is a regulated nuclear-cytoplasmic enzyme Jeremy R. Hershfield,* Chikkathur N. Madhavarao,* John R. Moffett,* Joyce A. Benjamins,† James Y. Garbern,†,‡ and Aryan Namboodiri*,1 *Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA; †Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA; ‡Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA ABSTRACT Mutations in the gene for aspartoacylase mental increases in ASPA and NAA correlate with (ASPA), which catalyzes deacetylation of N-acetyl-L- myelination (3–8) and several studies have shown aspartate in the central nervous system (CNS), result in incorporation of acetate from NAA into myelin lipids Canavan Disease, a fatal dysmyelinating disease. Con- (9–13). Overall acetate levels and lipid synthesis have sistent with its role in supplying acetate for myelin lipid recently been shown to be deficient in brains of CD synthesis, ASPA is thought to be cytoplasmic. Here we knockout mice (14), providing strong support for the describe the occurrence of ASPA within nuclei of rat hypothesis that NAA in the CNS supplies acetyl groups brain and kidney, and in cultured rodent oligodendro- for lipid synthesis during myelination (3, 7, 14). The cytes. Immunohistochemistry showed cytoplasmic and functions served by ASPA in other tissues such as kidney nuclear ASPA staining, the specificity of which was (17) are currently unknown. demonstrated by its absence from tissues of the Tremor ASPA activity was originally found to be restricted to rat, an ASPA-null mutant.
    [Show full text]