Mining and Biodiversity: Rehabilitating Coal Mine Sites

Total Page:16

File Type:pdf, Size:1020Kb

Mining and Biodiversity: Rehabilitating Coal Mine Sites feature article Mining and Biodiversity Rehabilitating Coal Mine Sites John Rolfe The money currently being spent on environmental rehabilitation at mine sites could be better used to meet other goals such as the promotion of biodiversity. oncerns about environmental impacts have discussed below. These differences raise a number of become widespread over the past four decades. questions about the expectations of the Australian C In most of regional Australia, these concerns have community and governments regarding standards of focussed on the activities of the agricultural and mining environmental protection and the approaches to achieve industries, as these are often the only economic activities it. Among them are the broad issues of whether direct in many regions. regulation remains the best way to control mining The mining industry affects only a very small activities, the extent to which flexible offsets are allowed, proportion of Australia’s landmass (less than 0.1%) but and whether different standards should be allowed across the environmental impacts can be very intense on each different populations. These issues are discussed with site without management. Agriculture has very small scale references to the coal industry. impacts but over large areas, so that the cumulative effects of some environmental impacts, such as salinity risks, can The black coal industry also be substantial. Direct regulation has been the Coal mining is a major industry in Australia, with most dominant approach to addressing and preventing activity located in the Hunter Valley of New South Wales environmental problems in the mining industry, while in and the Bowen Basin in central Queensland. Coal accounts agriculture the levels of regulation tend to be low. for approximately 29% of the value of mineral production The mining industry has become a greater contributor in Australia, and around 11% of the total value of to the Australian economy and to exports than the merchandise exports. To achieve efficiencies of scale, mines agricultural sector. Minerals and metals, for example, are usually large operations, with many producing more account for around 31% of national exports, while than three million tonnes of coal a year. In 1997, Australia agricultural produce accounts for some 20%. With produced 271 million tonnes of coal, and overall approximately one-third of the workforce of agriculture, production has continued to rise. Most coal—72% in and higher growth rates, mining can be characterised as 1997—is produced from open cut mines, but many of an industry with relatively high returns per employee. the new developments are in underground mines using These economic strengths partly explain some longwall equipment. differences in public funding for environmental issues. There are environmental tradeoffs associated with coal The mining industry is routinely expected to pay for its mining, particularly with the open cut mines where large environmental costs, but the public purse is usually opened areas of overburden may need to be removed to expose when it comes to solving problems caused by agriculture. the underlying coal seams. Environmental impacts can The current initiatives to cap bores in the Great Artesian be classified into three broad categories: air pollution and basin and to redress salinity problems across Australia are examples of the latter. There are some very good economic and institutional John Rolfe is Research Coordinator at the Emerald campus reasons why such broad differences exist, and these are of Central Queensland University. 8 MINING AND BIODIVERSITY noise, water quality flowing off the mine site, and regulation and government standards arising from the environmental losses at the mine site. politics surrounding environmental issues at that time. By the 1970s, most mining companies in Australia were Mining companies had a poor public image, and were obligated under their mining lease to address air and water often viewed as being driven by profits and exploiting the pollution concerns, and to rehabilitate mine sites. There natural environment.1 The large size of many companies has since been major progress on all fronts. In the Bowen and foreign ownership issues reinforced some negative basin, for example, most new townships have been built images. Mining companies in turn often accepted the some distance from the mine sites to avoid any noise additional costs of regulation because they wanted impacts. Air pollution and water quality issues are certainty at times of major growth. minimised to the extent that most questions about To a large extent, direct regulation has been very environmental impacts are focused on site rehabilitation. successful in ensuring that mining companies addressed Mining companies routinely rehabilitate their worked environmental issues. The coal industry, for example, has areas, although it is usually impractical to completely a good record in complying with the conditions that have restore areas to their previous landform and condition. been set by successive governments, and there are many Site rehabilitation has usually examples of successful rehabilitation involved returning the land to occurring. agricultural use. In the open cut In the Bowen basin But this has come at a cost. In the mines, the spoil piles need to be in central Queensland, Bowen basin, rehabilitation costs reshaped to fill in voids and mirror coal companies are spending have often been around $40,000 per more natural landforms, and then hectare,2 although these may be lower contoured and topdressed with up to 200 times the depending on the mine site and topsoil before pasture or vegetation value of grazing land on schedule of soil movement. By is planted. comparison, prices for adjoining rehabilitation purposes. grazing land are usually in the $200– Regulating rehabilitation $300 per hectare range. Between The preferred approach to controlling environmental 1990 and 1996, 11,000 hectares of mined areas were problems in the mining industry has been one of direct rehabilitated in Queensland, largely in the coal industry.3 regulation by government. There are a number of reasons In economic terms, the downside of direct regulatory for this relating to the size and specific location of approaches is that environmental outcomes are often set environmental impacts. As past disasters have shown, with little regard for the costs and benefits incurred by failure to consider environmental consequences can have different firms in achieving them. For example, similar very substantial and long term effects. The bare hills goals of rehabilitation tended to be set for open-cut coal around Queenstown in Tasmania and the scars of coal mining operations in the Hunter Valley of New South mining at Mt Leigh in South Australia are a case in point. Wales and the Bowen basin of Central Queensland. Both The large potential risks associated with uranium mines were required to be returned to agriculturally productive adjacent to Kakadu National Park, or at other sites where uses, mostly by the establishment of pasturelands.4 Such there may be downstream effects from air and water rehabilitation is very expensive, particularly the reshaping pollution, are other examples. of the spoil piles. The structure of the mining industry makes direct This can be seen from the Bowen basin example, where regulation relatively easy. It is a large industry comprised coal companies are spending up to 200 times the value of a few companies operating at a limited number of of grazing land on rehabilitation purposes. The locations. As a result, direct monitoring and verification incongruous nature of such expenditure is highest at mines are relatively unproblematic. The profitability of the coal where the rehabilitated areas are probably unsuitable for industry (relative to other sectors of the Australian livestock grazing economy) has also made it possible for companies to meet in any case. This is because of the poor characteristics of the costs of complying with environmental standards. the underlying spoil, the limited amount of topsoil available, the elevation and slope of the final landscape, Misguided regulations and the harsh climatic conditions of the region.5 At many The pattern of environmental regulation was set for mine sites, the regulatory imperative to rehabilitate sites mining in the 1960s and 1970s, with the focus on direct for agricultural use appears to have been misguided. Summer 2000–2001 9 MINING AND BIODIVERSITY Flexible tradeoffs Alternative rehabilitation strategies To evaluate the overall value of mine site rehabilitation, it The regulatory approach to coal mine rehabilitation has is normal to weigh up the benefits and costs of different generated three broad deficiencies. First, there are no clear options, even though some of these may be difficult to guidelines for determining what level of rehabilitation and compare. other environmental impacts are demanded by the general It is clear that zero rehabilitation is not an option, community. Second, it is not clear what the benefits of particularly at some of the mines in the Hunter Valley different rehabilitation options are relative to the costs, where there are major aesthetic and landscape impacts. In and, third, it is not clear that rehabilitation should be the addition, some degree of rehabilitation is normally major focus of environmental resources within local necessary to avoid off-site impacts with issues such as water regions. Each of these deficiencies has been addressed by quality. industry and government in recent years, but much more Yet it is also clear that full restoration of landscapes is can be achieved. not an option. The extremely high costs involved in In Queensland, mining operations are required to moving from rehabilitation to full restoration preclude prepare an Environmental Management Overview this as a viable option.6 At some point between these two Strategy (EMOS) which covers the life of a mine. A Plan extremes, companies and regulators must therefore decide of Operations is also required, which focusses on specific what level of rehabilitation is necessary to meet community operations in shorter time frame (one to five years).
Recommended publications
  • Western Downs
    Image courtesy of Shell's QGC business “We have a strong and diverse economy that is enhanced by the resource sector through employment, Traditional Resources - infrastructure and Western Downs improved services." The Western Downs is known as the “Queensland has the youngest coal- Paul McVeigh, Mayor Energy Capital of Queensland and is fired power fleet in Australia including Western Downs now emerging as the Energy Capital of the Kogan Creek Power Station, and an Regional Council. Australia. abundance of gas which will ensure the State has a reliable source of base load This reputation is due to strong energy for decades to come.” investment over the past 15 years by the Energy Production Industry - Ian Macfarlane, CEO, Mining is the second most productive (EPI) into large scale resource sector Queensland Resources Council industry in the Western Downs after developments in coal seam gas (CSG) As at June 2018, the Gross Regional construction, generating an output of 2 and coal. Product (GRP) of the Western Downs 2.23 billion in 2017/18. Gas and coal-fired power stations region has grown by 26.3% over a In 2017/18, the total value of local sales 2 feature prominently in the region with twelve-month period to reach $4 billion. was $759.2 million. Of these sales, oil a total of six active thermal power The resource industry paid $58 million and gas extraction was the highest, at 2 stations. in wages to 412 full time jobs (2017-18). 3 $615.7 million. Kogan Creek Power Station is one of The industry spent $136 million on In 2017/18 mining had the largest Australia's most efficient and technically goods and services purchased locally total exports by industry, generating advanced coal-fired power stations.
    [Show full text]
  • Bowen Basin Coalfields of Central Queensland (Figure 1)
    The South African Institute of Mining and Metallurgy International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering John V Simmons and Peter J Simpson COMPOSITE FAILURE MECHANISMS IN COAL MEASURES ROCK MASSES – MYTHS AND REALITY John V Simmons Sherwood Geotechnical and Research Services Peter J Simpson BMA Coal Pty Ltd Central Queensland Office 1. INTRODUCTION Excavated slopes in open pit coal mines are designed to be as steep as possible consistent with stability and safety requirements. Slope failures occur for many reasons, including oversteepening. This paper is concerned with slope design and excavation experience in the Bowen Basin coalfields of central Queensland (Figure 1), Bowen Basin Coalfields Figure 1 Location of Bowen Basin open pit coal mines in eastern Australia Page 31 The South African Institute of Mining and Metallurgy International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering John V Simmons and Peter J Simpson but it deals with many issues that are common to open pit coal mining generally. After more than three decades of operational experience and technological advances in the Bowen Basin mines, sudden rock slope failures still occur in circumstances where personnel and equipment are at extreme risk. The circumstances of a selection of these sudden failures are reviewed in this paper, and some concerning trends emerge. Classical structurally-controlled slope failures occur quite rarely in the Bowen Basin, but rock mass structures appear to exert important controls on the sudden failures that are more widely experienced. The term "composite" is used in this paper to describe failures involving combinations of intact rock material fracture and shear movement on defects (Baczynski, 2000).
    [Show full text]
  • Petroleum Plays of the Bowen and Surat Basins
    Petroleum Plays of the Bowen and Surat basins Alison Troup* Neal Longdon Justin Gorton Geological Survey of Queensland Geological Survey of Queensland Geological Survey of Queensland Level 3, 1 William Street, Brisbane Level 3, 1 William Street, Brisbane Level 3, 1 William Street, Brisbane QLD, 4000 QLD, 4000 QLD, 4000 [email protected] [email protected] [email protected] *presenting author asterisked SUMMARY The plays of the Bowen and Surat basins consist of conventional structural plays along major regional structures and depositional platforms, most of which have some stratigraphic component. These can be subdivided into three main regions: the eastern and western flanks of the Taroom Trough, and the Denison Trough. Coal seam gas is found in fairway zones within the Permian coals of the Bowen Basin, which can be subdivided into two main fairways: structurally associated plays in the southern Bowen Basin, and a tighter play in the northern Bowen Basin. Coal seam gas is also found along a broad fairway in the Walloon Coal Measures of the Surat Basin. Recent exploration for new targets has highlighted potential for tight gas in the deeper sections of the Bowen Basin, though further evaluation is required. More speculative plays within the region include tight gas within potential, but untested targets in the deeper sections of the Denison Trough. Key words: petroleum, petroleum exploration, Queensland, Bowen Basin, Surat Basin INTRODUCTION A petroleum play is an exploration concept that groups fields together based on similar characteristics, generally lithological or structural, that can be applied at regional or local scales.
    [Show full text]
  • BMA Bowen Basin Coal Growth Project Initial Advice Statement June 2008
    BMA Bowen Basin Coal Growth Project Initial Advice Statement June 2008 BMA Bowen Basin Coal Growth Project – Initial Advice Statement Contents 1 Introduction 3 1.1 Project Background and Location 3 1.2 The Proponent 4 1.3 Project Need 4 1.4 Purpose and Scope 5 2 Project Description 8 2.1 Daunia Mine 8 2.1.1 Mineral Resource 8 2.1.2 Mining Operations 12 2.1.3 Supporting Site Infrastructure 12 2.1.4 Coal Handling and Processing Activities 13 2.1.5 Mine Waste Management 13 2.1.6 Workforce 13 2.1.7 Operational Land and Tenure 14 2.1.8 Environmental Authorities 14 2.2 Caval Ridge Mine 14 2.2.1 Mineral Resource 15 2.2.2 Mining Operations 18 2.2.3 Supporting Site Infrastructure 18 2.2.4 Coal Handling and Processing Activities 19 2.2.5 Mine Waste Management 20 2.2.6 Workforce 20 2.2.7 Operational Land and Tenure 20 2.2.8 Environmental Authorities 20 2.3 Goonyella Riverside Mine Expansion 22 2.3.1 Mineral Resource 22 2.3.2 Mining Operations 26 2.3.3 Supporting Site Infrastructure 28 2.3.4 Coal Handling and Processing Activities 28 2.3.5 Workforce 28 2.3.6 Operational Land and Tenure 29 2.3.7 Environmental Authorities 29 2.4 Airport Development 29 3 Existing Environment and Potential Impacts 31 3.1 Daunia Mine 31 3.1.1 Surface Water 31 3.1.2 Groundwater 31 C:\Hum_Temp\BMA_KM-#5858325-v2-BMA_Bowen_Basin_Growth_Project_Final_IAs.DOC PAGE i Rev 2 BMA Bowen Basin Coal Growth Project – Initial Advice Statement 3.1.3 Land Resources 32 3.1.4 Regional Ecosystems 32 3.1.5 Significant Flora and Fauna 33 3.1.6 Noise and Vibration 34 3.1.7 Air Quality 34 3.1.8
    [Show full text]
  • Bowen and Galilee Basins Non–Resident Population Projections, 2020 to 2026
    Queensland Government Statistician’s Office Bowen and Galilee Basins non–resident population projections, 2020 to 2026 Introduction The resource sector in regional Queensland utilises fly-in/fly-out and Figure 1 Bowen and Galilee Basins drive-in/drive-out (FIFO/DIDO) workers as a source of labour supply. These non-resident workers live in the regions only while on-shift (refer to Notes, page 12). The Australian Bureau of Statistics’ (ABS) official population estimates and the Queensland Government’s population projections for these areas only include residents. To support planning for population change, the Queensland Government Statistician’s Office (QGSO) publishes annual non–resident population estimates and projections for selected resource regions. This report provides a range of non–resident population projections for local government areas (LGAs) in the Bowen and Galilee Basin regions (Figure 1), from 2020 to 2026. The projection series represent the estimated non-resident populations associated with existing resource operations and future projects in the region. Projects are categorised according to their standing in the approvals pipeline, including stages of the environmental impact statement (EIS) process, and progress towards achieving financial close. Series A is based on existing operations, projects under construction and approved projects that have reached financial close. Series B, C and D projections are based on projects that are at earlier stages of the approvals process. The projections in this report were In this publication, the Bowen Basin produced in February 2020 and do not consider impacts of the comprises the LGAs of Banana (S), Central COVID-19 pandemic on the non–resident population.
    [Show full text]
  • Environmental Impact Statement
    ENVIRONMENTAL IMPACT RED HILL STATEMENT MINING LEASE Section 14 Transport Section 14 Transport 14.1 Description of Environmental Values This section of the Red Hill Mining Lease Environmental Impact Statement (EIS) responds to the requirements related to the management of traffic and transport, as outlined in the Coordinator- General’s Terms of Reference (TOR). The transport assessment investigates the potential impacts on the safety and efficiency of the road, rail, air and sea transport network servicing the Red Hill Mining Lease area. Further information is provided in Appendix N. This transport assessment is contained to the potential future GRM incremental expansion and the RHM underground expansion option. This assessment does not include the proposed extension to the BRM (Broadmeadow extension), as the extension will not intensify existing activities within BRM, the existing BRM workforce will complete the work associated with the extension and no additional infrastructure is proposed. 14.2 Existing Conditions 14.2.1 Road Network To inform the Road Impact Assessment (Appendix N), an inspection of the existing road network was undertaken in February 2011. In addition to the inspection, data pertaining to the existing condition of various roads has been sourced from the Department of Transport and Main Roads (TMR) and Isaac Regional Council (IRC). This includes data relating to existing traffic volumes, the existing pavement condition, existing school bus routes and historic crashes, as well as information pertaining to planned future road works. To supplement the information received from the road authorities, traffic counts were also independently undertaken at a number of intersections in May 2013.
    [Show full text]
  • Coal Supply Chain
    AUSTRALIAN CAPABILITY ACROSS THE COAL SUPPLY CHAIN COMPANY DIRECTORY COAL MINING (UNDERGROUND AND OPENCUT) EQUIPMENT, TECHNOLOGY AND SERVICES Mine planning Mining and processing equipment Specialised technology Other Company satellite communications) satellite Construction Engineering and maintenance Mining contractors Operations support and mineral handling Material & processing management Water Coal beneficiation Drilling, blasting and blasting rock equipment Information technology and services (software, automation, maintenance Predicative Mine digitalisation technologies Communications technology Automation technology Other Geology and exploration and gas / Ventilation emission control Safety remediation Environmental Fleet management parts and spare Maintenance Other A & B Mylec Pty Ltd • • Acubis Technologies Pty Ltd • • • • • • • • Adnought Sheet Metal Fabrications Pty Ltd • • • • • • Advitech Pty Ltd • • • • Airobotics Australia Pty Ltd • • • • • Akwa Worx Pty Ltd • • • • • Allied Business Group Pty Ltd • • • • • • Ampcontrol Pty Ltd • • • • • • • • • • • • • Australian Diverisifed Engineering Pty Ltd • • • • • • • • Baleen Filters Pty Ltd • • • BMT WBM Pty Ltd • • • • • • • • • • Boart Longyear Australia • • Bowes investments Pty Ltd (Zebra Metals) • Civmec Construction & Engineering • • • • • Corporate Protection Australia Group Pty Ltd • Cove Engineering • • • • • Coxon’s Radiator Service • • CQ Fibreglass Direct Ops Pty Ltd • • • CSA Global Pty Ltd • • • • • • • • CSIRO • • • • • • • • • • • Dep. Natural Resources and Mines
    [Show full text]
  • Department of Geology • University of Queensland VOLUME 10 NUMBER 2 Summary of Formations and Faunas of the Permian Back Creek
    Department of Geology • University of Queensland VOLUME 10 NUMBER 2 Summary of formations and faunas of the Permian Back Creek Group in the Southeast Bowen Basin, Queensland D.J.C. BRIGGS & J.B. WATERHOUSE Stratigraphy and palaeobotany of East and West Haldon, Main Range, Southeast Queensland M J. DUDGEON Date of publication: June 1982 SUMMARY OF FORMATIONS AND FAUNAS OF THE PERMIAN BACK CREEK GROUP IN THE SOUTHEAST BOWEN BASIN, QUEENSLAND by D.J.C. Briggs & J.B. Waterhouse (with 1 Text-figure) ABSTRACT. In the southeastern Bowen Basin the Back Creek Group is almost entirely marine and comprises, in ascending order, the Büffel, Pindari, Brae, Oxtrack, Barfield and Flat Top Formations. We informally divide the Büffel Formation according to lithology into three members, each having a different fauna, but all of early Permian age. We correlate the upper member with the lower Homevale fauna of the northern Bowen Basin. The upper Homevale fauna is absent in the type Büffel, but is seen in strata mapped as Büffel to the north. The Pindari Formation is poorly fossiliferous in the type section. A marine fauna unmatched elsewhere in eastern Australia characterizes the Brae Formation. The Oxtrack Formation has a distinctive small fauna known from New Zealand and New South Wales, but not yet recognized elsewhere in the Bowen Basin. The thick, fine-grained Barfield Formation matches through its lithology and fauna the lower or restricted Ingelara Formation of the southwestern Bowen Basin. The Flat Top Formation contains a basal fauna like that of the Barfield, two successive younger faunas which match those of the Peawaddy and lower Blenheim Formations of the southwestern and northern Bowen Basin, and small overlying faunas of uncertain age.
    [Show full text]
  • Queensland Geological Framework
    Geological framework (Compiled by I.W. Withnall & L.C. Cranfield) The geological framework outlined here provides a basic overview of the geology of Queensland and draws particularly on work completed by Geoscience Australia and the Geological Survey of Queensland. Queensland contains mineralisation in rocks as old as Proterozoic (~1880Ma) and in Holocene sediments, with world-class mineral deposits as diverse as Proterozoic sediment-hosted base metals and Holocene age dune silica sand. Potential exists for significant mineral discoveries in a range of deposit styles, particularly from exploration under Mesozoic age shallow sedimentary cover fringing prospective older terranes. The geology of Queensland is divided into three main structural divisions: the Proterozoic North Australian Craton in the north-west and north, the Paleozoic–Mesozoic Tasman Orogen (including the intracratonic Permian to Triassic Bowen and Galilee Basins) in the east, and overlapping Mesozoic rocks of the Great Australian Basin (Figure 1). The structural framework of Queensland has recently been revised in conjunction with production of a new 1:2 million-scale geological map of Queensland (Geological Survey of Queensland, 2012), and also the volume on the geology of Queensland (Withnall & others, 2013). In some cases the divisions have been renamed. Because updating of records in the Mineral Occurrence database—and therefore the data sheets that accompany this product—has not been completed, the old nomenclature as shown in Figure 1 is retained here, but the changes are indicated in the discussion below. North Australian Craton Proterozoic rocks crop out in north-west Queensland in the Mount Isa Province as well as the McArthur and South Nicholson Basins and in the north as the Etheridge Province in the Georgetown, Yambo and Coen Inliers and Savannah Province in the Coen Inlier.
    [Show full text]
  • 15 Cultural Heritage 15.1 Introduction
    CR Tabs_Main:Layout 1 14/5/09 3:15 PM Page 15 Cultural Heritage 15 15 Cultural Heritage 15.1 Introduction Non-indigenous and Indigenous cultural heritage places and values were recorded as part of cultural heritage investigations. This section presents a description of the process for identification and management of non- indigenous and Indigenous cultural heritage associated with the project. 15.2 Indigenous Cultural Heritage This section addresses Indigenous cultural heritage issues in relation to the project. An Indigenous cultural heritage study was undertaken (Appendix O). The study was conducted in accordance with relevant provisions of the Aboriginal Cultural Heritage Act 2003 (for pre-contact Indigenous cultural heritage) and the Queensland Cultural Heritage Act 1992 (for post-contact Indigenous cultural heritage), and comprised a literature review and a field survey. Historical sources consulted during the study for this region included: Ethnographic and linguistic sources on the Traditional Aboriginal people in the region (eg. Curr 1887; Tindale 1974) Journals and diaries of European explorers and settlers in the region (eg. De Satge, O. (1901). Fetherstonhaugh, C. 1917. Leichhardt 1847; Murray 1860, 1863; Ling Roth 1908; Johnstone 1903-1905) Historical studies relevant to this area (e.g. Brayshaw 1977; 1990; Breslin 1992; Elder 1999; O'Donnell 1989, MacLean 1988, Mayes 1991, Wright 1984) Data collected by and on behalf of the BBKY people in the course of their Native Title research. The cultural heritage fieldwork was undertaken over several fieldwork sessions between July and November 2008 by the project archaeologist and an average of four BBKY representatives. This cultural heritage study was undertaken under the provisions of The Aboriginal Cultural Heritage Act 2003 (for pre-contact Indigenous cultural heritage) and The Queensland Cultural Heritage Act 1992 (for non-indigenous and post- contact Indigenous cultural heritage).
    [Show full text]
  • Appendix D Surat Basin Geological Model Surat Basin Stratigraphic Framework April 2012
    Appendix D Surat Basin geological model Surat Basin Stratigraphic Framework April 2012 Surat Basin Stratigraphic Framework April 2012 – Surat Basin Stratigraphic Framework April 2012 Table of Contents 1. Introduction .................................................................................................................................... 4 2. Methodology ................................................................................................................................... 8 2.1. Area of Interest ....................................................................................................................... 8 2.2. Datasets .................................................................................................................................. 8 2.3. Geological Modelling ............................................................................................................ 10 3. Regional Structure ........................................................................................................................ 12 4. Geological Descriptions ................................................................................................................. 17 4.1. Base Jurassic Unconformity .................................................................................................. 17 4.2. Precipice Sandstone .............................................................................................................. 17 4.3. Evergreen Formation ...........................................................................................................
    [Show full text]
  • Baseline Assessment of Water Bores
    FACT SHEET NO. 38 SHEET NO. FACT Baseline assessment of water bores QGC Pty Limited’s Queensland Curtis LNG Project We are committed to protecting the quality and quantity involves extracting significant volumes of gas from coal of groundwater resources in the region for all those who seams for domestic and export markets. depend on them as we develop the Queensland Curtis LNG Project. When extracting the gas, large amounts of water are also produced. Water production is expected to peak This fact sheet outlines QGC’s approach to completing at between 150-190 megalitres per day in 2014, with an baseline assessments of all groundwater bores in and average production over the next 20 years of around near coal seam gas tenures. 100 megalitres per day. QGC knows that water is a vital resource for communities and industries, including agriculture and mining, throughout the Surat Basin and Bowen Basin in Queensland. Baseline assessment of water bores What the assessment involves A water bore includes any groundwater bore that has The assessment involves contacting all landholders within an authorised use or purpose under the Queensland and nearby coal seam gas tenures about water bores Government’s Water Act 2000. on their properties. Landholders may be asked for basic information such as the number and location of bores on This includes water bores used for stock and domestic their property, limitations to access, the aquifer on which purposes that have not been formally registered or the bores draw and construction records or other data notified to the Department of Environment and Resource records e.g.
    [Show full text]