Abelian Varieties with Complex Multiplication and Modular Functions, by Goro Shimura, Princeton Univ
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
21 the Hilbert Class Polynomial
18.783 Elliptic Curves Spring 2015 Lecture #21 04/28/2015 21 The Hilbert class polynomial In the previous lecture we proved that the field of modular functions for Γ0(N) is generated by the functions j(τ) and jN (τ) := j(Nτ), and we showed that C(j; jN ) is a finite extension of C(j). We then defined the classical modular polynomial ΦN (Y ) as the minimal polynomial of jN over C(j), and we proved that its coefficients are integer polynomials in j. Replacing j with a new variable X, we can view ΦN Z[X; Y ] as an integer polynomial in two variables. In this lecture we will use ΦN to prove that the Hilbert class polynomial Y HD(X) := (X − j(E)) j(E)2EllO(C) also has integer coefficients; here D = disc(O) and EllO(C) := fj(E) : End(E) ' Og is the finite set of j-invariants of elliptic curves E=C with complex multiplication (CM) by O. This implies that each j(E) 2 EllO(C) is an algebraic integer, meaning that any elliptic curve E=C with complex multiplication can actually be defined over a finite extension of Q (a number field). This fact is the key to relating the theory of elliptic curves over the complex numbers to elliptic curves over finite fields. 21.1 Isogenies Recall from Lecture 18 that if L1 is a sublattice of L2, and E1 ' C=L1 and E2 ' C=L2 are the corresponding elliptic curves, then there is an isogeny φ: E1 ! E2 whose kernel is isomorphic to the finite abelian group L2=L1. -
A Note on Presentation of General Linear Groups Over a Finite Field
Southeast Asian Bulletin of Mathematics (2019) 43: 217–224 Southeast Asian Bulletin of Mathematics c SEAMS. 2019 A Note on Presentation of General Linear Groups over a Finite Field Swati Maheshwari and R. K. Sharma Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India Email: [email protected]; [email protected] Received 22 September 2016 Accepted 20 June 2018 Communicated by J.M.P. Balmaceda AMS Mathematics Subject Classification(2000): 20F05, 16U60, 20H25 Abstract. In this article we have given Lie regular generators of linear group GL(2, Fq), n where Fq is a finite field with q = p elements. Using these generators we have obtained presentations of the linear groups GL(2, F2n ) and GL(2, Fpn ) for each positive integer n. Keywords: Lie regular units; General linear group; Presentation of a group; Finite field. 1. Introduction Suppose F is a finite field and GL(n, F) is the general linear the group of n × n invertible matrices and SL(n, F) is special linear group of n × n matrices with determinant 1. We know that GL(n, F) can be written as a semidirect product, GL(n, F)= SL(n, F) oF∗, where F∗ denotes the multiplicative group of F. Let H and K be two groups having presentations H = hX | Ri and K = hY | Si, then a presentation of semidirect product of H and K is given by, −1 H oη K = hX, Y | R,S,xyx = η(y)(x) ∀x ∈ X,y ∈ Y i, where η : K → Aut(H) is a group homomorphism. Now we summarize some literature survey related to the presentation of groups. -
Chapter 5 Complex Numbers
Chapter 5 Complex numbers Why be one-dimensional when you can be two-dimensional? ? 3 2 1 0 1 2 3 − − − ? We begin by returning to the familiar number line, where I have placed the question marks there appear to be no numbers. I shall rectify this by defining the complex numbers which give us a number plane rather than just a number line. Complex numbers play a fundamental rˆolein mathematics. In this chapter, I shall use them to show how e and π are connected and how certain primes can be factorized. They are also fundamental to physics where they are used in quantum mechanics. 5.1 Complex number arithmetic In the set of real numbers we can add, subtract, multiply and divide, but we cannot always extract square roots. For example, the real number 1 has 125 126 CHAPTER 5. COMPLEX NUMBERS the two real square roots 1 and 1, whereas the real number 1 has no real square roots, the reason being that− the square of any real non-zero− number is always positive. In this section, we shall repair this lack of square roots and, as we shall learn, we shall in fact have achieved much more than this. Com- plex numbers were first studied in the 1500’s but were only fully accepted and used in the 1800’s. Warning! If r is a positive real number then √r is usually interpreted to mean the positive square root. If I want to emphasize that both square roots need to be considered I shall write √r. -
Abelian Varieties
Abelian Varieties J.S. Milne Version 2.0 March 16, 2008 These notes are an introduction to the theory of abelian varieties, including the arithmetic of abelian varieties and Faltings’s proof of certain finiteness theorems. The orginal version of the notes was distributed during the teaching of an advanced graduate course. Alas, the notes are still in very rough form. BibTeX information @misc{milneAV, author={Milne, James S.}, title={Abelian Varieties (v2.00)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={166+vi} } v1.10 (July 27, 1998). First version on the web, 110 pages. v2.00 (March 17, 2008). Corrected, revised, and expanded; 172 pages. Available at www.jmilne.org/math/ Please send comments and corrections to me at the address on my web page. The photograph shows the Tasman Glacier, New Zealand. Copyright c 1998, 2008 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Introduction 1 I Abelian Varieties: Geometry 7 1 Definitions; Basic Properties. 7 2 Abelian Varieties over the Complex Numbers. 10 3 Rational Maps Into Abelian Varieties . 15 4 Review of cohomology . 20 5 The Theorem of the Cube. 21 6 Abelian Varieties are Projective . 27 7 Isogenies . 32 8 The Dual Abelian Variety. 34 9 The Dual Exact Sequence. 41 10 Endomorphisms . 42 11 Polarizations and Invertible Sheaves . 53 12 The Etale Cohomology of an Abelian Variety . 54 13 Weil Pairings . 57 14 The Rosati Involution . 61 15 Geometric Finiteness Theorems . 63 16 Families of Abelian Varieties . -
Hyperelliptic Curves with Many Automorphisms
Hyperelliptic Curves with Many Automorphisms Nicolas M¨uller Richard Pink Department of Mathematics Department of Mathematics ETH Z¨urich ETH Z¨urich 8092 Z¨urich 8092 Z¨urich Switzerland Switzerland [email protected] [email protected] November 17, 2017 To Frans Oort Abstract We determine all complex hyperelliptic curves with many automorphisms and decide which of their jacobians have complex multiplication. arXiv:1711.06599v1 [math.AG] 17 Nov 2017 MSC classification: 14H45 (14H37, 14K22) 1 1 Introduction Let X be a smooth connected projective algebraic curve of genus g > 2 over the field of complex numbers. Following Rauch [17] and Wolfart [21] we say that X has many automorphisms if it cannot be deformed non-trivially together with its automorphism group. Given his life-long interest in special points on moduli spaces, Frans Oort [15, Question 5.18.(1)] asked whether the point in the moduli space of curves associated to a curve X with many automorphisms is special, i.e., whether the jacobian of X has complex multiplication. Here we say that an abelian variety A has complex multiplication over a field K if ◦ EndK(A) contains a commutative, semisimple Q-subalgebra of dimension 2 dim A. (This property is called “sufficiently many complex multiplications” in Chai, Conrad and Oort [6, Def. 1.3.1.2].) Wolfart [22] observed that the jacobian of a curve with many automorphisms does not generally have complex multiplication and answered Oort’s question for all g 6 4. In the present paper we answer Oort’s question for all hyperelliptic curves with many automorphisms. -
On Balanced Subgroups of the Multiplicative Group
ON BALANCED SUBGROUPS OF THE MULTIPLICATIVE GROUP CARL POMERANCE AND DOUGLAS ULMER In memory of Alf van der Poorten ABSTRACT. A subgroup H of (Z=dZ)× is called balanced if every coset of H is evenly distributed between the lower and upper halves of (Z=dZ)×, i.e., has equal numbers of elements with represen- tatives in (0; d=2) and (d=2; d). This notion has applications to ranks of elliptic curves. We give a simple criterion in terms of characters for a subgroup H to be balanced, and for a fixed integer p, we study the distribution of integers d such that the cyclic subgroup of (Z=dZ)× generated by p is balanced. 1. INTRODUCTION × Let d > 2 be an integer and consider (Z=dZ) , the group of units modulo d. Let Ad be the × first half of (Z=dZ) ; that is, Ad consists of residues with a representative in (0; d=2). Let Bd = × × × (Z=dZ) n Ad be the second half of (Z=dZ) . We say a subgroup H of (Z=dZ) is balanced if × for each g 2 (Z=dZ) we have jgH \ Adj = jgH \ Bdj; that is, each coset of H has equally many members in the first half of (Z=dZ)× as in the second half. Let ' denote Euler’s function, so that φ(d) is the cardinality of (Z=dZ)×. If n and m are coprime integers with m > 0, let ln(m) denote the order of the cyclic subgroup hn mod mi generated by n × in (Z=mZ) (that is, ln(m) is the multiplicative order of n modulo m). -
GEOMETRY and NUMBERS Ching-Li Chai
GEOMETRY AND NUMBERS Ching-Li Chai Sample arithmetic statements Diophantine equations Counting solutions of a GEOMETRY AND NUMBERS diophantine equation Counting congruence solutions L-functions and distribution of prime numbers Ching-Li Chai Zeta and L-values Sample of geometric structures and symmetries Institute of Mathematics Elliptic curve basics Academia Sinica Modular forms, modular and curves and Hecke symmetry Complex multiplication Department of Mathematics Frobenius symmetry University of Pennsylvania Monodromy Fine structure in characteristic p National Chiao Tung University, July 6, 2012 GEOMETRY AND Outline NUMBERS Ching-Li Chai Sample arithmetic 1 Sample arithmetic statements statements Diophantine equations Diophantine equations Counting solutions of a diophantine equation Counting solutions of a diophantine equation Counting congruence solutions L-functions and distribution of Counting congruence solutions prime numbers L-functions and distribution of prime numbers Zeta and L-values Sample of geometric Zeta and L-values structures and symmetries Elliptic curve basics Modular forms, modular 2 Sample of geometric structures and symmetries curves and Hecke symmetry Complex multiplication Elliptic curve basics Frobenius symmetry Monodromy Modular forms, modular curves and Hecke symmetry Fine structure in characteristic p Complex multiplication Frobenius symmetry Monodromy Fine structure in characteristic p GEOMETRY AND The general theme NUMBERS Ching-Li Chai Sample arithmetic statements Diophantine equations Counting solutions of a Geometry and symmetry influences diophantine equation Counting congruence solutions L-functions and distribution of arithmetic through zeta functions and prime numbers Zeta and L-values modular forms Sample of geometric structures and symmetries Elliptic curve basics Modular forms, modular Remark. (i) zeta functions = L-functions; curves and Hecke symmetry Complex multiplication modular forms = automorphic representations. -
A STUDY on the ALGEBRAIC STRUCTURE of SL 2(Zpz)
A STUDY ON THE ALGEBRAIC STRUCTURE OF SL2 Z pZ ( ~ ) A Thesis Presented to The Honors Tutorial College Ohio University In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Mathematics by Evan North April 2015 Contents 1 Introduction 1 2 Background 5 2.1 Group Theory . 5 2.2 Linear Algebra . 14 2.3 Matrix Group SL2 R Over a Ring . 22 ( ) 3 Conjugacy Classes of Matrix Groups 26 3.1 Order of the Matrix Groups . 26 3.2 Conjugacy Classes of GL2 Fp ....................... 28 3.2.1 Linear Case . .( . .) . 29 3.2.2 First Quadratic Case . 29 3.2.3 Second Quadratic Case . 30 3.2.4 Third Quadratic Case . 31 3.2.5 Classes in SL2 Fp ......................... 33 3.3 Splitting of Classes of(SL)2 Fp ....................... 35 3.4 Results of SL2 Fp ..............................( ) 40 ( ) 2 4 Toward Lifting to SL2 Z p Z 41 4.1 Reduction mod p ...............................( ~ ) 42 4.2 Exploring the Kernel . 43 i 4.3 Generalizing to SL2 Z p Z ........................ 46 ( ~ ) 5 Closing Remarks 48 5.1 Future Work . 48 5.2 Conclusion . 48 1 Introduction Symmetries are one of the most widely-known examples of pure mathematics. Symmetry is when an object can be rotated, flipped, or otherwise transformed in such a way that its appearance remains the same. Basic geometric figures should create familiar examples, take for instance the triangle. Figure 1: The symmetries of a triangle: 3 reflections, 2 rotations. The red lines represent the reflection symmetries, where the trianlge is flipped over, while the arrows represent the rotational symmetry of the triangle. -
Units in Group Rings and Subalgebras of Real Simple Lie Algebras
UNIVERSITY OF TRENTO Faculty of Mathematical, Physical and Natural Sciences Ph.D. Thesis Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras Advisor: Candidate: Prof. De Graaf Willem Adriaan Faccin Paolo Contents 1 Introduction 3 2 Group Algebras 5 2.1 Classical result about unit group of group algebras . 6 2.1.1 Bass construction . 6 2.1.2 The group of Hoechsmann unit H ............... 7 2.2 Lattices . 8 2.2.1 Ge’s algorithm . 8 2.2.2 Finding a basis of the perp-lattice . 9 2.2.3 The lattice . 11 2.2.4 Pure Lattices . 14 2.3 Toral algebras . 15 2.3.1 Splitting elements in toral algebras . 15 2.3.2 Decomposition via irreducible character of G . 17 2.3.3 Standard generating sets . 17 2.4 Cyclotomic fields Q(ζn) ........................ 18 2.4.1 When n is a prime power . 18 2.4.2 When n is not a prime power . 19 2.4.3 Explicit Construction of Greither ’s Units . 19 2.4.4 Fieker’s program . 24 2.5 Unit groups of orders in toral matrix algebras . 25 2.5.1 A simple toral algebra . 25 2.5.2 Two idempotents . 25 2.5.3 Implementation . 26 2.5.4 The general case . 27 2.6 Units of integral abelian group rings . 27 3 Lie algebras 29 3.0.1 Comment on the notation . 30 3.0.2 Comment on the base field . 31 3.1 Real simple Lie algebras . 31 3.2 Constructing complex semisimple Lie algebras . -
Lesson 3: Roots of Unity
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 3 M3 PRECALCULUS AND ADVANCED TOPICS Lesson 3: Roots of Unity Student Outcomes . Students determine the complex roots of polynomial equations of the form 푥푛 = 1 and, more generally, equations of the form 푥푛 = 푘 positive integers 푛 and positive real numbers 푘. Students plot the 푛th roots of unity in the complex plane. Lesson Notes This lesson ties together work from Algebra II Module 1, where students studied the nature of the roots of polynomial equations and worked with polynomial identities and their recent work with the polar form of a complex number to find the 푛th roots of a complex number in Precalculus Module 1 Lessons 18 and 19. The goal here is to connect work within the algebra strand of solving polynomial equations to the geometry and arithmetic of complex numbers in the complex plane. Students determine solutions to polynomial equations using various methods and interpreting the results in the real and complex plane. Students need to extend factoring to the complex numbers (N-CN.C.8) and more fully understand the conclusion of the fundamental theorem of algebra (N-CN.C.9) by seeing that a polynomial of degree 푛 has 푛 complex roots when they consider the roots of unity graphed in the complex plane. This lesson helps students cement the claim of the fundamental theorem of algebra that the equation 푥푛 = 1 should have 푛 solutions as students find all 푛 solutions of the equation, not just the obvious solution 푥 = 1. Students plot the solutions in the plane and discover their symmetry. -
The Twelfth Problem of Hilbert Reminds Us, Although the Reminder Should
Some Contemporary Problems with Origins in the Jugendtraum Robert P. Langlands The twelfth problem of Hilbert reminds us, although the reminder should be unnecessary, of the blood relationship of three subjects which have since undergone often separate devel• opments. The first of these, the theory of class fields or of abelian extensions of number fields, attained what was pretty much its final form early in this century. The second, the algebraic theory of elliptic curves and, more generally, of abelian varieties, has been for fifty years a topic of research whose vigor and quality shows as yet no sign of abatement. The third, the theory of automorphic functions, has been slower to mature and is still inextricably entangled with the study of abelian varieties, especially of their moduli. Of course at the time of Hilbert these subjects had only begun to set themselves off from the general mathematical landscape as separate theories and at the time of Kronecker existed only as part of the theories of elliptic modular functions and of cyclotomicfields. It is in a letter from Kronecker to Dedekind of 1880,1 in which he explains his work on the relation between abelian extensions of imaginary quadratic fields and elliptic curves with complex multiplication, that the word Jugendtraum appears. Because these subjects were so interwoven it seems to have been impossible to disentangle the different kinds of mathematics which were involved in the Jugendtraum, especially to separate the algebraic aspects from the analytic or number theoretic. Hilbert in particular may have been led to mistake an accident, or perhaps necessity, of historical development for an “innigste gegenseitige Ber¨uhrung.” We may be able to judge this better if we attempt to view the mathematical content of the Jugendtraum with the eyes of a sophisticated contemporary mathematician. -
Lecture 7: Unit Group Structure
MATH 361: NUMBER THEORY | SEVENTH LECTURE 1. The Unit Group of Z=nZ Consider a nonunit positive integer, Y n = pep > 1: The Sun Ze Theorem gives a ring isomorphism, Y e Z=nZ =∼ Z=p p Z: The right side is the cartesian product of the rings Z=pep Z, meaning that addition and multiplication are carried out componentwise. It follows that the corresponding unit group is × Y e × (Z=nZ) =∼ (Z=p p Z) : Thus to study the unit group (Z=nZ)× it suffices to consider (Z=peZ)× where p is prime and e > 0. Recall that in general, × j(Z=nZ) j = φ(n); so that for prime powers, e × e e−1 j(Z=p Z) j = φ(p ) = p (p − 1); and especially for primes, × j(Z=pZ) j = p − 1: Here are some examples of unit groups modulo prime powers, most but not quite all cyclic. × 0 (Z=2Z) = (f1g; ·) = (f2 g; ·) =∼ (f0g; +) = Z=Z; × 0 1 (Z=3Z) = (f1; 2g; ·) = (f2 ; 2 g; ·) =∼ (f0; 1g; +) = Z=2Z; × 0 1 (Z=4Z) = (f1; 3g; ·) = (f3 ; 3 g; ·) =∼ (f0; 1g; +) = Z=2Z; × 0 1 2 3 (Z=5Z) = (f1; 2; 3; 4g; ·) = (f2 ; 2 ; 2 ; 2 g; ·) =∼ (f0; 1; 2; 3g; +) = Z=4Z; × 0 1 2 3 4 5 (Z=7Z) = (f1; 2; 3; 4; 5; 6g; ·) = (f3 ; 3 ; 3 ; 3 ; 3 ; 3 g; ·) =∼ (f0; 1; 2; 3; 4; 5g; +) = Z=6Z; × 0 0 1 0 0 1 1 1 (Z=8Z) = (f1; 3; 5; 7g; ·) = (f3 5 ; 3 5 ; 3 5 ; 3 5 g; ·) =∼ (f0; 1g × f0; 1g; +) = Z=2Z × Z=2Z; × 0 1 2 3 4 5 (Z=9Z) = (f1; 2; 4; 5; 7; 8g; ·) = (f2 ; 2 ; 2 ; 2 ; 2 ; 2 g; ·) =∼ (f0; 1; 2; 3; 4; 5g; +) = Z=6Z: 1 2 MATH 361: NUMBER THEORY | SEVENTH LECTURE 2.