Bizarre Plants :Dictamnus the Burning Bush Dictamnus Albus Is a Member of the Rutaeceae

Total Page:16

File Type:pdf, Size:1020Kb

Bizarre Plants :Dictamnus the Burning Bush Dictamnus Albus Is a Member of the Rutaeceae Bizarre Plants :Dictamnus The burning bush Dictamnus albus is a member of the Rutaeceae. Many plants of dry locations are known to increase production of terpenes to cool leaf surfaces by terpene transpiration. Dictam, however, produces so much that it can undergo self-ignition (see burning bush stories in Bible & Koran) . It is thought that droplet formation in the leaf focuses sunlight to a temperature that ignites terpenes which burn like a gas grill using the stomates as valves. Stinking Plants Corps Flower Titan arum . with sharp points at the pollen surface. One plant produces a billion grains of pollen that can stay airborne for days spreading over an area of many miles. Affects 75 % of all allergy sufferers. Rafflesia arnoldii . Rafflesia was found in the Indonesian rain forest by an Indonesian guide working for Dr. Joseph Arnold in 1818, & named after Sir Thomas Raffles, leader of the expedition Stinking Iris Iris foetissima . It is known as "stinking" because some people find the smell of its leaves unpleasant when crushed or bruised, an odour that has been described as "beefy" Stinking Hellebore Helleborus foetidus , known variously as stinking hellebore , dungwort , and bear's foot , is in Ranunculaceae, native of the mountainous regions of Central and Southern Europe Skunk cabbage Symphocarpus foetidus is one of the many stinky plants in its family the Araeceae. The burping skunk tree is a member of the Burseraceae, related to frankincense ( Boswellia ) and myrrh (Commiphora ) but unlike them it stinks (skunk tree). The elephant tree Bursera microphylla is native to Northern Mexico, Southern California and Arizona, especially desert regions. It reaches 5 m in height. The foliage is made up of long, legume-like leaves which are composed of paired leaflets. It flowers in rounded yellow buds which open into small, star-shaped white or cream flowers When you tug on a leaf it burps and emits a fine spray over 50 cmm distance that is foul fetid smelling caused by amines Buddha’s Hand Citrus medica Buddha’s hand is a citrus fruit popular in China and Japan for its strong fragrance. It fails as a fruit since it’s pretty much all zest and no pulp, but it has other uses, Buddha's hand , Citrus medica var. sarcodactylis (also known as fingered citron ), is a fragrant citron variety in the Rutaeceae whose fruit is segmented into finger-like sections. The origin of Buddha's hand plant is traced back to Northeastern India. Chinese Fleece Flower Fallopia ssp. The Chinese Fleece flower is in the genus Fallopia in the family Polygoniaeceae, a relative of the infamous Japanese Knotweed Fallopia japonica. The Chinese use this plant in their traditional medicine for kidney health, strong bones and hair restoration, and as a mild laxative, and it’s.. Hey, wait a second… “ I tell you, … it is a sign, yeah, ah … it’s an omen!” The end of the world is close, oh Rose Okay, weird. It’s a root that looks like a little dude. But that’s a rare, onetime fluke, right? It’s not like that’s what this species typically looks like or anything?? Roots making a perfect couple made headlines in 2006 …. Doll’s Eyes Actaea pachypodia Actaea pachypoda (Doll's-eyes , White Baneberry ) is a herbaceous perennial plant in the family Ranunculaceae, native to eastern North America. The berries contain cardiogenic toxins which can have an immediate sedative effect on human cardiac muscle tissue, and are the most poisonous part of the plant. Ingestion of the berries can lead to cardiac arrest and death. The Doll’s eye plant, also known by the equally unsettling name “white baneberry.” Just in case you were actually thinking of eating this thing, those eyeballs are highly poisonous . Phototoxic Plants – Blister Bush Peucedanum galbanum , Blister Bush, is a plant in the family Apiaceae, Like other members of the family like Heracleum or cow parsnip or Angelica touching it can cause blistering if the irritant chemicals are exposed to sunlight Blister bush, with its greenish-yellow umbrella-shaped flowers, is perfectly harmless , until you touch it & a cocktail of psoralen, xanthotoxin, bergapten and other chemicals are brushed off the plant’s leaves onto your skin . Exposure of the chemicals to sunlight triggers from a mild irritation to severe blistering requiring weeks to heal . Three days later a red-purple rash and large burn-like welts appear on your skin. Blister bush isn’t the only plant that can cause phototoxic reactions. Check out Amy Stewart Wicked Plants: The Weed that Killed Lincoln’s Mother and Other Botanical Atrocities , Unusual Poisons The slobber weed : Pilocarpus pennatifolius stimulates the salivary glands much more than the betel nut Areca catechu (the nut causing red saliva that stains the street of Asia). Here the secretion becomes so powerful that it interferes with speech (ideal for political opponents!). Unfortunately, the drooling (up to 2 pints) is followed by nausea & dizziness. Drooling is also caused by the pencil tree extract. Pilocarpine Pilocarpus : approx13 (an alkaloid used for glaucoma) is used to treat dry mouth & species in the Rutaceae, also to stimulate sweat glands. from the tropics of S Amer. The Suicide Tree: Cerbera odollam is a relative of Madagascan arrow poison tree Cerbera tanghin ( nuts that are used in trials by ordeal). The tree grows at the SW coast of India and has white jasmine-scented flowers. The nuts look like green mangos & the white meat inside is full of cardiac glycosides that stop the heart of a human within 4 hours. Widows & other religiously inclined people use these nuts (mashed nut meat with brown sugar) as their last meal. Also used to poison people since it has no bad taste & a delayed action. Bizarre Plants Monstrous + stinky (amines): Amorphophallus titanum , Rafflesia arnoldii , Aristolochia grandiflora (Humboldt), Welwitschia mirabilis , Victoria amazonica , Aztecs’ handflower tree Cheirostemon platanoides (related to Cocoa tree, Humboldt), Baobab (sausage) trees Adansonia , boogam trees Idria columnaris (desert in Baja California), elephant or skunk tree Bursera microphylla (Baja California; tug on leaf & it burps out a foul smelling, fetid spray over a distance of 50 cm), squirting cucumber Ecballium elaterum shoots fruit as a rocket over 3 m distance, slimy mucilage with seeds sticks to the one who touched the fruit WB Emboden(1974): Bizarre Plants; magical, monstrous, mythical. MacMillan P. NY Terpenes and air pollution It is generally accepted that the forests (called “lungs of the planet”) clean the air of pollution, add oxygen & remove CO 2 to restore an air that is pleasant to breath. The opposite would be the smoky & stinky air of industrial places and cities. However, there is an exception to this rule as observed from the forests of the “ Smoky Mountains”. Exception The production of volatile terpenes is highest in the early fall. The terpenes are exuded through the stomates & often polymerize under the influence of the UV of the sun, creating the blue haze the Smokies are famous for . Unknowns of Water: Water storage in Terminalia trees A wikipedia picture file from October 15 th 2007 shows this picture for Terminalia tomentosa. Do not try this at home or with other trees! Terminalia tomentosa has a remarkable attribute: some members of the species store water in the dry season. A survey conducted at Bandipur National Park, India showed that there is a girth dependent increase in the frequency and amount of water storage. Mechanism and ecophysiological significance of this water storage are not known Terminalia elliptica has remarkably large-pored vessels. The pictures on the right suggests a large diameter that is no longer able to hold water in by capillary action . Higher plants invented propagation units called seeds A seed is a small, but complete embryonic plant enclosed in a seed coat , usually with some stored food (exception the smallest orchid seeds). It is the product of the ripened female ovule and the fertilizing male pollen and hence a product of sexual propagation with its genes-mixing effect increasing the genetic diversity of the offspring. Lower plants have a propagation unit called spore. A spore i s a reproductive unit for dispersal and surviving unfavorable conditions. Spores form part of the life cycles of many bacteria, algae, fungi and lower plants like mosses and ferns. The difference between spores and seeds is that spores have very little stored food Fern sporangia called sori are resources compared with seeds. packages containing many spores Bizarre Plants: the largest & weirdly shaped seed Maldives or Seychelle Islands : source of unusual seed coco-de-mer seeds first mistaken as eggs of griffins (Georg Eberhard Rumpf 1682 named it Cocus maldivicus): most important aphrodisiac & antidote like the benzoar (ideal goblet material). Rudolf II German Emperor (1650) payed 4000 florins = 5000 gold thalers (dollars) for a seed 1742 French landed from Mauritius, 1768 that the islands interior was explored & confirmed as the source of coco-de-mer, the Seychelles’ nut Lodoicea palms (daughter of Troy’s king Priam) difficult to germinate ; first Kew RoyalGarden plants were pre-germinated in Seychelles & then grown in 1854 , hurrah ==> a yellow horizontal shoot projects parallel to soil surface for 3 m before horizontal shoot develops & root grows. Horizontal shoot rots away & seedling cannot be traced back to seed . “Surely, Sir, it is Jelly-like endosperm of nuts is a delicacy for the rich. Priam’s daughter” Why are bean seeds so special? We know from the labs of Botany I that Phaseolus or the now so common garden beans have already a primary leaf showing in their dormant embryos inside the seed. This is truly unusual. Pythagoras – one of the first European vegetarians did not only abstain from meat, he didn’t eat beans either (the bean of his time’s Europe was not the American Phaseolus but Vicia faba – the broad bean).
Recommended publications
  • Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia
    Available online at http://journals.usamvcluj.ro/index.php/promediu ProEnvironment ProEnvironment 11 (2018) 143-157 Review The Rights of Alive – Protecting the Natural Endangered Heritage in Romania, Croatia, Poland and Slovenia CIOANCĂ Lia-Maria1*, Luminița UJICĂ2, Marijana MIKULANDRA3, Ryszard SOŁTYSIK4, Maja ČERNE5 1Babeș-Bolyai University Cluj-Napoca, University Extension Bistrița, Andrei Mureşanu st., no. 3-5, Romania 2High Scool with Sportive Program Bistrița, Calea Moldovei no. 18. Romania 3OŠ Tina Ujevi Osnovna škola Tina Ujevića Koturaška cesta 75 10000 Zagreb, Croatia 4Zespół Szkół Nr1 w Humniskach, 36 – 206, Huminska 264, Poland 5OŠ Rogaška Slatina, Kidričeva ulica 24, 3250 Rogaška Slatina Slovenia Received 23 July 2018; received and revised form 18 September 2018; accepted 25 September 2018 Available online 30 September 2018 Abstract This article deals with the impact of destructive actions of human population on natural world. As a consequence of relying on non-renewable energy sources and reckless encroachment on natural habitats a lot of plant and animal species have become extinct and more and more species are getting endangered. Thus celebrating biodiversity and solidarity for all life forms, from the tiniest one to the most complex eco-systems, has been in the centre of our attention and operational activities. Keywords: durable development, ecology, endangered species. 1. Introduction Within the massive destruction of forests and forest climate, we witness significant changes, Just as the man has passed from the stage of sometimes radical of the environment. For the animal hunter and collector up to animal raiser and farmer, and plants which have survived through a long period the natural vegetation has increasingly been subject of adaptation, a new difficult era starts again.
    [Show full text]
  • FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
    ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • 2020 Conservation Outlook Assessment
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Vallée de Mai Nature Reserve - 2020 Conservation Outlook Assessment Vallée de Mai Nature Reserve 2020 Conservation Outlook Assessment SITE INFORMATION Country: Seychelles Inscribed in: 1983 Criteria: (vii) (viii) (ix) (x) In the heart of the small island of Praslin, the reserve has the vestiges of a natural palm forest preserved in almost its original state. The famouscoco de mer, from a palm-tree once believed to grow in the depths of the sea, is the largest seed in the plant kingdom. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 01 Dec 2020 GOOD WITH SOME CONCERNS The protection and management of Vallée de Mai Nature Reserve is generally effective and is supported by a national legal framework, although there is a lack of a national protected area system. The management authority is very competent and is effectively implementing science-based programs and outreach and education schemes. However, the future of the site’s key value, the coco de mer palm, is still under threat from illegal collection and over-exploitation for its nuts and kernel. The site's management has reduced both commercial harvesting and illegal collection of nuts based on scientific research, although the conservation impacts of these requires further assessment. The National Government and the managing agency are implementing targeted conservation measures and aim to tighten law and legislation to protect the species, which include an increase in penalty for poaching of coco de mer nuts. Current priorities for the Nature Reserve include continuation and expansion of the outreach and education programme; promoting an increase in the size and connectivity of Vallée de Mai within the Praslin Island landscape, with a legally designated buffer zone; increasing anti-poaching; and continuing to control the harvesting of coco de mer seeds while expanding a program of replanting seedlings.
    [Show full text]
  • Rj FLORIDA PLANT IMMIGRANTS
    rj FLORIDA PLANT IMMIGRANTS OCCASIONAL PAPER No. 15 FAIRCHILD TROPICAL GARDEN THE INTRODUCTION OF THE BORASSUS PALMS INTO FLORIDA DAVID FAIRCHILD COCONUT GROVE, FLORIDA May 15, 1945 r Fruits and male flower cluster of the Borassus palm of West Africa (Borassus ethiopum). The growers of this palm and its close relative in Ceylon are fond of the sweetish fruit-flesh and like the mango eaters, where stringy seedlings are grown, they suck the pulp out from the fibers and enjoy its sweetish flavor. The male flower spikes were taken from another palm; a male palm. Bathurst, Gambia, Allison V. Armour Expedition, 1927. THE INTRODUCTION OF THE BORASSUS PALMS INTO FLORIDA DAVID FAIRCHILD JL HE Borassus palms deserve to be known by feet across and ten feet long and their fruits the residents of South Florida for they are land- are a third the size of average coconuts with scape trees which may someday I trust add a edible pulp and with kernels which are much striking tropical note to the parks and drive- appreciated by those who live where they are ways of this garden paradise. common. They are outstanding palms; covering vast areas of Continental India, great stretches They attain to great size; a hundred feet in in East and West Africa and in Java, Bali and height and seven feet through at the ground. Timor and other islands of the Malay Archi- Their massive fan-shaped leaves are often six pelago. &:••§:• A glade between groups of tall Palmyra palms in Northern Ceylon. The young palms are coming up through the sandy soil where the seeds were scattered over the ground and covered lightly months before.
    [Show full text]
  • Colonial Garden Plants
    COLONIAL GARD~J~ PLANTS I Flowers Before 1700 The following plants are listed according to the names most commonly used during the colonial period. The botanical name follows for accurate identification. The common name was listed first because many of the people using these lists will have access to or be familiar with that name rather than the botanical name. The botanical names are according to Bailey’s Hortus Second and The Standard Cyclopedia of Horticulture (3, 4). They are not the botanical names used during the colonial period for many of them have changed drastically. We have been very cautious concerning the interpretation of names to see that accuracy is maintained. By using several references spanning almost two hundred years (1, 3, 32, 35) we were able to interpret accurately the names of certain plants. For example, in the earliest works (32, 35), Lark’s Heel is used for Larkspur, also Delphinium. Then in later works the name Larkspur appears with the former in parenthesis. Similarly, the name "Emanies" appears frequently in the earliest books. Finally, one of them (35) lists the name Anemones as a synonym. Some of the names are amusing: "Issop" for Hyssop, "Pum- pions" for Pumpkins, "Mushmillions" for Muskmellons, "Isquou- terquashes" for Squashes, "Cowslips" for Primroses, "Daffadown dillies" for Daffodils. Other names are confusing. Bachelors Button was the name used for Gomphrena globosa, not for Centaurea cyanis as we use it today. Similarly, in the earliest literature, "Marygold" was used for Calendula. Later we begin to see "Pot Marygold" and "Calen- dula" for Calendula, and "Marygold" is reserved for Marigolds.
    [Show full text]
  • Alma Mater Studiorum Università Degli Studi Di Bologna Pollination
    Alma Mater Studiorum Università degli studi di Bologna Faculty of Mathematical, Physical and Natural Sciences Department of Experimental Evolutionary Biology PhD in Biodiversity and Evolution BIO/02 Pollination ecology and reproductive success in isolated populations of flowering plants: Primula apennina Widmer, Dictamnus albus L. and Convolvulus lineatus L. Candidate: Alessandro Fisogni PhD Coordinator: PhD Supervisor: Prof. Barbara Mantovani Marta Galloni, PhD Cycle XXIII 2010 TABLE OF CONTENTS 1. Introduction ................................................................................................7 1.1 Plant breeding systems ..................................................................................7 1.1.1 Distyly .......................................................................................................9 1.1.2 Resource allocation to sexual functions ..............................................10 1.2 Plant – pollinator interactions .......................................................................12 1.2.1 Floral rewards ........................................................................................12 1.2.2 Pollinators behaviour and insect-mediated geitonogamy ..................13 1.2.2 Pollen limitation and reproductive effort ..............................................14 1.3 Isolated populations, habitat fragmentation and demographic consequences ...........................................................................................................16 2. General purposes .....................................................................................19
    [Show full text]
  • A New Genus for Trichosanthes Amara, the Caribbean Sister Species of All Sicyeae
    Systematic Botany (2008), 33(2): pp. 349–355 © Copyright 2008 by the American Society of Plant Taxonomists Linnaeosicyos (Cucurbitaceae): a New Genus for Trichosanthes amara, the Caribbean Sister Species of all Sicyeae Hanno Schaefer, Alexander Kocyan, and Susanne S. Renner1 Systematic Botany, Department of Biology, University of Munich (LMU), Menzinger Strasse 67, D-80638 Munich, Germany 1Author for correspondence ([email protected]) Communicating Editor: Thomas A. Ranker Abstract—The Old World genus Trichosanthes has flowers with strikingly fringed petals, and Linnaeus therefore placed a species from Hispaniola that he only knew from an illustration (showing such fringed petals) in that genus. The species remained hidden from the attention of subsequent workers until acquiring new relevance in the context of molecular-biogeographic work on Cucurbitaceae. Based on molecular data, it is the sister to all Sicyeae, a New World clade of about 125 species in 16 genera. We here place this species in a new genus, Linnaeosicyos, describe and illustrate it, and discuss its phylogenetic context using molecular and morphological data. Judging from Dominican amber, elements of the flora of Hispaniola date back 15–20 my, and the occurrence on the island of at least five endemic species of Cucurbitaceae (Linnaeosicyos amara, Melothria domingensis, Sicana fragrans, and the sister species Anacaona sphaerica and Penelopeia suburceolata) points to its long occupation by Cucurbitaceae. Keywords—Flora of Hispaniola, fringed petals, lectotypification, Linnaeus, Plumier. With about 100 accepted species, Trichosanthes L. is the newly available collections, and discuss the implications of a largest genus of the family Cucurbitaceae (Rugayah and De Hispaniola taxon being sister to the Sicyeae.
    [Show full text]
  • Vallee De Mai Nature Reserve Seychelles
    VALLEE DE MAI NATURE RESERVE SEYCHELLES The scenically superlative palm forest of the Vallée de Mai is a living museum of a flora that developed before the evolution of more advanced plant families. It also supports one of the three main areas of coco-de-mer forest still remaining, a tree which has the largest of all plant seeds. The valley is also the only place where all six palm species endemic to the Seychelles are found together. The valley’s flora and fauna is rich with many endemic and several threatened species. COUNTRY Seychelles NAME Vallée de Mai Nature Reserve NATURAL WORLD HERITAGE SITE 1983: Inscribed on the World Heritage List under Natural Criteria vii, viii, ix and x. STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following Statement of Outstanding Universal Value at the time of inscription Brief Synthesis Located on the granitic island of Praslin, the Vallée de Mai is a 19.5 ha area of palm forest which remains largely unchanged since prehistoric times. Dominating the landscape is the world's largest population of endemic coco-de- mer, a flagship species of global significance as the bearer of the largest seed in the plant kingdom. The forest is also home to five other endemic palms and many endemic fauna species. The property is a scenically attractive area with a distinctive natural beauty. Criterion (vii): The property contains a scenic mature palm forest. The natural formations of the palm forests are of aesthetic appeal with dappled sunlight and a spectrum of green, red and brown palm fronds.
    [Show full text]
  • A Quarter Century of Pharmacognostic Research on Panamanian Flora: a Review*
    Reviews 1189 A Quarter Century of Pharmacognostic Research on Panamanian Flora: A Review* Authors Catherina Caballero-George 1, Mahabir P. Gupta2 Affiliations 1 Institute of Scientific Research and High Technology Services (INDICASAT‑AIP), Panama, Republic of Panama 2 Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Panama, Republic of Panama Key words Abstract with novel structures and/or interesting bioactive l" bioassays ! compounds. During the last quarter century, a to- l" Panamanian plants Panama is a unique terrestrial bridge of extreme tal of approximately 390 compounds from 86 l" ethnomedicine biological importance. It is one of the “hot spots” plants have been isolated, of which 160 are new l" novel compounds and occupies the fourth place among the 25 most to the literature. Most of the work reported here plant-rich countries in the world, with 13.4% en- has been the result of many international collabo- demic species. Panamanian plants have been rative efforts with scientists worldwide. From the screened for a wide range of biological activities: results presented, it is immediately obvious that as cytotoxic, brine shrimp-toxic, antiplasmodial, the Panamanian flora is still an untapped source antimicrobial, antiviral, antioxidant, immunosup- of new bioactive compounds. pressive, and antihypertensive agents. This re- view concentrates on ethnopharmacological uses Supporting information available at of medicinal plants employed by three Amerin- http://www.thieme-connect.de/ejournals/toc/ dian groups of Panama and on selected plants plantamedica Introduction are a major component of the Panamanian tropi- ! cal forest. Mosses abound in moist cloud forests as Medicinal plants remain an endless source of new well as other parts of the country.
    [Show full text]
  • Phylogenetic Relationships in the Order Cucurbitales and a New Classification of the Gourd Family (Cucurbitaceae)
    Schaefer & Renner • Phylogenetic relationships in Cucurbitales TAXON 60 (1) • February 2011: 122–138 TAXONOMY Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae) Hanno Schaefer1 & Susanne S. Renner2 1 Harvard University, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. 2 University of Munich (LMU), Systematic Botany and Mycology, Menzinger Str. 67, 80638 Munich, Germany Author for correspondence: Hanno Schaefer, [email protected] Abstract We analysed phylogenetic relationships in the order Cucurbitales using 14 DNA regions from the three plant genomes: the mitochondrial nad1 b/c intron and matR gene, the nuclear ribosomal 18S, ITS1-5.8S-ITS2, and 28S genes, and the plastid rbcL, matK, ndhF, atpB, trnL, trnL-trnF, rpl20-rps12, trnS-trnG and trnH-psbA genes, spacers, and introns. The dataset includes 664 ingroup species, representating all but two genera and over 25% of the ca. 2600 species in the order. Maximum likelihood analyses yielded mostly congruent topologies for the datasets from the three genomes. Relationships among the eight families of Cucurbitales were: (Apodanthaceae, Anisophylleaceae, (Cucurbitaceae, ((Coriariaceae, Corynocarpaceae), (Tetramelaceae, (Datiscaceae, Begoniaceae))))). Based on these molecular data and morphological data from the literature, we recircumscribe tribes and genera within Cucurbitaceae and present a more natural classification for this family. Our new system comprises 95 genera in 15 tribes, five of them new: Actinostemmateae, Indofevilleeae, Thladiantheae, Momordiceae, and Siraitieae. Formal naming requires 44 new combinations and two new names in Cucurbitaceae. Keywords Cucurbitoideae; Fevilleoideae; nomenclature; nuclear ribosomal ITS; systematics; tribal classification Supplementary Material Figures S1–S5 are available in the free Electronic Supplement to the online version of this article (http://www.ingentaconnect.com/content/iapt/tax).
    [Show full text]