A Note on Presentation of General Linear Groups Over a Finite Field

Total Page:16

File Type:pdf, Size:1020Kb

A Note on Presentation of General Linear Groups Over a Finite Field Southeast Asian Bulletin of Mathematics (2019) 43: 217–224 Southeast Asian Bulletin of Mathematics c SEAMS. 2019 A Note on Presentation of General Linear Groups over a Finite Field Swati Maheshwari and R. K. Sharma Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India Email: [email protected]; [email protected] Received 22 September 2016 Accepted 20 June 2018 Communicated by J.M.P. Balmaceda AMS Mathematics Subject Classification(2000): 20F05, 16U60, 20H25 Abstract. In this article we have given Lie regular generators of linear group GL(2, Fq), n where Fq is a finite field with q = p elements. Using these generators we have obtained presentations of the linear groups GL(2, F2n ) and GL(2, Fpn ) for each positive integer n. Keywords: Lie regular units; General linear group; Presentation of a group; Finite field. 1. Introduction Suppose F is a finite field and GL(n, F) is the general linear the group of n × n invertible matrices and SL(n, F) is special linear group of n × n matrices with determinant 1. We know that GL(n, F) can be written as a semidirect product, GL(n, F)= SL(n, F) oF∗, where F∗ denotes the multiplicative group of F. Let H and K be two groups having presentations H = hX | Ri and K = hY | Si, then a presentation of semidirect product of H and K is given by, −1 H oη K = hX, Y | R,S,xyx = η(y)(x) ∀x ∈ X,y ∈ Y i, where η : K → Aut(H) is a group homomorphism. Now we summarize some literature survey related to the presentation of groups. In 1977, S.M. Green es- tablished a presentation of SL(n, R) for, n ≥ 3 (see [3]) and in 1994, T.A. Fransis has found a presentation of GL(n, R), where R is a division ring (see [2]). In case R is a field, T.A. Fransis has also provided a presentation of SL(n, R). 218 S. Maheshwari and R.K. Sharma Generators for the semigroup has been provided by J. Konieczny (see [5]). A presentation of SL(n, F) has also been given by G. Chiaselotti (see [1]). We have seen that a presentation of SL(n, F) has been found, so we can always find one presentation of GL(n, F) using semidirect product. In that case, cardinality of the generating set of GL(n, F) is dependent on F. It motivates us to find a pre- sentation of GL(n, F) with fix number of generators. In this article, we establish a presentation of GL(2, Fq) with fix number of generators, where generators are Lie regular units. These elements have been first introduced by R. K. Sharma et al. in 2012 (see [8, 4]). A generating set for GL(4, Zn) has been found by S. Maheshwari and R. K. Sharma in 2016 (see [7]). This article is arranged in the following way: Section 2, contains some basic definitions and well known results. In Section 3, we have shown that Lie regular units generate GL(2, Fq) (see The- orems 3.1 and 3.2). In the last Section, we have established a presentation for GL(2, F2n ) and GL(2, Fpn ) (see Theorems 3.3 and 3.2) with generating set of cardinality 3. Throughout this paper, φ denotes the Euler’s totient function and U(R) denotes the unit group of the ring R. Suppose G be a group then o(G) denotes the order of the group G. 2. Preliminaries Here we record some well known results and basic definitions, which we shall use frequently in this note. F F o(GL(2, q)) Lemma 2.1. The order of the special linear group SL(2, q) is q−1 . Definition 2.2. An element ‘a’ of a ring R is said to be Lie regular if a = [e,u]= eu − ue, where e is an idempotent of R and u is a unit of R. Further, a unit in R is said to be Lie regular unit if it is Lie regular as an element of R. In the following lemma eij (r) for 1 ≤ i, j ≤ n and r ∈ Fq denotes elementary matrix of the form eij = I + rij , where ij denotes the matrix with 1 on the (i,j)-th position and 0 elsewhere and I is the n × n identity matrix. Lemma 2.3. [2, p. 944] Suppose Fq is a finite field. Then SL(n, Fq) has a presentation with generators eij (r) and relations: (i) eij (r)eij (s)= eij (r + s), (ii) [eij (r),ekl(s)] = 1 if i 6= l, j 6= k, (iii) [eij (r),ejk (s)] = eik(rs) if i, j and k are distinct, and −1 −1 F∗ (iv) eeji(r)e = eij (−trt) for e = eij (t)eji(−t )eij (t),t ∈ q. n Let α be a primitive element of Fq, where q = p and 1 ≤ i, j ≤ q − 1. For convenience, we rewrite the above presentation in new symbols as follows: Presentation of General Linear Groups over a Finite Field 219 Corollary 2.4. Let 1 αi 1 0 ai = ,bj = . 0 1 αj 1 Then SL(2, Fpn ) is generated by ai and bj with these relations: p p (i) ai =1 and bj =1, i j k (ii) for i 6= j, we have aiaj = ak, bibj = bk, where k is such that α +α = α , and 1 ≤ k ≤ q − 1, −1 −1 −1 −1 (iii) (aibq−1−iai)(bj )(aibq−1−iai) = a2i+j , −1 −1 −1 −1 (iv) (biaq−1−ibi)(aj )(biaq−1−ibi) = b2i+j . Theorem 2.5. [6, Theorem 1.1] Two groups having same presentation are iso- morphic. 3. Lie Regular Generators of General Linear Groups Observe that the element 1 0 0 −1 0 1 a = = , −1 −1 0 1 −1 −1 0 k is a Lie regular unit in M (Fq) and b = , where k is invertible in Fq, is 2 1 0 also a Lie regular unit in M2(Fq) (see [8, Proposition 2.14]). F F∗ Theorem 3.1. Suppose 2n is a finite field and α ∈ 2n is a primitive element n i.e. o(α)=2 − 1. Then the linear group GL(2, F2n ) is generated by Lie regular units a,b and c, where 1 0 0 1 0 α a = ,b = ,c = . 1 1 1 0 1 0 Proof. Let G be a subgroup of GL(2, F2n ) generated by a,b and c. Set i −i i 1 α j −j 1 0 ai = (bc) (bab)(bc) = ,bj = (bc) a(bc) = , 0 1 αj 1 n where 1 ≤ i, j ≤ 2 − 1. By using Corollary 2.4, ai and bj generate SL(2, Fq). 1 0 Let x = bc = , then order of x is 2n − 1. Consider a subgroup of G, 0 α n H = hx | x2 −1i. We see that H ∩ SL(2, F2n )= {I2}, thus 220 S. Maheshwari and R.K. Sharma n o(HSL(2, F2n )) = (2 − 1)o(SL(2, F2n )). n Since HSL(2, F2n ) ⊆ G ≤ GL(2, F2n ) and by lemma 2.1, o(GL(2, F2n )) = (2 − 1)o(SL(2, F2n )), as a consequence, we have HSL(2, F2n )= GL(2, F2n ). n Theorem 3.2. Suppose Fq is a finite field with q = p , where p is an odd prime F∗ and α ∈ q is a primitive element i.e. o(α) = q − 1. Then the linear group GL(2, Fq) is generated by Lie regular units a,b and c, where 1 0 0 1 0 α a = ,b = ,c = . −1 −1 1 0 1 0 Proof. Let G be a subgroup of GL(2, Fq) generated by a,b and c. Set q−1 i −i 2 i 1 α ai = (bc) (b(bc) ab)(bc) = , 0 1 q−1 j 2 −j 1 0 bj = (bc) ((bc) a)(bc) = , αi 1 where 1 ≤ i, j, ≤ q − 1. By using Corollary 2.4, ai and bj generate SL(2, Fq). Remaining proof is same as proof of Theorem . 4. Presentation of GL(2, F2n ) In the following theorem we assume that 1 ≤ i, j ≤ 2n − 1 and n> 1. Theorem 4.1. Let 1 0 0 1 0 α a = ,b = ,c = , 1 1 1 0 1 0 where α is a primitive element of F2n . Then a presentation of GL(2, F2n ) is n n ha,b,c | a2,b2,c2(2 −1),c2 ∈ center, (ab)3, (bc)2 −1, aaia = (bab)bi(bab) ,a1a2 = ak0 i, 2 k0 where k0 ∈ N is such that α + α = α and i −i i 1 α j −j 1 0 ai = (bc) (bab)(bc) = ,bj = (bc) a(bc) = . 0 1 αj 1 2 Proof. α + α is non-zero element in F2n for n> 1. So there exist k0 such that α + α2 = αk0 . Let G be a group generated by a,b,c and having presentation, n n ha,b,c | a2,b2,c2(2 −1),c2 ∈ center, (ab)3, (bc)2 −1, aaia = (bab)bi(bab),a1a2 = ak0 i. Presentation of General Linear Groups over a Finite Field 221 First, we shall show that G is finite. Consider a group H having the following presentation 2 2 −1 H = hai, bj | ai ,bj ,aiaj = ak,bibj = bk, aib2n−1−iaibj (aib2n−1−iai) = a2i+j , −1 −1 −1 −1 (biaq−1−ibi)(aj )(biaq−1−ibi) = b2i+j i, where k ∈ N is such that αi + αj = αk.
Recommended publications
  • APPLICATIONS of GALOIS THEORY 1. Finite Fields Let F Be a Finite Field
    CHAPTER IX APPLICATIONS OF GALOIS THEORY 1. Finite Fields Let F be a finite field. It is necessarily of nonzero characteristic p and its prime field is the field with p r elements Fp.SinceFis a vector space over Fp,itmusthaveq=p elements where r =[F :Fp]. More generally, if E ⊇ F are both finite, then E has qd elements where d =[E:F]. As we mentioned earlier, the multiplicative group F ∗ of F is cyclic (because it is a finite subgroup of the multiplicative group of a field), and clearly its order is q − 1. Hence each non-zero element of F is a root of the polynomial Xq−1 − 1. Since 0 is the only root of the polynomial X, it follows that the q elements of F are roots of the polynomial Xq − X = X(Xq−1 − 1). Hence, that polynomial is separable and F consists of the set of its roots. (You can also see that it must be separable by finding its derivative which is −1.) We q may now conclude that the finite field F is the splitting field over Fp of the separable polynomial X − X where q = |F |. In particular, it is unique up to isomorphism. We have proved the first part of the following result. Proposition. Let p be a prime. For each q = pr, there is a unique (up to isomorphism) finite field F with |F | = q. Proof. We have already proved the uniqueness. Suppose q = pr, and consider the polynomial Xq − X ∈ Fp[X]. As mentioned above Df(X)=−1sof(X) cannot have any repeated roots in any extension, i.e.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • On the Discrete Logarithm Problem in Finite Fields of Fixed Characteristic
    On the discrete logarithm problem in finite fields of fixed characteristic Robert Granger1⋆, Thorsten Kleinjung2⋆⋆, and Jens Zumbr¨agel1⋆ ⋆ ⋆ 1 Laboratory for Cryptologic Algorithms School of Computer and Communication Sciences Ecole´ polytechnique f´ed´erale de Lausanne, Switzerland 2 Institute of Mathematics, Universit¨at Leipzig, Germany {robert.granger,thorsten.kleinjung,jens.zumbragel}@epfl.ch Abstract. × For q a prime power, the discrete logarithm problem (DLP) in Fq consists in finding, for × x any g ∈ Fq and h ∈hgi, an integer x such that g = h. For each prime p we exhibit infinitely many n × extension fields Fp for which the DLP in Fpn can be solved in expected quasi-polynomial time. 1 Introduction In this paper we prove the following result. Theorem 1. For every prime p there exist infinitely many explicit extension fields Fpn for which × the DLP in Fpn can be solved in expected quasi-polynomial time exp (1/ log2+ o(1))(log n)2 . (1) Theorem 1 is an easy corollary of the following much stronger result, which we prove by presenting a randomised algorithm for solving any such DLP. Theorem 2. Given a prime power q > 61 that is not a power of 4, an integer k ≥ 18, polyno- q mials h0, h1 ∈ Fqk [X] of degree at most two and an irreducible degree l factor I of h1X − h0, × ∼ the DLP in Fqkl where Fqkl = Fqk [X]/(I) can be solved in expected time qlog2 l+O(k). (2) To deduce Theorem 1 from Theorem 2, note that thanks to Kummer theory, when l = q − 1 q−1 such h0, h1 are known to exist; indeed, for all k there exists an a ∈ Fqk such that I = X −a ∈ q i Fqk [X] is irreducible and therefore I | X − aX.
    [Show full text]
  • Abelian Varieties with Complex Multiplication and Modular Functions, by Goro Shimura, Princeton Univ
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 36, Number 3, Pages 405{408 S 0273-0979(99)00784-3 Article electronically published on April 27, 1999 Abelian varieties with complex multiplication and modular functions, by Goro Shimura, Princeton Univ. Press, Princeton, NJ, 1998, xiv + 217 pp., $55.00, ISBN 0-691-01656-9 The subject that might be called “explicit class field theory” begins with Kro- necker’s Theorem: every abelian extension of the field of rational numbers Q is a subfield of a cyclotomic field Q(ζn), where ζn is a primitive nth root of 1. In other words, we get all abelian extensions of Q by adjoining all “special values” of e(x)=exp(2πix), i.e., with x Q. Hilbert’s twelfth problem, also called Kronecker’s Jugendtraum, is to do something2 similar for any number field K, i.e., to generate all abelian extensions of K by adjoining special values of suitable special functions. Nowadays we would add that the reciprocity law describing the Galois group of an abelian extension L/K in terms of ideals of K should also be given explicitly. After K = Q, the next case is that of an imaginary quadratic number field K, with the real torus R/Z replaced by an elliptic curve E with complex multiplication. (Kronecker knew what the result should be, although complete proofs were given only later, by Weber and Takagi.) For simplicity, let be the ring of integers in O K, and let A be an -ideal. Regarding A as a lattice in C, we get an elliptic curve O E = C/A with End(E)= ;Ehas complex multiplication, or CM,by .If j=j(A)isthej-invariant ofOE,thenK(j) is the Hilbert class field of K, i.e.,O the maximal abelian unramified extension of K.
    [Show full text]
  • A Second Course in Algebraic Number Theory
    A second course in Algebraic Number Theory Vlad Dockchitser Prerequisites: • Galois Theory • Representation Theory Overview: ∗ 1. Number Fields (Review, K; OK ; O ; ClK ; etc) 2. Decomposition of primes (how primes behave in eld extensions and what does Galois's do) 3. L-series (Dirichlet's Theorem on primes in arithmetic progression, Artin L-functions, Cheboterev's density theorem) 1 Number Fields 1.1 Rings of integers Denition 1.1. A number eld is a nite extension of Q Denition 1.2. An algebraic integer α is an algebraic number that satises a monic polynomial with integer coecients Denition 1.3. Let K be a number eld. It's ring of integer OK consists of the elements of K which are algebraic integers Proposition 1.4. 1. OK is a (Noetherian) Ring 2. , i.e., ∼ [K:Q] as an abelian group rkZ OK = [K : Q] OK = Z 3. Each can be written as with and α 2 K α = β=n β 2 OK n 2 Z Example. K OK Q Z ( p p [ a] a ≡ 2; 3 mod 4 ( , square free) Z p Q( a) a 2 Z n f0; 1g a 1+ a Z[ 2 ] a ≡ 1 mod 4 where is a primitive th root of unity Q(ζn) ζn n Z[ζn] Proposition 1.5. 1. OK is the maximal subring of K which is nitely generated as an abelian group 2. O`K is integrally closed - if f 2 OK [x] is monic and f(α) = 0 for some α 2 K, then α 2 OK . Example (Of Factorisation).
    [Show full text]
  • Factoring Polynomials Over Finite Fields
    Factoring Polynomials over Finite Fields More precisely: Factoring and testing irreduciblity of sparse polynomials over small finite fields Richard P. Brent MSI, ANU joint work with Paul Zimmermann INRIA, Nancy 27 August 2009 Richard Brent (ANU) Factoring Polynomials over Finite Fields 27 August 2009 1 / 64 Outline Introduction I Polynomials over finite fields I Irreducible and primitive polynomials I Mersenne primes Part 1: Testing irreducibility I Irreducibility criteria I Modular composition I Three algorithms I Comparison of the algorithms I The “best” algorithm I Some computational results Part 2: Factoring polynomials I Distinct degree factorization I Avoiding GCDs, blocking I Another level of blocking I Average-case complexity I New primitive trinomials Richard Brent (ANU) Factoring Polynomials over Finite Fields 27 August 2009 2 / 64 Polynomials over finite fields We consider univariate polynomials P(x) over a finite field F. The algorithms apply, with minor changes, for any small positive characteristic, but since time is limited we assume that the characteristic is two, and F = Z=2Z = GF(2). P(x) is irreducible if it has no nontrivial factors. If P(x) is irreducible of degree r, then [Gauss] r x2 = x mod P(x): 2r Thus P(x) divides the polynomial Pr (x) = x − x. In fact, Pr (x) is the product of all irreducible polynomials of degree d, where d runs over the divisors of r. Richard Brent (ANU) Factoring Polynomials over Finite Fields 27 August 2009 3 / 64 Counting irreducible polynomials Let N(d) be the number of irreducible polynomials of degree d. Thus X r dN(d) = deg(Pr ) = 2 : djr By Möbius inversion we see that X rN(r) = µ(d)2r=d : djr Thus, the number of irreducible polynomials of degree r is ! 2r 2r=2 N(r) = + O : r r Since there are 2r polynomials of degree r, the probability that a randomly selected polynomial is irreducible is ∼ 1=r ! 0 as r ! +1.
    [Show full text]
  • Abelian Varieties
    Abelian Varieties J.S. Milne Version 2.0 March 16, 2008 These notes are an introduction to the theory of abelian varieties, including the arithmetic of abelian varieties and Faltings’s proof of certain finiteness theorems. The orginal version of the notes was distributed during the teaching of an advanced graduate course. Alas, the notes are still in very rough form. BibTeX information @misc{milneAV, author={Milne, James S.}, title={Abelian Varieties (v2.00)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={166+vi} } v1.10 (July 27, 1998). First version on the web, 110 pages. v2.00 (March 17, 2008). Corrected, revised, and expanded; 172 pages. Available at www.jmilne.org/math/ Please send comments and corrections to me at the address on my web page. The photograph shows the Tasman Glacier, New Zealand. Copyright c 1998, 2008 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Introduction 1 I Abelian Varieties: Geometry 7 1 Definitions; Basic Properties. 7 2 Abelian Varieties over the Complex Numbers. 10 3 Rational Maps Into Abelian Varieties . 15 4 Review of cohomology . 20 5 The Theorem of the Cube. 21 6 Abelian Varieties are Projective . 27 7 Isogenies . 32 8 The Dual Abelian Variety. 34 9 The Dual Exact Sequence. 41 10 Endomorphisms . 42 11 Polarizations and Invertible Sheaves . 53 12 The Etale Cohomology of an Abelian Variety . 54 13 Weil Pairings . 57 14 The Rosati Involution . 61 15 Geometric Finiteness Theorems . 63 16 Families of Abelian Varieties .
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • On Balanced Subgroups of the Multiplicative Group
    ON BALANCED SUBGROUPS OF THE MULTIPLICATIVE GROUP CARL POMERANCE AND DOUGLAS ULMER In memory of Alf van der Poorten ABSTRACT. A subgroup H of (Z=dZ)× is called balanced if every coset of H is evenly distributed between the lower and upper halves of (Z=dZ)×, i.e., has equal numbers of elements with represen- tatives in (0; d=2) and (d=2; d). This notion has applications to ranks of elliptic curves. We give a simple criterion in terms of characters for a subgroup H to be balanced, and for a fixed integer p, we study the distribution of integers d such that the cyclic subgroup of (Z=dZ)× generated by p is balanced. 1. INTRODUCTION × Let d > 2 be an integer and consider (Z=dZ) , the group of units modulo d. Let Ad be the × first half of (Z=dZ) ; that is, Ad consists of residues with a representative in (0; d=2). Let Bd = × × × (Z=dZ) n Ad be the second half of (Z=dZ) . We say a subgroup H of (Z=dZ) is balanced if × for each g 2 (Z=dZ) we have jgH \ Adj = jgH \ Bdj; that is, each coset of H has equally many members in the first half of (Z=dZ)× as in the second half. Let ' denote Euler’s function, so that φ(d) is the cardinality of (Z=dZ)×. If n and m are coprime integers with m > 0, let ln(m) denote the order of the cyclic subgroup hn mod mi generated by n × in (Z=mZ) (that is, ln(m) is the multiplicative order of n modulo m).
    [Show full text]
  • Finite Fields: Further Properties
    Chapter 4 Finite fields: further properties 8 Roots of unity in finite fields In this section, we will generalize the concept of roots of unity (well-known for complex numbers) to the finite field setting, by considering the splitting field of the polynomial xn − 1. This has links with irreducible polynomials, and provides an effective way of obtaining primitive elements and hence representing finite fields. Definition 8.1 Let n ∈ N. The splitting field of xn − 1 over a field K is called the nth cyclotomic field over K and denoted by K(n). The roots of xn − 1 in K(n) are called the nth roots of unity over K and the set of all these roots is denoted by E(n). The following result, concerning the properties of E(n), holds for an arbitrary (not just a finite!) field K. Theorem 8.2 Let n ∈ N and K a field of characteristic p (where p may take the value 0 in this theorem). Then (i) If p ∤ n, then E(n) is a cyclic group of order n with respect to multiplication in K(n). (ii) If p | n, write n = mpe with positive integers m and e and p ∤ m. Then K(n) = K(m), E(n) = E(m) and the roots of xn − 1 are the m elements of E(m), each occurring with multiplicity pe. Proof. (i) The n = 1 case is trivial. For n ≥ 2, observe that xn − 1 and its derivative nxn−1 have no common roots; thus xn −1 cannot have multiple roots and hence E(n) has n elements.
    [Show full text]
  • A STUDY on the ALGEBRAIC STRUCTURE of SL 2(Zpz)
    A STUDY ON THE ALGEBRAIC STRUCTURE OF SL2 Z pZ ( ~ ) A Thesis Presented to The Honors Tutorial College Ohio University In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Mathematics by Evan North April 2015 Contents 1 Introduction 1 2 Background 5 2.1 Group Theory . 5 2.2 Linear Algebra . 14 2.3 Matrix Group SL2 R Over a Ring . 22 ( ) 3 Conjugacy Classes of Matrix Groups 26 3.1 Order of the Matrix Groups . 26 3.2 Conjugacy Classes of GL2 Fp ....................... 28 3.2.1 Linear Case . .( . .) . 29 3.2.2 First Quadratic Case . 29 3.2.3 Second Quadratic Case . 30 3.2.4 Third Quadratic Case . 31 3.2.5 Classes in SL2 Fp ......................... 33 3.3 Splitting of Classes of(SL)2 Fp ....................... 35 3.4 Results of SL2 Fp ..............................( ) 40 ( ) 2 4 Toward Lifting to SL2 Z p Z 41 4.1 Reduction mod p ...............................( ~ ) 42 4.2 Exploring the Kernel . 43 i 4.3 Generalizing to SL2 Z p Z ........................ 46 ( ~ ) 5 Closing Remarks 48 5.1 Future Work . 48 5.2 Conclusion . 48 1 Introduction Symmetries are one of the most widely-known examples of pure mathematics. Symmetry is when an object can be rotated, flipped, or otherwise transformed in such a way that its appearance remains the same. Basic geometric figures should create familiar examples, take for instance the triangle. Figure 1: The symmetries of a triangle: 3 reflections, 2 rotations. The red lines represent the reflection symmetries, where the trianlge is flipped over, while the arrows represent the rotational symmetry of the triangle.
    [Show full text]
  • Units in Group Rings and Subalgebras of Real Simple Lie Algebras
    UNIVERSITY OF TRENTO Faculty of Mathematical, Physical and Natural Sciences Ph.D. Thesis Computational problems in algebra: units in group rings and subalgebras of real simple Lie algebras Advisor: Candidate: Prof. De Graaf Willem Adriaan Faccin Paolo Contents 1 Introduction 3 2 Group Algebras 5 2.1 Classical result about unit group of group algebras . 6 2.1.1 Bass construction . 6 2.1.2 The group of Hoechsmann unit H ............... 7 2.2 Lattices . 8 2.2.1 Ge’s algorithm . 8 2.2.2 Finding a basis of the perp-lattice . 9 2.2.3 The lattice . 11 2.2.4 Pure Lattices . 14 2.3 Toral algebras . 15 2.3.1 Splitting elements in toral algebras . 15 2.3.2 Decomposition via irreducible character of G . 17 2.3.3 Standard generating sets . 17 2.4 Cyclotomic fields Q(ζn) ........................ 18 2.4.1 When n is a prime power . 18 2.4.2 When n is not a prime power . 19 2.4.3 Explicit Construction of Greither ’s Units . 19 2.4.4 Fieker’s program . 24 2.5 Unit groups of orders in toral matrix algebras . 25 2.5.1 A simple toral algebra . 25 2.5.2 Two idempotents . 25 2.5.3 Implementation . 26 2.5.4 The general case . 27 2.6 Units of integral abelian group rings . 27 3 Lie algebras 29 3.0.1 Comment on the notation . 30 3.0.2 Comment on the base field . 31 3.1 Real simple Lie algebras . 31 3.2 Constructing complex semisimple Lie algebras .
    [Show full text]