Chapter 5 Complex Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5 Complex Numbers Chapter 5 Complex numbers Why be one-dimensional when you can be two-dimensional? ? 3 2 1 0 1 2 3 − − − ? We begin by returning to the familiar number line, where I have placed the question marks there appear to be no numbers. I shall rectify this by defining the complex numbers which give us a number plane rather than just a number line. Complex numbers play a fundamental rˆolein mathematics. In this chapter, I shall use them to show how e and π are connected and how certain primes can be factorized. They are also fundamental to physics where they are used in quantum mechanics. 5.1 Complex number arithmetic In the set of real numbers we can add, subtract, multiply and divide, but we cannot always extract square roots. For example, the real number 1 has 125 126 CHAPTER 5. COMPLEX NUMBERS the two real square roots 1 and 1, whereas the real number 1 has no real square roots, the reason being that− the square of any real non-zero− number is always positive. In this section, we shall repair this lack of square roots and, as we shall learn, we shall in fact have achieved much more than this. Com- plex numbers were first studied in the 1500’s but were only fully accepted and used in the 1800’s. Warning! If r is a positive real number then √r is usually interpreted to mean the positive square root. If I want to emphasize that both square roots need to be considered I shall write √r. ± When the discriminant of a quadratic equation is strictly less than zero, we know that it has no real roots. In this section, we shall show that in this case the equation has two complex roots. This will mean that quadratic equations will always have two roots. The key step is the following We introduce a new number, denoted by i, whose defining property is that i2 = 1. We shall assume that in all other respects it satisfies the usual− axioms of high-school algebra. This assumption will be justified later. We shall now explore the consequences of this definition which turns out to be a profound one for mathematics. It follows that i and i are the two missing square roots of 1. In all other respects the number i will− behave like a real number. Thus if b is any real number then bi is a number, and if a is any real number then a + bi is a number. A complex number is a number of the form a + bi where a, b R. We ∈ denote the set of complex numbers by C. Complex numbers are sometimes called imaginary numbers. This is not such a good term: they are not figments of our imagination like unicorns or dragons. Like all numbers they are, however, products of our imagination: no one has seen the complex number number i but, then again, no one has seen the number 2. If z = a + bi then we call a the real part of z, denoted Re(z), and b the complex or imaginary part of z, denoted Im(z). Two complex numbers a + bi and c + di are equal precisely when a = c and b = d. In other words, when their real parts are equal and when their complex parts are equal. 5.1. COMPLEX NUMBER ARITHMETIC 127 We can think of every real number as being a special kind of complex number because if a is real then a = a + 0i. Thus R C. Complex numbers of the form bi are said to be purely imaginary. ⊆ Now we show that we can add, subtract, multiply and divide complex numbers. Addition, subtraction and multiplication are all easy. Let a+bi, c+di C. To add these numbers means to calculate (a+bi)+ (c+di). We assume∈ that the order in which we add complex numbers doesn’t matter and that we may bracket sums of complex numbers how we like and still get the same answer and so we can rewrite this as a + c + bi + di. Next we assume that multiplication of complex numbers distributes over addition of complex numbers to get (a + c) + (b + d)i. Thus (a + bi) + (c + di) = (a + c) + (b + d)i. The definition of subtraction is similar and justified in the same way (a + bi) (c + di) = (a c) + (b d)i. − − − To multiply our numbers means to calculate (a + bi)(c + di). We first assume complex multiplication distributes over complex addition to get (a + bi)(c + di) = ac + adi + bic + bidi. Next we assume that the order in which we multiply complex numbers doesn’t matter to get ac + adi + bic + bidi = ac + adi + bci + bdi2. Now we use the fact that i2 = 1 to get ac + adi + bci + bdi2 = ac + adi + bci bd. We now rearrange the terms− to get the following definition of multiplication− (a + bi)(c + di) = (ac bd) + (ad + bc)i. − Examples 5.1.1. Carry out the following calculations. 1. (7 i) + ( 6 + 3i). We add together the real parts to get 1; adding together− −i and 3i we get 2i. Thus the solution is 1 + 2i. − 2. (2 + i)(1 + 2i). First we multiply out the brackets as usual to get 2 + 4i + i + 2i2. We now use the fact that i2 = 1 to get 2 + 4i + i 2. Finally we simplify to get 0 + 5i = 5i. − − 2 1 i 3. − . Multiply out and simplify to get i. √2 − 128 CHAPTER 5. COMPLEX NUMBERS The final operation is division. We have to show that when a + ib = 0 the reciprocal 6 1 a + ib is also a complex number. We use an idea that can also be applied in other situations called rationalizing the denominator. It is convenient first to define a new operation on complex numbers. Let z = a + bi C. Define ∈ z¯ = a bi. − The numberz ¯ is called the complex conjugate of z. Why is this operation useful? Let’s calculate zz¯. We have zz¯ = (a + bi)(a bi) = a2 abi + abi b2i2 = a2 + b2. − − − Notice that zz¯ = 0 if and only if z = 0. Thus for non-zero complex numbers z, the number zz¯ is a positive real number. Let’s see how we can use the complex conjugate to define division of complex numbers. Our goal is to calculate 1 a + bi where a+bi = 0. The first step is to multiply top and bottom by the complex conjugate of6 a + bi. We therefore get a bi a bi 1 − = − = (a bi) . (a + bi)(a bi) a2 + b2 a2 + b2 − − Examples 5.1.2. Carry out the following calculations. 1+i 1. i . The complex conjugate of i is i. Multiply top and bottom of the i+1 − fraction to get − = 1 i. 1 − i 2. 1 i . The complex conjugate of 1 i is 1 + i. Multiply top and bottom − i(1+i) i 1 − of the fraction to get 2 = −2 . 4+3i 3. 7 i . The complex conjugate of 7 i is 7 + i. Multiply top and bottom − (4+3i)(7+i) −1+i of the fraction to get 50 = 2 . We shall need the following properties of the complex conjugate later on. Lemma 5.1.3. 5.1. COMPLEX NUMBER ARITHMETIC 129 1. z1 + ... + zn = z1 + ... + zn. 2. z1 . zn = z1 ... zn. 3. z is real if and only if z = z. We now introduce a way of thinking about complex numbers that enables us to visualize them. A complex number z = a + bi has two components: a and b. It is irresistible to plot these as a point in the plane. The plane used in this way is called the complex plane: the x-axis is the real axis and the y-axis is interpreted as the complex axis. z = a + ib ib a Although a complex number can be thought of as labelling a point in the complex plane, it can also be regarded as labelling the directed line segment from the origin to the point. By Pythagoras’ theorem, the length of this line is √a2 + b2. We define z = √a2 + b2 | | where z = a + bi. This is called the modulus1 of the complex number z. Observe that z = √zz.¯ | | We shall use the following important property of moduli. Lemma 5.1.4. wz = w z . | | | | | | Proof. Let w = a + bi and z = c + di. Then wz = (ac bd) + (ad + bc)i. Now wz = (ac bd)2 + (ad + bc)2 whereas w z = (−a2 + b2)(c2 + d2). But | | − | | | | (ac bdp)2 + (ad + bc)2 = (ac)2 + (bd)2 + (ad)2 + (pbc)2 = (a2 + b2)(c2 + d2). − Thus the result follows. 1Plural: moduli 130 CHAPTER 5. COMPLEX NUMBERS The complex numbers were obtained from the reals by simply throwing in one new number, i, a square root of 1. Remarkably, every complex number has a square root. − Theorem 5.1.5. Every nonzero complex number has exactly two square roots. Proof. Let z = a + bi be a nonzero complex number. We want to find a complex number w so that w2 = z. Let w = x + yi. Then we need to find real numbers x and y such that (x+yi)2 = a+bi. Thus (x2 y2)+2xyi = a+bi, and so equating real and imaginary parts, we have to solve− the following two equations x2 y2 = a and 2xy = b. − Now we actually have enough information to solve our problem, but we can make life easier for ourselves by adding one extra equation. To get it, we use the modulus function.
Recommended publications
  • 21 the Hilbert Class Polynomial
    18.783 Elliptic Curves Spring 2015 Lecture #21 04/28/2015 21 The Hilbert class polynomial In the previous lecture we proved that the field of modular functions for Γ0(N) is generated by the functions j(τ) and jN (τ) := j(Nτ), and we showed that C(j; jN ) is a finite extension of C(j). We then defined the classical modular polynomial ΦN (Y ) as the minimal polynomial of jN over C(j), and we proved that its coefficients are integer polynomials in j. Replacing j with a new variable X, we can view ΦN Z[X; Y ] as an integer polynomial in two variables. In this lecture we will use ΦN to prove that the Hilbert class polynomial Y HD(X) := (X − j(E)) j(E)2EllO(C) also has integer coefficients; here D = disc(O) and EllO(C) := fj(E) : End(E) ' Og is the finite set of j-invariants of elliptic curves E=C with complex multiplication (CM) by O. This implies that each j(E) 2 EllO(C) is an algebraic integer, meaning that any elliptic curve E=C with complex multiplication can actually be defined over a finite extension of Q (a number field). This fact is the key to relating the theory of elliptic curves over the complex numbers to elliptic curves over finite fields. 21.1 Isogenies Recall from Lecture 18 that if L1 is a sublattice of L2, and E1 ' C=L1 and E2 ' C=L2 are the corresponding elliptic curves, then there is an isogeny φ: E1 ! E2 whose kernel is isomorphic to the finite abelian group L2=L1.
    [Show full text]
  • Abelian Varieties with Complex Multiplication and Modular Functions, by Goro Shimura, Princeton Univ
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 36, Number 3, Pages 405{408 S 0273-0979(99)00784-3 Article electronically published on April 27, 1999 Abelian varieties with complex multiplication and modular functions, by Goro Shimura, Princeton Univ. Press, Princeton, NJ, 1998, xiv + 217 pp., $55.00, ISBN 0-691-01656-9 The subject that might be called “explicit class field theory” begins with Kro- necker’s Theorem: every abelian extension of the field of rational numbers Q is a subfield of a cyclotomic field Q(ζn), where ζn is a primitive nth root of 1. In other words, we get all abelian extensions of Q by adjoining all “special values” of e(x)=exp(2πix), i.e., with x Q. Hilbert’s twelfth problem, also called Kronecker’s Jugendtraum, is to do something2 similar for any number field K, i.e., to generate all abelian extensions of K by adjoining special values of suitable special functions. Nowadays we would add that the reciprocity law describing the Galois group of an abelian extension L/K in terms of ideals of K should also be given explicitly. After K = Q, the next case is that of an imaginary quadratic number field K, with the real torus R/Z replaced by an elliptic curve E with complex multiplication. (Kronecker knew what the result should be, although complete proofs were given only later, by Weber and Takagi.) For simplicity, let be the ring of integers in O K, and let A be an -ideal. Regarding A as a lattice in C, we get an elliptic curve O E = C/A with End(E)= ;Ehas complex multiplication, or CM,by .If j=j(A)isthej-invariant ofOE,thenK(j) is the Hilbert class field of K, i.e.,O the maximal abelian unramified extension of K.
    [Show full text]
  • A Quartically Convergent Square Root Algorithm: an Exercise in Forensic Paleo-Mathematics
    A Quartically Convergent Square Root Algorithm: An Exercise in Forensic Paleo-Mathematics David H Bailey, Lawrence Berkeley National Lab, USA DHB’s website: http://crd.lbl.gov/~dhbailey! Collaborator: Jonathan M. Borwein, University of Newcastle, Australia 1 A quartically convergent algorithm for Pi: Jon and Peter Borwein’s first “big” result In 1985, Jonathan and Peter Borwein published a “quartically convergent” algorithm for π. “Quartically convergent” means that each iteration approximately quadruples the number of correct digits (provided all iterations are performed with full precision): Set a0 = 6 - sqrt[2], and y0 = sqrt[2] - 1. Then iterate: 1 (1 y4)1/4 y = − − k k+1 1+(1 y4)1/4 − k a = a (1 + y )4 22k+3y (1 + y + y2 ) k+1 k k+1 − k+1 k+1 k+1 Then ak, converge quartically to 1/π. This algorithm, together with the Salamin-Brent scheme, has been employed in numerous computations of π. Both this and the Salamin-Brent scheme are based on the arithmetic-geometric mean and some ideas due to Gauss, but evidently he (nor anyone else until 1976) ever saw the connection to computation. Perhaps no one in the pre-computer age was accustomed to an “iterative” algorithm? Ref: J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity}, John Wiley, New York, 1987. 2 A quartically convergent algorithm for square roots I have found a quartically convergent algorithm for square roots in a little-known manuscript: · To compute the square root of q, let x0 be the initial approximation.
    [Show full text]
  • Solving Cubic Polynomials
    Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial monic. a 2. Then, given x2 + a x + a , substitute x = y − 1 to obtain an equation without the linear term. 1 0 2 (This is the \depressed" equation.) 3. Solve then for y as a square root. (Remember to use both signs of the square root.) a 4. Once this is done, recover x using the fact that x = y − 1 . 2 For example, let's solve 2x2 + 7x − 15 = 0: First, we divide both sides by 2 to create an equation with leading term equal to one: 7 15 x2 + x − = 0: 2 2 a 7 Then replace x by x = y − 1 = y − to obtain: 2 4 169 y2 = 16 Solve for y: 13 13 y = or − 4 4 Then, solving back for x, we have 3 x = or − 5: 2 This method is equivalent to \completing the square" and is the steps taken in developing the much- memorized quadratic formula. For example, if the original equation is our \high school quadratic" ax2 + bx + c = 0 then the first step creates the equation b c x2 + x + = 0: a a b We then write x = y − and obtain, after simplifying, 2a b2 − 4ac y2 − = 0 4a2 so that p b2 − 4ac y = ± 2a and so p b b2 − 4ac x = − ± : 2a 2a 1 The solutions to this quadratic depend heavily on the value of b2 − 4ac.
    [Show full text]
  • Hyperelliptic Curves with Many Automorphisms
    Hyperelliptic Curves with Many Automorphisms Nicolas M¨uller Richard Pink Department of Mathematics Department of Mathematics ETH Z¨urich ETH Z¨urich 8092 Z¨urich 8092 Z¨urich Switzerland Switzerland [email protected] [email protected] November 17, 2017 To Frans Oort Abstract We determine all complex hyperelliptic curves with many automorphisms and decide which of their jacobians have complex multiplication. arXiv:1711.06599v1 [math.AG] 17 Nov 2017 MSC classification: 14H45 (14H37, 14K22) 1 1 Introduction Let X be a smooth connected projective algebraic curve of genus g > 2 over the field of complex numbers. Following Rauch [17] and Wolfart [21] we say that X has many automorphisms if it cannot be deformed non-trivially together with its automorphism group. Given his life-long interest in special points on moduli spaces, Frans Oort [15, Question 5.18.(1)] asked whether the point in the moduli space of curves associated to a curve X with many automorphisms is special, i.e., whether the jacobian of X has complex multiplication. Here we say that an abelian variety A has complex multiplication over a field K if ◦ EndK(A) contains a commutative, semisimple Q-subalgebra of dimension 2 dim A. (This property is called “sufficiently many complex multiplications” in Chai, Conrad and Oort [6, Def. 1.3.1.2].) Wolfart [22] observed that the jacobian of a curve with many automorphisms does not generally have complex multiplication and answered Oort’s question for all g 6 4. In the present paper we answer Oort’s question for all hyperelliptic curves with many automorphisms.
    [Show full text]
  • GEOMETRY and NUMBERS Ching-Li Chai
    GEOMETRY AND NUMBERS Ching-Li Chai Sample arithmetic statements Diophantine equations Counting solutions of a GEOMETRY AND NUMBERS diophantine equation Counting congruence solutions L-functions and distribution of prime numbers Ching-Li Chai Zeta and L-values Sample of geometric structures and symmetries Institute of Mathematics Elliptic curve basics Academia Sinica Modular forms, modular and curves and Hecke symmetry Complex multiplication Department of Mathematics Frobenius symmetry University of Pennsylvania Monodromy Fine structure in characteristic p National Chiao Tung University, July 6, 2012 GEOMETRY AND Outline NUMBERS Ching-Li Chai Sample arithmetic 1 Sample arithmetic statements statements Diophantine equations Diophantine equations Counting solutions of a diophantine equation Counting solutions of a diophantine equation Counting congruence solutions L-functions and distribution of Counting congruence solutions prime numbers L-functions and distribution of prime numbers Zeta and L-values Sample of geometric Zeta and L-values structures and symmetries Elliptic curve basics Modular forms, modular 2 Sample of geometric structures and symmetries curves and Hecke symmetry Complex multiplication Elliptic curve basics Frobenius symmetry Monodromy Modular forms, modular curves and Hecke symmetry Fine structure in characteristic p Complex multiplication Frobenius symmetry Monodromy Fine structure in characteristic p GEOMETRY AND The general theme NUMBERS Ching-Li Chai Sample arithmetic statements Diophantine equations Counting solutions of a Geometry and symmetry influences diophantine equation Counting congruence solutions L-functions and distribution of arithmetic through zeta functions and prime numbers Zeta and L-values modular forms Sample of geometric structures and symmetries Elliptic curve basics Modular forms, modular Remark. (i) zeta functions = L-functions; curves and Hecke symmetry Complex multiplication modular forms = automorphic representations.
    [Show full text]
  • A Historical Survey of Methods of Solving Cubic Equations Minna Burgess Connor
    University of Richmond UR Scholarship Repository Master's Theses Student Research 7-1-1956 A historical survey of methods of solving cubic equations Minna Burgess Connor Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Recommended Citation Connor, Minna Burgess, "A historical survey of methods of solving cubic equations" (1956). Master's Theses. Paper 114. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. A HISTORICAL SURVEY OF METHODS OF SOLVING CUBIC E<~UATIONS A Thesis Presented' to the Faculty or the Department of Mathematics University of Richmond In Partial Fulfillment ot the Requirements tor the Degree Master of Science by Minna Burgess Connor August 1956 LIBRARY UNIVERStTY OF RICHMOND VIRGlNIA 23173 - . TABLE Olf CONTENTS CHAPTER PAGE OUTLINE OF HISTORY INTRODUCTION' I. THE BABYLONIANS l) II. THE GREEKS 16 III. THE HINDUS 32 IV. THE CHINESE, lAPANESE AND 31 ARABS v. THE RENAISSANCE 47 VI. THE SEVEW.l'EEl'iTH AND S6 EIGHTEENTH CENTURIES VII. THE NINETEENTH AND 70 TWENTIETH C:BNTURIES VIII• CONCLUSION, BIBLIOGRAPHY 76 AND NOTES OUTLINE OF HISTORY OF SOLUTIONS I. The Babylonians (1800 B. c.) Solutions by use ot. :tables II. The Greeks·. cs·oo ·B.c,. - )00 A~D.) Hippocrates of Chios (~440) Hippias ot Elis (•420) (the quadratrix) Archytas (~400) _ .M~naeobmus J ""375) ,{,conic section~) Archimedes (-240) {conioisections) Nicomedea (-180) (the conchoid) Diophantus ot Alexander (75) (right-angled tr~angle) Pappus (300) · III.
    [Show full text]
  • The Evolution of Equation-Solving: Linear, Quadratic, and Cubic
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2006 The evolution of equation-solving: Linear, quadratic, and cubic Annabelle Louise Porter Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Porter, Annabelle Louise, "The evolution of equation-solving: Linear, quadratic, and cubic" (2006). Theses Digitization Project. 3069. https://scholarworks.lib.csusb.edu/etd-project/3069 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. THE EVOLUTION OF EQUATION-SOLVING LINEAR, QUADRATIC, AND CUBIC A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degre Master of Arts in Teaching: Mathematics by Annabelle Louise Porter June 2006 THE EVOLUTION OF EQUATION-SOLVING: LINEAR, QUADRATIC, AND CUBIC A Project Presented to the Faculty of California State University, San Bernardino by Annabelle Louise Porter June 2006 Approved by: Shawnee McMurran, Committee Chair Date Laura Wallace, Committee Member , (Committee Member Peter Williams, Chair Davida Fischman Department of Mathematics MAT Coordinator Department of Mathematics ABSTRACT Algebra and algebraic thinking have been cornerstones of problem solving in many different cultures over time. Since ancient times, algebra has been used and developed in cultures around the world, and has undergone quite a bit of transformation. This paper is intended as a professional developmental tool to help secondary algebra teachers understand the concepts underlying the algorithms we use, how these algorithms developed, and why they work.
    [Show full text]
  • Real Numbers 6.3B
    6.3b Real Numbers Lesson Tutorials A cube root of a number is a number that when multiplied by itself, and then multiplied by itself again, equals the given number. A perfect cube is a number that can be written as the cube of an integer. EXAMPLE 1 Finding Cube Roots Find the cube root of each number. a. 8 b. −27 2 ⋅ 2 ⋅ 2 = 8 −3 ⋅ (−3) ⋅ (−3) = −27 So, the cube root of 8 is 2. So, the cube root of − 27 is − 3. 3 — The symbol √ is used to represent a cube root. Cubing a number and fi nding a cube root are inverse operations. Use this relationship to solve equations involving cubes. EXAMPLE 2 Solving an Equation Find the surface area of the cube. Volume ä 125 ft3 Use the formula for the volume of a cube to fi nd the side length s. Remember s V = s 3 Write formula for volume. The volume V of a cube = 3 with side length s is 125 s Substitute 125 for V. 3 — — given by V = s . The 3 3 3 s √ 125 = √ s Take the cube root of each side. surface area S is given s by S = 6s 2. 5 = s Simplify. The side length is 5 feet. Use a formula to fi nd the surface area of the cube. S = 6s 2 Write formula for surface area. = 6(5)2 Substitute 5 for s. = 150 Simplify. The surface area of the cube is 150 square feet. Find the cube root of the number. 1.
    [Show full text]
  • Lesson 3: Roots of Unity
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 3 M3 PRECALCULUS AND ADVANCED TOPICS Lesson 3: Roots of Unity Student Outcomes . Students determine the complex roots of polynomial equations of the form 푥푛 = 1 and, more generally, equations of the form 푥푛 = 푘 positive integers 푛 and positive real numbers 푘. Students plot the 푛th roots of unity in the complex plane. Lesson Notes This lesson ties together work from Algebra II Module 1, where students studied the nature of the roots of polynomial equations and worked with polynomial identities and their recent work with the polar form of a complex number to find the 푛th roots of a complex number in Precalculus Module 1 Lessons 18 and 19. The goal here is to connect work within the algebra strand of solving polynomial equations to the geometry and arithmetic of complex numbers in the complex plane. Students determine solutions to polynomial equations using various methods and interpreting the results in the real and complex plane. Students need to extend factoring to the complex numbers (N-CN.C.8) and more fully understand the conclusion of the fundamental theorem of algebra (N-CN.C.9) by seeing that a polynomial of degree 푛 has 푛 complex roots when they consider the roots of unity graphed in the complex plane. This lesson helps students cement the claim of the fundamental theorem of algebra that the equation 푥푛 = 1 should have 푛 solutions as students find all 푛 solutions of the equation, not just the obvious solution 푥 = 1. Students plot the solutions in the plane and discover their symmetry.
    [Show full text]
  • And Cubic Equations by the Odd Number Method 1
    Calculating Machine Solution of Quadratic and Cubic Equations by the Odd Number Method 1. Introduction. Eastlack1 has published a method for the solution of quadratic equations by means of a calculating machine. His process is ex- tended here to the solution of cubic equations. In the ordinary manual operation of calculating machines, the use of the method of solving cubic equations presented here will not be found to be as convenient as the use of certain other methods, such as that of Newton. The method is described here, however, in the belief that it may find application in large scale, automatic computing machines (such as the IBM Sequence Controlled Calculator or the ENIAC) where a large number of operations is not objec- tionable, provided that the operations are repetitive and sufficiently simple. We limit our discussion to real roots. Eastlack's method of solving quadratic equations is first reviewed so that the extension of the method to cubic equa- tions may be clearer. 2. Extraction of square roots by the odd number method. The ordinary method for finding on the calculating machine the square root of a number of 3 or 4 digits of the form (10* + y)2 = 100*2 + 20*y + y1 consists in removing the 100*2 term by subtracting the x odd numbers, 1, 3, 5, • • -, (2x — 1), from the first one or two digits of (10* + y)2, and then removing the remainder of (10* + y)2 by subtracting the y numbers, (20* + 1), (20* + 3), • • -, (20* + 2y - 1). This process of square root extraction may evidently be extended to the evaluation of roots having more than two digits.
    [Show full text]
  • The Twelfth Problem of Hilbert Reminds Us, Although the Reminder Should
    Some Contemporary Problems with Origins in the Jugendtraum Robert P. Langlands The twelfth problem of Hilbert reminds us, although the reminder should be unnecessary, of the blood relationship of three subjects which have since undergone often separate devel• opments. The first of these, the theory of class fields or of abelian extensions of number fields, attained what was pretty much its final form early in this century. The second, the algebraic theory of elliptic curves and, more generally, of abelian varieties, has been for fifty years a topic of research whose vigor and quality shows as yet no sign of abatement. The third, the theory of automorphic functions, has been slower to mature and is still inextricably entangled with the study of abelian varieties, especially of their moduli. Of course at the time of Hilbert these subjects had only begun to set themselves off from the general mathematical landscape as separate theories and at the time of Kronecker existed only as part of the theories of elliptic modular functions and of cyclotomicfields. It is in a letter from Kronecker to Dedekind of 1880,1 in which he explains his work on the relation between abelian extensions of imaginary quadratic fields and elliptic curves with complex multiplication, that the word Jugendtraum appears. Because these subjects were so interwoven it seems to have been impossible to disentangle the different kinds of mathematics which were involved in the Jugendtraum, especially to separate the algebraic aspects from the analytic or number theoretic. Hilbert in particular may have been led to mistake an accident, or perhaps necessity, of historical development for an “innigste gegenseitige Ber¨uhrung.” We may be able to judge this better if we attempt to view the mathematical content of the Jugendtraum with the eyes of a sophisticated contemporary mathematician.
    [Show full text]