The General Linear Group Over the field Fq, Is the Group of Invertible N × N Matrices with Coefficients in Fq

Total Page:16

File Type:pdf, Size:1020Kb

The General Linear Group Over the field Fq, Is the Group of Invertible N × N Matrices with Coefficients in Fq ALGEBRA - LECTURE II 1. General Linear Group Let Fq be a finite field of order q. Then GLn(q), the general linear group over the field Fq, is the group of invertible n × n matrices with coefficients in Fq. We shall now compute n the order of this group. Note that columns of an invertible matrix give a basis of V = Fq . Conversely, if v1, v2, . vn is a basis of V then there is an invertible matrix with these vectors as columns. Thus we need to count the bases of V . This is easy, as v1 can be any non-zero vector, then v2 any vector in V not on the line spanned by v1, then v3 any vector in V not n n on the plane spanned by v1 and v2, etc... Thus, there are q − 1 choices for v1, then q − q n 2 choices for v2, then q − q choices for v3, etc. Hence the order of GLn(q) is n−1 Y n i |GLn(q)| = (q − q ). i=0 2. Group action Let X be a set and G a group. A group action of G on X is a map G × X → X (g, x) 7→ gx such that (1) 1 · x = x for every x in X. (Here 1 is the identity in G.) (2) (gh)x = g(hx) for every x in X and g, h in G. Examples: n (1) G = GLn(q) and X = Fq . The action is given by matrix multiplication. (2) X = G and the action is the conjugation action of G. (3) X is the set of all subgroups in G and the action is the conjugation action. An action of G on a set X defines an equivalence relation by x ∼ y if there exists an element g in G such that y = gx. The equivalence classes are called G-orbits. If x is in X, the equivalence class of x (or its G-orbit) is denoted by xG = {gx|g ∈ G}. The orbits in the three examples respectively are n (1) Two orbits. One is {0} and the other Fq \{0}. (2) The orbits are conjugacy classes of elements of G. (3) The orbits are conjugacy classes of subgroups of G. Let x be in X. The stabilizer of x in G is defined by SG(x) = {g ∈ G|gx = x}. 1 2 ALGEBRA - LECTURE II Note that the group action axioms guarantee that the stabilizer SG(x) is a subgroup of G. For example, if X = G and the action is the conjugation action, then the stabilizer of x in G is the centralizer CG(x) of x in G: −1 SG(x) = CG(x) = {g ∈ G|gxg = x}. If X is the set of all subgroups of G and the action is the conjugation action, then the stabilizer of a subgroup H is the normalizer NG(H) of H in G: −1 SG(H) = NG(H) = {g ∈ G|gHg = H}. 3. Class formula Assume now that G is finite. Then the orbits are finite also. I claim that the number of element in the orbit of x is equal to [G : SG(x)], the index of the subgroup SG(x) in G. This is easy. Let g1, g2,... be a list of all elements of G. Then g1x, g2x, . are all elements G −1 −1 of x . Now gix = gjx is equivalent to x = (gi gj)x which means that gi gj is in SG(x) G or gj ∈ giSG(x). It follows that the elements of x correspond to SG(x)-cosets in G. This proves the claim. Assume further that X is finite. Let x1, . , xn representatives of all G-orbits in X. The the following class formula is obvious: n X |X| = [G : SG(xi)]. i=1 We discuss some applications of the class formula. The first is well known: Proposition 1. Let p be a prime and G be a group of order pm. Then p divides the order of the center Z(G) of G. In particular, the center of G is not trivial. Proof. Consider the special case of the class formula where G is acting on itself by conjugation. Note that the conjugation class of x consists of only one element (so the class is {x}) if and only ix x is in the center Z(G) of the group G. If x1, . , xn are representatives of non-central conjugacy classes then the class formula takes the form n X |G| = |Z(G)| + [G : CG(xi)]. i=1 Since the index [G : CG(xi)] is a non-trivial factor of G, it is a proper power of p. It follows that p divides the left side of the class equation and the terms [G : CG(xi)] on the right side. It follows that p divides the order of Z(G), as claimed. The proposition is proved. Exercise: Let p be a prime and U be the subgroup of GL3(p) consisting of all matrices of the form 1 x z 0 1 y . 0 0 1 Then |U| = p3, and the center is non-trivial, according to the previous proposition. Find that center. The second application of the class formula is more exciting. ALGEBRA - LECTURE II 3 Proposition 2. Let p be a prime and G a group whose order is divisible by p. Then there is an element in G of order p. Proof. Let X be the subset of Gp defined by p X = {(x1, x2, . , xp) ∈ G |x1x2 ··· xp = 1}. p−1 Note that |X| = |G| since x1 through xp−1 can be freely picked and then xp is fixed. The group acting on X will not be G but a cyclic group Cp = hσi of order p where σ is defined by σ(x1, x2, . , xp) = (xp, x1, . , xp−1). Since the order of Cp is the prime p, an orbit in X has either one or p elements. An orbit has one element if and only if x1 = x2 = ··· = xp. Thus single element orbits consist of (x, x, . , x) where x is in G such that xp = 1. Of course, one such x is the identity element. The class formula now implies that the number of orbits with one element is divisible by p. p This proves that there exists x 6= 1 such that x = 1. The proposition is proved. 4. Semi-direct product of groups Let T and U be two subgroups of G. Assume that T is contained in the normalizer of U in G. Then UT , the set of all possible products ut where u ∈ U and t ∈ T is a group. Indeed, −1 (u1t1)(u2t2) = (u1t1u2t1 )(t1t2) = (u1u3)(t1t2) −1 where u3 = t1u2t1 ∈ U which shows that the set TU is closed under multiplication. Since (ut)−1 = (t−1u−1 t)t−1 the set TU is closed under taking inverses as well. It is also convenient to consider U × T , a semi-direct product of T and U. As a set it is equal to the direct product of U and T . However, the multiplication is defined by −1 (u1, t1) · (u2, t2) = (u1u3, t1t2) where u3 = t1u2t1 ∈ U. Note that there is a natural homomorphism from U × T onto UT defined by (u, t) 7→ ut. The kernel consists of elements (u, u−1) where u is in U ∩ T . If the groups are finite, it follows that the order of UT is |U||T | |UT | = . |U ∩ T | Example: Let p be a prime and G = GL3(p). Let U be the group of upper triangular matrices with 1 on the diagonal (so called unipotent matrices), and let T be the group of all diagonal matrices. Then T normalizes U. Since U ∩ T = {1} the group UT is isomorphic to the semi-direct product of U and T . 5. Sylow Theorems Let G be a finite group and p a prime number. By |G|p we shall denote the biggest power of p dividing |G|. A subgroup P of G of order pr is called a p-subgroup of G. If the order of P is equal to |G|p then P is called a Sylow p-subgroup of G. Theorem 3. Assume that |G|p 6= 1. Let X be the set of Sylow p-subgroups. Then (1) The set X is non-empty. (2) |X| ≡ 1 (mod p). (3) All Sylow p-subgroups are G-conjugated. 4 ALGEBRA - LECTURE II (4) Any p-subgroup is contained in a Sylow p-subgroup. Proof. Let X be the set of all p-subgroups maximal with respect to inclusions. Note that this set is non-trivial since G has elements of order p. (In the last step of the proof we will show that elements of X have the order |G|p, so it OK to use the letter X.) We show first: Lemma 4. (1) |X| ≡ 1 (mod p). (2) The set X consists of only one conjugacy class. Proof. Let P be in X. Then P acts on X by conjugation. I claim that P fixes P and no other elements in X. Indeed, if P fixes Q, another maximal p-subgroup, that means that P is contained in NG(Q). It follows that QP is a subgroup of G. Its order is |Q||P |/|Q ∩ P |, so QP is also a p-subgroup. But QP contains both Q and P . This is a contradiction since P and Q are two different maximal p-subgroups. It follows that the P -orbit of Q 6= P is non-trivial and, therefore, has the order equal to pr for some r ≥ 1.
Recommended publications
  • APPLICATIONS of GALOIS THEORY 1. Finite Fields Let F Be a Finite Field
    CHAPTER IX APPLICATIONS OF GALOIS THEORY 1. Finite Fields Let F be a finite field. It is necessarily of nonzero characteristic p and its prime field is the field with p r elements Fp.SinceFis a vector space over Fp,itmusthaveq=p elements where r =[F :Fp]. More generally, if E ⊇ F are both finite, then E has qd elements where d =[E:F]. As we mentioned earlier, the multiplicative group F ∗ of F is cyclic (because it is a finite subgroup of the multiplicative group of a field), and clearly its order is q − 1. Hence each non-zero element of F is a root of the polynomial Xq−1 − 1. Since 0 is the only root of the polynomial X, it follows that the q elements of F are roots of the polynomial Xq − X = X(Xq−1 − 1). Hence, that polynomial is separable and F consists of the set of its roots. (You can also see that it must be separable by finding its derivative which is −1.) We q may now conclude that the finite field F is the splitting field over Fp of the separable polynomial X − X where q = |F |. In particular, it is unique up to isomorphism. We have proved the first part of the following result. Proposition. Let p be a prime. For each q = pr, there is a unique (up to isomorphism) finite field F with |F | = q. Proof. We have already proved the uniqueness. Suppose q = pr, and consider the polynomial Xq − X ∈ Fp[X]. As mentioned above Df(X)=−1sof(X) cannot have any repeated roots in any extension, i.e.
    [Show full text]
  • Math 5111 (Algebra 1) Lecture #14 of 24 ∼ October 19Th, 2020
    Math 5111 (Algebra 1) Lecture #14 of 24 ∼ October 19th, 2020 Group Isomorphism Theorems + Group Actions The Isomorphism Theorems for Groups Group Actions Polynomial Invariants and An This material represents x3.2.3-3.3.2 from the course notes. Quotients and Homomorphisms, I Like with rings, we also have various natural connections between normal subgroups and group homomorphisms. To begin, observe that if ' : G ! H is a group homomorphism, then ker ' is a normal subgroup of G. In fact, I proved this fact earlier when I introduced the kernel, but let me remark again: if g 2 ker ', then for any a 2 G, then '(aga−1) = '(a)'(g)'(a−1) = '(a)'(a−1) = e. Thus, aga−1 2 ker ' as well, and so by our equivalent properties of normality, this means ker ' is a normal subgroup. Thus, we can use homomorphisms to construct new normal subgroups. Quotients and Homomorphisms, II Equally importantly, we can also do the reverse: we can use normal subgroups to construct homomorphisms. The key observation in this direction is that the map ' : G ! G=N associating a group element to its residue class / left coset (i.e., with '(a) = a) is a ring homomorphism. Indeed, the homomorphism property is precisely what we arranged for the left cosets of N to satisfy: '(a · b) = a · b = a · b = '(a) · '(b). Furthermore, the kernel of this map ' is, by definition, the set of elements in G with '(g) = e, which is to say, the set of elements g 2 N. Thus, kernels of homomorphisms and normal subgroups are precisely the same things.
    [Show full text]
  • Classification of Finite Abelian Groups
    Math 317 C1 John Sullivan Spring 2003 Classification of Finite Abelian Groups (Notes based on an article by Navarro in the Amer. Math. Monthly, February 2003.) The fundamental theorem of finite abelian groups expresses any such group as a product of cyclic groups: Theorem. Suppose G is a finite abelian group. Then G is (in a unique way) a direct product of cyclic groups of order pk with p prime. Our first step will be a special case of Cauchy’s Theorem, which we will prove later for arbitrary groups: whenever p |G| then G has an element of order p. Theorem (Cauchy). If G is a finite group, and p |G| is a prime, then G has an element of order p (or, equivalently, a subgroup of order p). ∼ Proof when G is abelian. First note that if |G| is prime, then G = Zp and we are done. In general, we work by induction. If G has no nontrivial proper subgroups, it must be a prime cyclic group, the case we’ve already handled. So we can suppose there is a nontrivial subgroup H smaller than G. Either p |H| or p |G/H|. In the first case, by induction, H has an element of order p which is also order p in G so we’re done. In the second case, if ∼ g + H has order p in G/H then |g + H| |g|, so hgi = Zkp for some k, and then kg ∈ G has order p. Note that we write our abelian groups additively. Definition. Given a prime p, a p-group is a group in which every element has order pk for some k.
    [Show full text]
  • Mathematics 310 Examination 1 Answers 1. (10 Points) Let G Be A
    Mathematics 310 Examination 1 Answers 1. (10 points) Let G be a group, and let x be an element of G. Finish the following definition: The order of x is ... Answer: . the smallest positive integer n so that xn = e. 2. (10 points) State Lagrange’s Theorem. Answer: If G is a finite group, and H is a subgroup of G, then o(H)|o(G). 3. (10 points) Let ( a 0! ) H = : a, b ∈ Z, ab 6= 0 . 0 b Is H a group with the binary operation of matrix multiplication? Be sure to explain your answer fully. 2 0! 1/2 0 ! Answer: This is not a group. The inverse of the matrix is , which is not 0 2 0 1/2 in H. 4. (20 points) Suppose that G1 and G2 are groups, and φ : G1 → G2 is a homomorphism. (a) Recall that we defined φ(G1) = {φ(g1): g1 ∈ G1}. Show that φ(G1) is a subgroup of G2. −1 (b) Suppose that H2 is a subgroup of G2. Recall that we defined φ (H2) = {g1 ∈ G1 : −1 φ(g1) ∈ H2}. Prove that φ (H2) is a subgroup of G1. Answer:(a) Pick x, y ∈ φ(G1). Then we can write x = φ(a) and y = φ(b), with a, b ∈ G1. Because G1 is closed under the group operation, we know that ab ∈ G1. Because φ is a homomorphism, we know that xy = φ(a)φ(b) = φ(ab), and therefore xy ∈ φ(G1). That shows that φ(G1) is closed under the group operation.
    [Show full text]
  • A Note on Presentation of General Linear Groups Over a Finite Field
    Southeast Asian Bulletin of Mathematics (2019) 43: 217–224 Southeast Asian Bulletin of Mathematics c SEAMS. 2019 A Note on Presentation of General Linear Groups over a Finite Field Swati Maheshwari and R. K. Sharma Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India Email: [email protected]; [email protected] Received 22 September 2016 Accepted 20 June 2018 Communicated by J.M.P. Balmaceda AMS Mathematics Subject Classification(2000): 20F05, 16U60, 20H25 Abstract. In this article we have given Lie regular generators of linear group GL(2, Fq), n where Fq is a finite field with q = p elements. Using these generators we have obtained presentations of the linear groups GL(2, F2n ) and GL(2, Fpn ) for each positive integer n. Keywords: Lie regular units; General linear group; Presentation of a group; Finite field. 1. Introduction Suppose F is a finite field and GL(n, F) is the general linear the group of n × n invertible matrices and SL(n, F) is special linear group of n × n matrices with determinant 1. We know that GL(n, F) can be written as a semidirect product, GL(n, F)= SL(n, F) oF∗, where F∗ denotes the multiplicative group of F. Let H and K be two groups having presentations H = hX | Ri and K = hY | Si, then a presentation of semidirect product of H and K is given by, −1 H oη K = hX, Y | R,S,xyx = η(y)(x) ∀x ∈ X,y ∈ Y i, where η : K → Aut(H) is a group homomorphism. Now we summarize some literature survey related to the presentation of groups.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Unitary Group - Wikipedia
    Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1.
    [Show full text]
  • Math 412. Simple Groups
    Math 412. Simple Groups DEFINITION: A group G is simple if its only normal subgroups are feg and G. Simple groups are rare among all groups in the same way that prime numbers are rare among all integers. The smallest non-abelian group is A5, which has order 60. THEOREM 8.25: A abelian group is simple if and only if it is finite of prime order. THEOREM: The Alternating Groups An where n ≥ 5 are simple. The simple groups are the building blocks of all groups, in a sense similar to how all integers are built from the prime numbers. One of the greatest mathematical achievements of the Twentieth Century was a classification of all the finite simple groups. These are recorded in the Atlas of Simple Groups. The mathematician who discovered the last-to-be-discovered finite simple group is right here in our own department: Professor Bob Greiss. This simple group is called the monster group because its order is so big—approximately 8 × 1053. Because we have classified all the finite simple groups, and we know how to put them together to form arbitrary groups, we essentially understand the structure of every finite group. It is difficult, in general, to tell whether a given group G is simple or not. Just like determining whether a given (large) integer is prime, there is an algorithm to check but it may take an unreasonable amount of time to run. A. WARM UP. Find proper non-trivial normal subgroups of the following groups: Z, Z35, GL5(Q), S17, D100.
    [Show full text]
  • The Fundamental Groupoid of the Quotient of a Hausdorff
    The fundamental groupoid of the quotient of a Hausdorff space by a discontinuous action of a discrete group is the orbit groupoid of the induced action Ronald Brown,∗ Philip J. Higgins,† Mathematics Division, Department of Mathematical Sciences, School of Informatics, Science Laboratories, University of Wales, Bangor South Rd., Gwynedd LL57 1UT, U.K. Durham, DH1 3LE, U.K. October 23, 2018 University of Wales, Bangor, Maths Preprint 02.25 Abstract The main result is that the fundamental groupoidof the orbit space of a discontinuousaction of a discrete groupon a Hausdorffspace which admits a universal coveris the orbit groupoid of the fundamental groupoid of the space. We also describe work of Higgins and of Taylor which makes this result usable for calculations. As an example, we compute the fundamental group of the symmetric square of a space. The main result, which is related to work of Armstrong, is due to Brown and Higgins in 1985 and was published in sections 9 and 10 of Chapter 9 of the first author’s book on Topology [3]. This is a somewhat edited, and in one point (on normal closures) corrected, version of those sections. Since the book is out of print, and the result seems not well known, we now advertise it here. It is hoped that this account will also allow wider views of these results, for example in topos theory and descent theory. Because of its provenance, this should be read as a graduate text rather than an article. The Exercises should be regarded as further propositions for which we leave the proofs to the reader.
    [Show full text]
  • Normal Subgroups of the General Linear Groups Over Von Neumann Regular Rings L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 96, Number 2, February 1986 NORMAL SUBGROUPS OF THE GENERAL LINEAR GROUPS OVER VON NEUMANN REGULAR RINGS L. N. VASERSTEIN1 ABSTRACT. Let A be a von Neumann regular ring or, more generally, let A be an associative ring with 1 whose reduction modulo its Jacobson radical is von Neumann regular. We obtain a complete description of all subgroups of GLn A, n > 3, which are normalized by elementary matrices. 1. Introduction. For any associative ring A with 1 and any natural number n, let GLn A be the group of invertible n by n matrices over A and EnA the subgroup generated by all elementary matrices x1'3, where 1 < i / j < n and x E A. In this paper we describe all subgroups of GLn A normalized by EnA for any von Neumann regular A, provided n > 3. Our description is standard (see Bass [1] and Vaserstein [14, 16]): a subgroup H of GL„ A is normalized by EnA if and only if H is of level B for an ideal B of A, i.e. E„(A, B) C H C Gn(A, B). Here Gn(A, B) is the inverse image of the center of GL„(,4/S) (when n > 2, this center consists of scalar invertible matrices over the center of the ring A/B) under the canonical homomorphism GL„ A —►GLn(A/B) and En(A, B) is the normal subgroup of EnA generated by all elementary matrices in Gn(A, B) (when n > 3, the group En(A, B) is generated by matrices of the form (—y)J'lx1'Jy:i''1 with x € B,y £ A,l < i ^ j < n, see [14]).
    [Show full text]
  • Generalized Quaternions
    GENERALIZED QUATERNIONS KEITH CONRAD 1. introduction The quaternion group Q8 is one of the two non-abelian groups of size 8 (up to isomor- phism). The other one, D4, can be constructed as a semi-direct product: ∼ ∼ × ∼ D4 = Aff(Z=(4)) = Z=(4) o (Z=(4)) = Z=(4) o Z=(2); where the elements of Z=(2) act on Z=(4) as the identity and negation. While Q8 is not a semi-direct product, it can be constructed as the quotient group of a semi-direct product. We will see how this is done in Section2 and then jazz up the construction in Section3 to make an infinite family of similar groups with Q8 as the simplest member. In Section4 we will compare this family with the dihedral groups and see how it fits into a bigger picture. 2. The quaternion group from a semi-direct product The group Q8 is built out of its subgroups hii and hji with the overlapping condition i2 = j2 = −1 and the conjugacy relation jij−1 = −i = i−1. More generally, for odd a we have jaij−a = −i = i−1, while for even a we have jaij−a = i. We can combine these into the single formula a (2.1) jaij−a = i(−1) for all a 2 Z. These relations suggest the following way to construct the group Q8. Theorem 2.1. Let H = Z=(4) o Z=(4), where (a; b)(c; d) = (a + (−1)bc; b + d); ∼ The element (2; 2) in H has order 2, lies in the center, and H=h(2; 2)i = Q8.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]