Math 402 Assignment 1. Due Wednesday, October 3, 2012. 1

Total Page:16

File Type:pdf, Size:1020Kb

Math 402 Assignment 1. Due Wednesday, October 3, 2012. 1 Math 402 Assignment 1. Due Wednesday, October 3, 2012. 1(problem 2.1) Make a multiplication table for the symmetric group S3. Solution. (i). Iσ = σ for all σ ∈ S3. (ii). (12)I = (12); (12)(12) = I; (12)(13) = (132); (12)(23) = (123); (12)(123) = (23); (12)(321) = (13). (iii). (13)I = (13); (13)(12) = (123); (13)(13) = I; (13)(23) = (321); (13)(123) = (12); (13)(321) = (23). (iv). (23)I = (23); (23)(12) = (321); (23)(13) = (123); (23)(23) = I; (23)(123) = (13); (23)(321) = (12). (v). (123)I = (123); (123)(12) = (13); (123)(13) = (23); (123)(23) = (12); (123)(123) = (321); (123)(321) = I. (vi). (321)I = (321); (321)(12) = (23); (321)(13) = (12); (321)(23) = (13); (321)(123) = I; (321)(321) = (123). 2(3.2) Let a and b be positive integers that sum to a prime number p. Show that the greatest common divisor of a and b is 1. Solution. Begin with the equation a + b = p, where 0 <a<p and 0 <b<p. Since the g.c.d. (a, b) divides both a and b, (a, b) divides their sum a + b = p, i.e., (a, b) divides the prime p; hence, (a, b)=1or(a, b) = p. If(a, b) = p, then p =(a, b) divides a, which is not possible since 0 <a<p. 3(3.3) (a). Define the greatest common divisor of a set {a1, a2, ..., an} of integers, prove that it exists, and that it is an integer combination of a1, ..., an. Assume that the set contains a nonzero element. Solution. The g.c.d. (a1, a2, ..., an) of the set of integers {a1, a2, ..., an} is the largest integer m that divides all the integers in the set {a1, a2, ..., an}. There is a largest integer of that description since each integer that divide each element of the set is no bigger than |a1|. 1 The set of all integer combinations {m1a1 + m2a2 + ··· + mnan|mi ∈ Z} of {a1, a2, ..., an} is a subgroup of the additive group of integers, and so, it equals Zt, where t is the smallest positive integer in the subgroup. We can show that t divides all the elements of {a1, a2, ..., an} as follows: Divide aj by t: aj = st + r, where 0 ≤ r < t. Then r = aj − st is in the subgroup since aj and t are. If r> 0, that would violate the minimality of t, and so, r = 0. Since t is a common divisor and m is the greatest common divisor, t divides m. On the other hand, since m divides all the elements of {a1, a2, ..., an}, m divides all the elements {m1a1 + m2a2 + ··· + mnan|mi ∈ Z} in the subgroup; in particular, m divides the element t of the subgroup. Since m and t divide each other, m = t.Therefore, since t is an integral combination of {a1, a2, ..., an}, the greatest common divisor m = t is an integer combination of {a1, a2, ..., an}. (b). Let d be the greatest common divisor of a set {a1, a2, ..., an} of integers. Show that the greatest common divisor of a set {a1/d,a2/d, ..., an/d} is 1. Solution. By part (a), the g.c.d. d equals s1a1 + s2a2 + ··· + snan for certain integers s1,...,sn. Dividing the equation d = s1a1 + s2a2 + ··· + snan by d, we get the equation 1= s1(a1/d)+ s2(a2/d)+ ··· sn(an/d), where each aj/d is an integer since d divides each aj. Thus, 1 is an integral combination of {a1/d,a2/d, ..., an/d}. 1 is then the smallest positive integral combination of {a1/d,a2/d, ..., an/d}, and so, by the argument i (a), 1 is the greatest common divisor of {a1/d,a2/d, ..., an/d}. 4(4.1) Let a and b be elements of a group G. If a3b = ba3 and if a has order 7, show that ab = ba. Solution. Since a3 and b commute, a6 =(a3)2 and b also commute. Since a7 = 1, a6 = a−1, and so, a−1 and b commute, i.e., a−1b = ba−1. Combining that equation with a on the left and with a on the right, we get the equation ba = ab. 5(4.2) An nth root of unity is a complex number z such that zn = 1. (a). Prove that the set of nth roots of unity form a cyclic subgroup of C× of order n. 2mπi Solution. The distinct nth roots of unity are G = {e n |0 ≤ m < n}. For each integer t, 2tπi 2mπi e n is an nth root of unity. To match it up with a particular element of {e n |0 ≤ m < n}, divide t by n to produce t = sn + m, where 0 ≤ m < n. Then 2tπi 2 2mπ 2mπ e n = e sπe n = e n . Define the composition of elements of G using complex multiplication: ′ ′ ′ 2mπi 2m πi 2mπi 2m πi 2(m+m )πi e n ◦ e n = e n · e n = e n . 2 0 2mπi 2(−m)πi The identity element of G is 1 = e , and the inverse of e n is e n . 2πi 2πi 2mπi Take the particular nth root of unity e n . The other nth roots are (e n )m = e n , with 0 ≤ m < n. Thus, the nth roots of unity form a cyclic group with n elements that is 2πi generated by e n . (b). Determine the product of all the nth roots of unity. Solution. The product of the nth roots of unity equals the product of the on-real roots times the product of the real roots. The non-real roots come in complex-conjugate pairs, where each pair has product 1. Hence, the product the non-real roots equals 1. Thus, the product of the nth roots of unity equals the product of the real roots. If n is odd, the only real root is 1, and if n is even, the real roots are 1 and -1. Hence, when n is odd, the product equals 1, and when n is even, the product equals -1. 6(4.3) Let a and b be elements of a group G. Prove that ab and ba have the same order. Solution. Let e be the identity element of G. ba is related to ab by the equation ba = a−1(ab)a. To show that ba and ab have the same order, we need only show that ab and a−1(ab)a have the same order. For a simpler appearance, let ab = c. Then we want to show that c and a−1ca have the same order, i.e., cn = e if and only if (a−1ca)n = e. But (a−1ca)n = a−1cna, as one can check by multiplication of the left hand side. Thus, we need to show that cn = e if and only if a−1cna = e, which you show by composing the equation a−1cna = e on the left with a and on the right with a−1 to get the equation cn = aea−1 = 1. 3.
Recommended publications
  • 21 the Hilbert Class Polynomial
    18.783 Elliptic Curves Spring 2015 Lecture #21 04/28/2015 21 The Hilbert class polynomial In the previous lecture we proved that the field of modular functions for Γ0(N) is generated by the functions j(τ) and jN (τ) := j(Nτ), and we showed that C(j; jN ) is a finite extension of C(j). We then defined the classical modular polynomial ΦN (Y ) as the minimal polynomial of jN over C(j), and we proved that its coefficients are integer polynomials in j. Replacing j with a new variable X, we can view ΦN Z[X; Y ] as an integer polynomial in two variables. In this lecture we will use ΦN to prove that the Hilbert class polynomial Y HD(X) := (X − j(E)) j(E)2EllO(C) also has integer coefficients; here D = disc(O) and EllO(C) := fj(E) : End(E) ' Og is the finite set of j-invariants of elliptic curves E=C with complex multiplication (CM) by O. This implies that each j(E) 2 EllO(C) is an algebraic integer, meaning that any elliptic curve E=C with complex multiplication can actually be defined over a finite extension of Q (a number field). This fact is the key to relating the theory of elliptic curves over the complex numbers to elliptic curves over finite fields. 21.1 Isogenies Recall from Lecture 18 that if L1 is a sublattice of L2, and E1 ' C=L1 and E2 ' C=L2 are the corresponding elliptic curves, then there is an isogeny φ: E1 ! E2 whose kernel is isomorphic to the finite abelian group L2=L1.
    [Show full text]
  • Abelian Varieties with Complex Multiplication and Modular Functions, by Goro Shimura, Princeton Univ
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 36, Number 3, Pages 405{408 S 0273-0979(99)00784-3 Article electronically published on April 27, 1999 Abelian varieties with complex multiplication and modular functions, by Goro Shimura, Princeton Univ. Press, Princeton, NJ, 1998, xiv + 217 pp., $55.00, ISBN 0-691-01656-9 The subject that might be called “explicit class field theory” begins with Kro- necker’s Theorem: every abelian extension of the field of rational numbers Q is a subfield of a cyclotomic field Q(ζn), where ζn is a primitive nth root of 1. In other words, we get all abelian extensions of Q by adjoining all “special values” of e(x)=exp(2πix), i.e., with x Q. Hilbert’s twelfth problem, also called Kronecker’s Jugendtraum, is to do something2 similar for any number field K, i.e., to generate all abelian extensions of K by adjoining special values of suitable special functions. Nowadays we would add that the reciprocity law describing the Galois group of an abelian extension L/K in terms of ideals of K should also be given explicitly. After K = Q, the next case is that of an imaginary quadratic number field K, with the real torus R/Z replaced by an elliptic curve E with complex multiplication. (Kronecker knew what the result should be, although complete proofs were given only later, by Weber and Takagi.) For simplicity, let be the ring of integers in O K, and let A be an -ideal. Regarding A as a lattice in C, we get an elliptic curve O E = C/A with End(E)= ;Ehas complex multiplication, or CM,by .If j=j(A)isthej-invariant ofOE,thenK(j) is the Hilbert class field of K, i.e.,O the maximal abelian unramified extension of K.
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • Chapter 5 Complex Numbers
    Chapter 5 Complex numbers Why be one-dimensional when you can be two-dimensional? ? 3 2 1 0 1 2 3 − − − ? We begin by returning to the familiar number line, where I have placed the question marks there appear to be no numbers. I shall rectify this by defining the complex numbers which give us a number plane rather than just a number line. Complex numbers play a fundamental rˆolein mathematics. In this chapter, I shall use them to show how e and π are connected and how certain primes can be factorized. They are also fundamental to physics where they are used in quantum mechanics. 5.1 Complex number arithmetic In the set of real numbers we can add, subtract, multiply and divide, but we cannot always extract square roots. For example, the real number 1 has 125 126 CHAPTER 5. COMPLEX NUMBERS the two real square roots 1 and 1, whereas the real number 1 has no real square roots, the reason being that− the square of any real non-zero− number is always positive. In this section, we shall repair this lack of square roots and, as we shall learn, we shall in fact have achieved much more than this. Com- plex numbers were first studied in the 1500’s but were only fully accepted and used in the 1800’s. Warning! If r is a positive real number then √r is usually interpreted to mean the positive square root. If I want to emphasize that both square roots need to be considered I shall write √r.
    [Show full text]
  • Number Theory and Graph Theory Chapter 3 Arithmetic Functions And
    1 Number Theory and Graph Theory Chapter 3 Arithmetic functions and roots of unity By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: [email protected] 2 Module-4: nth roots of unity Objectives • Properties of nth roots of unity and primitive nth roots of unity. • Properties of Cyclotomic polynomials. Definition 1. Let n 2 N. Then, a complex number z is called 1. an nth root of unity if it satisfies the equation xn = 1, i.e., zn = 1. 2. a primitive nth root of unity if n is the smallest positive integer for which zn = 1. That is, zn = 1 but zk 6= 1 for any k;1 ≤ k ≤ n − 1. 2pi zn = exp( n ) is a primitive n-th root of unity. k • Note that zn , for 0 ≤ k ≤ n − 1, are the n distinct n-th roots of unity. • The nth roots of unity are located on the unit circle of the complex plane, and in that plane they form the vertices of an n-sided regular polygon with one vertex at (1;0) and centered at the origin. The following points are collected from the article Cyclotomy and cyclotomic polynomials by B.Sury, Resonance, 1999. 1. Cyclotomy - literally circle-cutting - was a puzzle begun more than 2000 years ago by the Greek geometers. In their pastime, they used two implements - a ruler to draw straight lines and a compass to draw circles. 2. The problem of cyclotomy was to divide the circumference of a circle into n equal parts using only these two implements.
    [Show full text]
  • Monic Polynomials in $ Z [X] $ with Roots in the Unit Disc
    MONIC POLYNOMIALS IN Z[x] WITH ROOTS IN THE UNIT DISC Pantelis A. Damianou A Theorem of Kronecker This note is motivated by an old result of Kronecker on monic polynomials with integer coefficients having all their roots in the unit disc. We call such polynomials Kronecker polynomials for short. Let k(n) denote the number of Kronecker polynomials of degree n. We describe a canonical form for such polynomials and use it to determine the sequence k(n), for small values of n. The first step is to show that the number of Kronecker polynomials of degree n is finite. This fact is included in the following theorem due to Kronecker [6]. See also [5] for a more accessible proof. The theorem actually gives more: the non-zero roots of such polynomials are on the boundary of the unit disc. We use this fact later on to show that these polynomials are essentially products of cyclotomic polynomials. Theorem 1 Let λ =06 be a root of a monic polynomial f(z) with integer coefficients. If all the roots of f(z) are in the unit disc {z ∈ C ||z| ≤ 1}, then |λ| =1. Proof Let n = degf. The set of all monic polynomials of degree n with integer coefficients having all their roots in the unit disc is finite. To see this, we write n n n 1 n 2 z + an 1z − + an 2z − + ··· + a0 = (z − zj) , − − j Y=1 where aj ∈ Z and zj are the roots of the polynomial. Using the fact that |zj| ≤ 1 we have: n |an 1| = |z1 + z2 + ··· + zn| ≤ n = − 1 n |an 2| = | zjzk| ≤ − j,k 2! .
    [Show full text]
  • Hyperelliptic Curves with Many Automorphisms
    Hyperelliptic Curves with Many Automorphisms Nicolas M¨uller Richard Pink Department of Mathematics Department of Mathematics ETH Z¨urich ETH Z¨urich 8092 Z¨urich 8092 Z¨urich Switzerland Switzerland [email protected] [email protected] November 17, 2017 To Frans Oort Abstract We determine all complex hyperelliptic curves with many automorphisms and decide which of their jacobians have complex multiplication. arXiv:1711.06599v1 [math.AG] 17 Nov 2017 MSC classification: 14H45 (14H37, 14K22) 1 1 Introduction Let X be a smooth connected projective algebraic curve of genus g > 2 over the field of complex numbers. Following Rauch [17] and Wolfart [21] we say that X has many automorphisms if it cannot be deformed non-trivially together with its automorphism group. Given his life-long interest in special points on moduli spaces, Frans Oort [15, Question 5.18.(1)] asked whether the point in the moduli space of curves associated to a curve X with many automorphisms is special, i.e., whether the jacobian of X has complex multiplication. Here we say that an abelian variety A has complex multiplication over a field K if ◦ EndK(A) contains a commutative, semisimple Q-subalgebra of dimension 2 dim A. (This property is called “sufficiently many complex multiplications” in Chai, Conrad and Oort [6, Def. 1.3.1.2].) Wolfart [22] observed that the jacobian of a curve with many automorphisms does not generally have complex multiplication and answered Oort’s question for all g 6 4. In the present paper we answer Oort’s question for all hyperelliptic curves with many automorphisms.
    [Show full text]
  • GEOMETRY and NUMBERS Ching-Li Chai
    GEOMETRY AND NUMBERS Ching-Li Chai Sample arithmetic statements Diophantine equations Counting solutions of a GEOMETRY AND NUMBERS diophantine equation Counting congruence solutions L-functions and distribution of prime numbers Ching-Li Chai Zeta and L-values Sample of geometric structures and symmetries Institute of Mathematics Elliptic curve basics Academia Sinica Modular forms, modular and curves and Hecke symmetry Complex multiplication Department of Mathematics Frobenius symmetry University of Pennsylvania Monodromy Fine structure in characteristic p National Chiao Tung University, July 6, 2012 GEOMETRY AND Outline NUMBERS Ching-Li Chai Sample arithmetic 1 Sample arithmetic statements statements Diophantine equations Diophantine equations Counting solutions of a diophantine equation Counting solutions of a diophantine equation Counting congruence solutions L-functions and distribution of Counting congruence solutions prime numbers L-functions and distribution of prime numbers Zeta and L-values Sample of geometric Zeta and L-values structures and symmetries Elliptic curve basics Modular forms, modular 2 Sample of geometric structures and symmetries curves and Hecke symmetry Complex multiplication Elliptic curve basics Frobenius symmetry Monodromy Modular forms, modular curves and Hecke symmetry Fine structure in characteristic p Complex multiplication Frobenius symmetry Monodromy Fine structure in characteristic p GEOMETRY AND The general theme NUMBERS Ching-Li Chai Sample arithmetic statements Diophantine equations Counting solutions of a Geometry and symmetry influences diophantine equation Counting congruence solutions L-functions and distribution of arithmetic through zeta functions and prime numbers Zeta and L-values modular forms Sample of geometric structures and symmetries Elliptic curve basics Modular forms, modular Remark. (i) zeta functions = L-functions; curves and Hecke symmetry Complex multiplication modular forms = automorphic representations.
    [Show full text]
  • Finite Fields: Further Properties
    Chapter 4 Finite fields: further properties 8 Roots of unity in finite fields In this section, we will generalize the concept of roots of unity (well-known for complex numbers) to the finite field setting, by considering the splitting field of the polynomial xn − 1. This has links with irreducible polynomials, and provides an effective way of obtaining primitive elements and hence representing finite fields. Definition 8.1 Let n ∈ N. The splitting field of xn − 1 over a field K is called the nth cyclotomic field over K and denoted by K(n). The roots of xn − 1 in K(n) are called the nth roots of unity over K and the set of all these roots is denoted by E(n). The following result, concerning the properties of E(n), holds for an arbitrary (not just a finite!) field K. Theorem 8.2 Let n ∈ N and K a field of characteristic p (where p may take the value 0 in this theorem). Then (i) If p ∤ n, then E(n) is a cyclic group of order n with respect to multiplication in K(n). (ii) If p | n, write n = mpe with positive integers m and e and p ∤ m. Then K(n) = K(m), E(n) = E(m) and the roots of xn − 1 are the m elements of E(m), each occurring with multiplicity pe. Proof. (i) The n = 1 case is trivial. For n ≥ 2, observe that xn − 1 and its derivative nxn−1 have no common roots; thus xn −1 cannot have multiple roots and hence E(n) has n elements.
    [Show full text]
  • Lesson 3: Roots of Unity
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 3 M3 PRECALCULUS AND ADVANCED TOPICS Lesson 3: Roots of Unity Student Outcomes . Students determine the complex roots of polynomial equations of the form 푥푛 = 1 and, more generally, equations of the form 푥푛 = 푘 positive integers 푛 and positive real numbers 푘. Students plot the 푛th roots of unity in the complex plane. Lesson Notes This lesson ties together work from Algebra II Module 1, where students studied the nature of the roots of polynomial equations and worked with polynomial identities and their recent work with the polar form of a complex number to find the 푛th roots of a complex number in Precalculus Module 1 Lessons 18 and 19. The goal here is to connect work within the algebra strand of solving polynomial equations to the geometry and arithmetic of complex numbers in the complex plane. Students determine solutions to polynomial equations using various methods and interpreting the results in the real and complex plane. Students need to extend factoring to the complex numbers (N-CN.C.8) and more fully understand the conclusion of the fundamental theorem of algebra (N-CN.C.9) by seeing that a polynomial of degree 푛 has 푛 complex roots when they consider the roots of unity graphed in the complex plane. This lesson helps students cement the claim of the fundamental theorem of algebra that the equation 푥푛 = 1 should have 푛 solutions as students find all 푛 solutions of the equation, not just the obvious solution 푥 = 1. Students plot the solutions in the plane and discover their symmetry.
    [Show full text]
  • The Twelfth Problem of Hilbert Reminds Us, Although the Reminder Should
    Some Contemporary Problems with Origins in the Jugendtraum Robert P. Langlands The twelfth problem of Hilbert reminds us, although the reminder should be unnecessary, of the blood relationship of three subjects which have since undergone often separate devel• opments. The first of these, the theory of class fields or of abelian extensions of number fields, attained what was pretty much its final form early in this century. The second, the algebraic theory of elliptic curves and, more generally, of abelian varieties, has been for fifty years a topic of research whose vigor and quality shows as yet no sign of abatement. The third, the theory of automorphic functions, has been slower to mature and is still inextricably entangled with the study of abelian varieties, especially of their moduli. Of course at the time of Hilbert these subjects had only begun to set themselves off from the general mathematical landscape as separate theories and at the time of Kronecker existed only as part of the theories of elliptic modular functions and of cyclotomicfields. It is in a letter from Kronecker to Dedekind of 1880,1 in which he explains his work on the relation between abelian extensions of imaginary quadratic fields and elliptic curves with complex multiplication, that the word Jugendtraum appears. Because these subjects were so interwoven it seems to have been impossible to disentangle the different kinds of mathematics which were involved in the Jugendtraum, especially to separate the algebraic aspects from the analytic or number theoretic. Hilbert in particular may have been led to mistake an accident, or perhaps necessity, of historical development for an “innigste gegenseitige Ber¨uhrung.” We may be able to judge this better if we attempt to view the mathematical content of the Jugendtraum with the eyes of a sophisticated contemporary mathematician.
    [Show full text]
  • Cyclotomic Extensions
    CYCLOTOMIC EXTENSIONS KEITH CONRAD 1. Introduction For a positive integer n, an nth root of unity in a field is a solution to zn = 1, or equivalently is a root of T n − 1. There are at most n different nth roots of unity in a field since T n − 1 has at most n roots in a field. A root of unity is an nth root of unity for some n. The only roots of unity in R are ±1, while in C there are n different nth roots of unity for each n, namely e2πik=n for 0 ≤ k ≤ n − 1 and they form a group of order n. In characteristic p there is no pth root of unity besides 1: if xp = 1 in characteristic p then 0 = xp − 1 = (x − 1)p, so x = 1. That is strange, but it is a key feature of characteristic p, e.g., it makes the pth power map x 7! xp on fields of characteristic p injective. For a field K, an extension of the form K(ζ), where ζ is a root of unity, is called a cyclotomic extension of K. The term cyclotomic means \circle-dividing," which comes from the fact that the nth roots of unity in C divide a circle into n arcs of equal length, as in Figure 1 when n = 7. The important algebraic fact we will explore is that cyclotomic extensions of every field have an abelian Galois group; we will look especially at cyclotomic extensions of Q and finite fields. There are not many general methods known for constructing abelian extensions (that is, Galois extensions with abelian Galois group); cyclotomic extensions are essentially the only construction that works over all fields.
    [Show full text]