Prof. Salma Afrose

Total Page:16

File Type:pdf, Size:1020Kb

Prof. Salma Afrose Drop of Blood – Unravels Mysteries Prof. Salma Afrose Department of Hematology Dhaka Medical College Peripheral Blood Film (PBF) PBF is a laboratory workup that involves cytology of Peripheral blood cell smear on a slide Clinical history Physical examination Lab investigation Diagnosis Importance of PBF Basic & highly informative hematological tool for • Screening • Diagnosis • Monitoring disease progression & • Therapeutic response So for successful clinical practice understanding interpretation of PBF is essential Indication • Clinical request from attending clinician (based on clinical suspicion) • Sometimes from laboratory due to abnormal finding on an automated counter • Unexplained cytopenia • Unexplained leukocytosis, lymphocytosis, monocytosis • Unexplained hemolysis or jaundice • Sepsis • Liver failure • Hematological malignancies • Severe bacterial sepsis • Parasitic infection • Anemia evaluation Clinical indications for examination of PBF • Features suggestive of anemia, unexplained jaundice, or both • Features suggestive of sickle cell disease – dactylitis or sudden splenic enlargement and pallor in a young child or, in an older child or adult, limb, abdominal, or chest pain • Features suggestive of thrombocytopenia (e.g. petechiae or abnormal bruising) or neutropenia (e.g. unexpected or sever infection) • Features suggestive of a lymphoma or other lymphoproliferative disorder – lymphadenopathy, splenomegaly, enlargement of the thymus (a mediastinal mass on radiology) or other lymphoid organs, skin lesions suggestive of infiltration, bone pain, and systemic symptoms such as fever, sweating, itching and weight loss • Features suggestive of a myeloproliferative disease – splenomegaly, plethora, itching or weight loss Clinical indications for examination of PBF (contd.) • Suspicion of disseminated intravascular coagulation • Acute or recent-onset renal failure or unexplained renal enlargement, particularly in a child • On retinal examination, hemorrhages, exudates, signs of hyperviscosity, or optic atrophy • Suspicion of a bacterial or parasitic disease that can be diagnosed from a blood smear • Features suggestive of disseminated nonhematopoietic cancer – weight loss, malaise, bone pain • General ill health, often with malaise or fever, suggesting infectious mononucleosis or other viral infection or inflammatory or malignant disease Interpretation Key Features in the blood film Red cells Size Microcytes, normal sized cells, macrocytes (a lymphocyte or segmented neutrophil can be employed for reference) anisocytosis Shape Variation from the normal round profile, for example oval, pencil, tear-drop, sickle, fragmented, crenated, burr cells and acanthocytes; poikilocytosis. Abnormality of overall configuration, for example spherocytes, target cells, stomatocytes Pattern of Normal intensity of hemoglobin staining, or subnormal hypochromatic cells with staining characteristically increased central pallor. Increased purple hue in polychromatic cells Inclusions Basophillic stippling, Howell_Jolly bodies, malarial parasites, Pappenheimer bodies, areas of deficient staining referred to as blisters. Association Clumping of red cells to form aggregates or rouleaux Abnormal cells Presence of erythroblasts Interpretation (contd.) Key Features in the blood film White Cells Relative number Decreased, normal or increased Morphology Lymphocytes, monocytes, and segmented granulocytes present in normal or abnormal ratios. Presence of cells normally absent, for example immature myeloid or lymphoid cells, atypical lymphocytes, hypersegmented neutrophils, or increased proportions of band neutrophils Platelets Relative number Decreased, normal or increased Morphology Normal or enlarged forms Red blood cells • Automated cell counter & histogram gives information about anemia • But morphologic abnormalities can only be determined by blood film • Variation in cell shape • Red cell inclusion Disorder associated with common red cell poikilocyte Name Characteristics Also seen in Spherocytes HS, IHA Wilson disease, HA, Hb CC disease Elliptocyte HE IDA, MDS, Thallassemia, Megaloblastic anemia Tear drop cell HPP, HE Severe iron deficiency, Thallassemia, MDS, myelofibrosis Schistocyte MAHA, fragmentation hemolytic anemia Echinocyte Renal failure, malnutrition Acanthocyte Anemia in liver disease, a betalipoproteinemia Splenectomy Target cell Cholelithiasis, Hemoglobin C, liver disease Iron deficiency, Thallassemia Stomatocyte Hereditary stomatocytosis Alcoholism Hemolytic Anemia • HE • South East Asian Ovalocytosis • Spherocytosis (D/D) • Microspherocyte (burn & MAHA) MAHA • TTP & HUS • DIC • Acute hemolysis by oxidant drug • 6GPD deficiency • Wilson disease -Bite cell • CHAD Macrocytic anemia Essential for differential diagnosis (PBF) • megaloblastic anemia – Ovalomacrocytosis with hypersegmentation of neutrophil • Liver disease – Round macrocyte, target cell, no hyper segmented neutrophil • MDS – Macrocytosis, dysplastic neutrophil, giant or hypo granular platelet • CDA – Macrocytosis with Poikilocytosis • Hemolysis , Recent blood loss – Macrocytosis with Polychromasia Microcytic Anemia Red cell indices & biochemical tests help in diagnosis of majority cases but film is essential to identify • Pappenheimer body & • Basophilic stipling in sideroblastic anemia & lead poisoning Hemoglobinopathy & Thalassemia Needed for diagnosis & D/D • Sickle cell disease – Rapid diagnosis • Thalassemia – diagnosis & status of spleen NRBC Signifies bone marrow damage or stress in some cases serious underlying disease • Hemolytic anemia • Megaloblastic anemia • Myloproliferative disorder • Multiple myloma • After splenectomy • Storage disease • Thalassemia major • MDS • Sarcoidosis • Sepsis • Effective erythropoiesis - Reticulocytosis , polychromasia, immature granulocyte • Ineffective erythropoiesis – NRBC without reticulocytosis • Red cell agglutination – presence of antibody • Rouleaux formation • Multiple myloma • Leishmaniasis • Severe infection White Blood Cell • Morphology, distribution, granularity, nuclear configuration • Leukocytosis • Bacterial infection • Inflammation • Malignancy • Tissue injury • Steroid • Myloproliferative disorder • Hyposegmented in – sepsis, MDS • Hyperlobated in – B12 Folic Acid, MDS, drugs • Toxic granulation in – infection Direct diagnosis from PBF • APL • AML • Hairy cell leukemia • ALL • Burkitt lymphoma • SLVL Platelet Platelet distribution & morphology seen Thrombocytopenia • PBF essential for 2 purposes – • Confirm thrombocytopenia – small clot, clumping & platelet satellitism • Look for underlying cause • Morphology small platelet in Aplastic anemia • Giant platelet – Immun thrombocytopenia, hypersplenism • Giant platelet with red cell fragment and helmet cell – MAHA Thrombocytosis • Microcytic hypochromic reactive • Platelet anisocytosis with baseophilia myloproliferative Parasites • Malaria • Leishmania • Filaria Serendipity Fortuitous investigation that may be of diagnostic importance • Red cell fragmentation • Hyposplenism • Cryglobenemia (hepatitis C infection) • Red cell agglutination (LPD, IM) • Dysplastic feature typical of HIV • Malaria, leishmaniasis, filariasis • Fungal infection • Candidiasis • Histoplasmosis • Bacteria Pneumococcal infection Case 1 • A 10 year old boy treated as ITP for last 7 yrs – a case of BSS • Being large platelet – Count is low in automated analyser Case 2 • A 45 yr old lady have been suffering from fever for last 1 yr. Her CBC shows Neutrophil leukocytosis with Monocytosis • Having multiple antibiotic culture of blood, C/S even TB drugs • Blood film shows CMML as Analyser can not identify some monocyte & dysplasia Case 3 • A middle aged man suffering from leg oedema normocytic anemia but no cause is found • PBF when properly seen shows thick target cell with normocytic anemia • CLD with Hepatitis C positivity Case 4 • A patient presented with thrombocytopenia & diagnosed as ITP. He is not responding to drugs. Going before second line drug his PBF is checked & found to have Malaria • Treatment of Malaria cure him of thrombocytopenia Despite major advances in hematology automation, genetic & molecular techniques in diagnosis of various diseases, PBF remains a frontline diagnostic tool for unraveling mysteries behind cryptic symptoms & signs Thank you .
Recommended publications
  • Anormal Rbc in Peripheral Blood. [Repaired].Pdf
    1. Acanthocyte 2. Burr-cell 3. Microcyte 1. Basophilic Normoblast 2. Polychromatic Normoblast 3. Pycnotic Normoblast 4. Plasmocyte 5. Eosinophil 6. Promyelocyte 1. Macrocyte 2. Elliptocyte 1. Microcyte 2. Normocyte 1. Polychromatic Erythrocyte 2. Acanthocyte 3. Elliptocyte 1. Polychromatic Normoblast 2. Pycnotic Normoblast 3. Neutrophil Myelocyte 4. Neutrophil Metamyelocyte 1. Schistocyte 2. Microcyte BASOPHILIC ( EARLY ) NORMOBLASTS Basophilic Erythroblast Basophilic Stippling, Blood smear, May-Giemsa stain, (×1000) CABOT'S RINGS Drepanocyte Elliptocyte Erythroblast ERYTHROBLAST in the blood Howell-jolly body Hypo chromic LACRYMOCYTES Leptocyte Malaria, Blood smear, May-Giemsa stain, ×1000 MICROCYTES Orthochromatic erythroblast Pappen heimer Bodies & 1. Schistocyte 2. Elliptocyte 3. Acanthocyte POIKILOCYTOSIS Polychromatic Erythroblast Pro Erytroblast Proerythroblasts Reticulocyte Rouleaux SICKLE CELLS Sickle cell Spherocyte Spherocyte Spherocyte SPHEROCYTES STOMATOCYTES Target Cells Tear Drop Cell, Blood smear, May-Giemsa stain, x1000 Anulocyte 1. Burr-cell 2. Elliptocyte 1. Macrocyte 2. Microcyte 3. Elliptocyte 4. Schistocyte 1. Ovalocyte 2. Lacrymocyte 3. Target cell 1. Polychromatic Erythrocyte 2. Basophilic Stippling 1. Proerythroblast 2. Basophilic Erythroblast 3. Intermediate Erythroblast 4. Late Erythroblast 5. Monocyte 6. Lymphocyte 1. Target-cell 2. Elliptocyte 3. Acanthocyte 4. Stomatocyte 5. Schistocyte 6. Polychromatophilic erythrocyte. 1.Pro erythroblast 2.Basophilic normoblast 3.Polychromatic normoblast 4.Pycnotic normoblast
    [Show full text]
  • Morphological Study of Human Blood for Different Diseases
    Research Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.30.004893 Morphological Study of Human Blood for Different Diseases Muzafar Shah1*, Haseena1, Kainat1, Noor Shaba1, Sania1, Sadia1, Akhtar Rasool2, Fazal Akbar2 and Muhammad Israr3 1Centre for Animal Sciences & Fisheries, University of Swat, Pakistan 2Centre for Biotechnology and Microbiology, University of Swat, Pakistan 3Department of Forensic Sciences, University of Swat, Pakistan *Corresponding author: Muzafar Shah, Centre for Animal Sciences & Fisheries, University of Swat, Pakistan ARTICLE INFO ABSTRACT Received: August 25, 2020 The aim of our study was the screening of blood cells on the basis of morphology for different diseased with Morphogenetic characters I e. ear lobe attachment, clinodactyly Published: September 07, 2020 and tongue rolling. For this purpose, 318 blood samples were collected randomly. Samples were examined under the compound microscopic by using 100x with standard Citation: Muzafar Shah, Haseena, method. The results show 63 samples were found normal while in 255 samples, different Kainat, Noor Shaba, Sania, Sadia, et al. types of morphological changes were observed which was 68.5%, in which Bite cell 36%, Morphological Study of Human Blood for Elliptocyte 34%, Tear drop cell 30%, Schistocyte 26%, Hypochromic cell 22.5%, Irregular Different Diseases. Biomed J Sci & Tech Res contracted cell 16%, Echinocytes 15.5%, Roleaux 8%, Boat shape 6.5%, Sickle cell 5%, Keratocyte 4% and Acanthocytes 1.5%. During the screening of slides, bite cell, elliptocyte, tear drop cell, schistocytes, hypochromic cell, irregular contracted cells were found 30(1)-2020.Keywords: BJSTR.Human MS.ID.004893. blood; Diseases; frequently while echinocytes, boat shape cell, acanthocytes, sickle cells and keratocytes Morphological; Acanthocytes; Keratocyte were found rarely.
    [Show full text]
  • Identifying Peripheral Blood Leukocytes and Erythrocytes in a Patient with Iron Deficiency Anemia
    ADVANCED BLOOD CELL ID: IDENTIFYING PERIPHERAL BLOOD LEUKOCYTES AND ERYTHROCYTES IN A PATIENT WITH IRON DEFICIENCY ANEMIA Educational commentary is provided for participants enrolled in program #259- Advanced Blood Cell Identification. This virtual blood cell identification program includes case studies with more difficult challenges. To view the blood cell images in more detail, click on the sample identification numbers underlined in the paragraphs below. This will open a virtual image of the selected cell and the surrounding fields. If the image opens in the same window as the commentary, saving the commentary PDF and opening it outside your browser will allow you to switch between the commentary and the images more easily. Click on this link for the API ImageViewerTM Instructions. Learning Outcomes After completion of this exercise, participants will be able to: • describe morphologic features of monocytes and lymphocytes, and • identify distinguishing morphologic features in red blood cells associated with iron deficiency anemia. Case Study A 78 year old female patient was seen by her primary care physician due to extreme fatigue and headaches. The CBC results are as follows: WBC=9.3 x 109/L, RBC=4.43 x 1012/L, Hgb=8.7 g/dL, Hct=26.1%, MCV=58.9 fL, MCH=19.6 pg, MCHC=33.3 g/dL, RDW=24.8%, Platelet=425 x 109/L. Educational Commentary The cells annotated for commentary in this advanced testing event were selected from the peripheral blood smear of an elderly woman diagnosed with iron deficiency anemia (IDA). IDA is a common worldwide disorder. It can be caused by lack of adequate dietary iron, the malabsorption of iron, increased need for iron as in pregnancy or infancy and, most often, by bleeding.
    [Show full text]
  • Drinking Water Health Advisory for the Cyanobacterial Toxin Cylindrospermopsin
    United States Office of Water EPA- 820R15101 Environmental Mail Code 4304T June 2015 Protection Agency Drinking Water Health Advisory for the Cyanobacterial Toxin Cylindrospermopsin Drinking Water Health Advisory for the Cyanobacterial Toxin Cylindrospermopsin Prepared by: U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 EPA Document Number: 820R15101 Date: June 15, 2015 ACKNOWLEDGMENTS This document was prepared by U.S. EPA Scientists Lesley V. D’Anglada, Dr.P.H. (lead) and Jamie Strong, Ph.D. Health and Ecological Criteria Division, Office of Science and Technology, Office of Water. EPA gratefully acknowledges the valuable contributions from Health Canada’s Water and Air Quality Bureau, in developing the Analytical Methods and Treatment Technologies information included in this document. This Health Advisory was provided for review and comments were received from staff in the following U.S. EPA Program Offices: U.S. EPA Office of Ground Water and Drinking Water U.S. EPA Office of Science and Technology U.S. EPA Office of Research and Development U.S. EPA Office of Children’s Health Protection U.S. EPA Office of General Counsel This Health Advisory was provided for review and comments were received from the following other federal and health agencies: Health Canada U.S. Department of Health and Human Services, Centers for Disease Control and Prevention Drinking Water Health Advisory for Cylindrospermopsin - June 2015 i TABLE OF CONTENTS ACKNOWLEDGMENTS.....................................................................................................................I
    [Show full text]
  • TOPIC 5 Lab – B: Diagnostic Tools & Therapies – Blood & Lymphatic
    TOPIC 5 Lab – B: Diagnostic Tools & Therapies – Blood & Lymphatic Disorders Refer to chapter 17 and selected online sources. Refer to the front cover of Gould & Dyer for normal blood test values. Complete and internet search for videos from reliable sources on blood donations and blood tests. Topic 5 Lab - A: Blood and Lymphatic Disorders You’ll need to refer to an anatomy & physiology textbook or lab manual to complete many of these objectives. Blood Lab Materials Prepared slides of normal blood Prepared slides of specific blood pathologies Models of formed elements Plaque models of formed elements Blood typing model kits Blood Lab Objectives – by the end of this lab, students should be able to: 1. Describe the physical characteristics of blood. 2. Differentiate between the plasma and serum. 3. Identify the formed elements on prepared slides, diagrams and models and state their main functions. You may wish to draw what you see in the space provided. Formed Element Description / Function Drawing Erythrocyte Neutrophil s e t y c Eosinophils o l u n a r Basophils Leukocytes G e Monocytes t y c o l u n Lymphocytes a r g A Thrombocytes 4. Define differential white blood cell count. State the major function and expected range (percentage) of each type of white blood cell in normal blood. WBC Type Function Expected % Neutrophils Eosinophils Basophils Monocytes Lymphocytes 5. Calculation of the differential count? 6. Define and use in proper context: 1. achlorhydria 5. amyloidosis 2. acute leukemia 6. anemia 3. agnogenic myeloid metaplasia 7. autosplenectomy 4. aleukemic leukemia 8. basophilic stippling 9.
    [Show full text]
  • Laboratory Interpretation: a Focus on WBC's, RBC's, and LFT's
    Laboratory Interpretation: A Focus on WBC’s, RBC’s, and LFT’s Wendy L. Wright, MS, ANP-BC, FNP-BC, FAANP, FAAN, FNAP Adult/Family Nurse Practitioner Owner - Wright & Associates Family Healthcare Amherst, NH Owner – Wright & Associates Family Healthcare Concord, NH Owner – Partners in Healthcare Education, LLC Wright, 2019 1 1 Relevant Financial Relationship Disclosure Statement Title of talk • I will not discuss off label use and/or investigational use of any drugs/devices. • I don’t have the following relevant financial relationships to report in relationship to this presentation. Wright, 2019 2 2 Objectives • Upon completion of this lecture, the participant will be able to: – Identify a step approach to the interpretation of a cbc – rbc’s and wbc’s, and hepatic function tests – Discuss various laboratory abnormalities identified on an individual throughout the lifespan – Systematically interpret laboratory findings using case studies Wright, 2019 3 3 Wright, 2019 1 Red Blood Cell Formation • Formed in bone marrow (erythropoiesis) • When mature, the rbc is released into circulation • Mature rbc has a life span of approximately 120 days – Many factors trigger an increase in the production of rbc’s by the bone marrow, but a decrease in O2 is the most common. – Low tissue oxygen levels trigger the endothelial cells in the kidneys to secrete erythropoietin – which in turn, stimulates bone marrow red cell production Goodnough LT, Skikne B, Brugnara C. Erythropoietin, iron, and erythropoiesis. Blood. 2000;96:823-833. Wright, 2019 4 4 Anemia:
    [Show full text]
  • Developing a Computer-Based Information System to Improve the Diagnosis of Blood Anemia
    I I Developing a Computer-based Information System to Improve the Diagnosis of Blood Anemia By Bashar Abdallah Issa Khawaldeh Supervisor Dr. Basim Alhadidi This Thesis is submitted to the Department of Computer Information Systems, Faculty of Information Technology, Middle East University in partial fulfillment for the requirements for the degree of Master Degree in Computer Information System. Department of Computer Information Systems Faculty of Information Technology Middle East University (May 201 3) Amman – Jordan II III IV V VI ACKNOWLEDGMENTS I would like to thank my supervisor Dr. Basim Alhadidi for his support, encouragement, proofreading of thesis drafts, and helping me throughout my thesis, and so directing to the right track of Image processing. I thank the Information Technology Faculty members at the Middle East University for Graduate Studies; I thank my father and my mother for their continued support during my study. VII DEDICATION All praise belongs to Allah and all thanks to Allah. I dedicate this work to Parents, brothers, sisters, relatives, friends, and to all those who helped, supported and taught me. VIII Table of Contents Developing a Computer- based Information System to Improve the Diagnosis of Blood Anemia .…. I ………………………………….……..…................... .. ...... ………………...………………………..…….………. II Authorization Statement ………………………………………………….…………...………………………...…..…….……. III Examination Committee Decision ………………..…………………...…………………………………...……...…..…... IV Declaration …………………………………………………………………………………………………………………………....
    [Show full text]
  • Diagnosis from the Blood Smear
    247 บทความฟื้นวิชา Diagnosis from the Blood Smear กิตติ ตอจรัส กองพยาธิวิทยา​�รงพยาบา�พร�มงก��เก�า ปจจุบันมีการนำาเครื่องนับเม็ดเลือดอัตโนมัติ (automated สมมีการกระจายของเม็ดเลือดชนิดตางๆ อยางเหมาะสม ไมซอนกัน blood – cell analyzers) มาใชในการตรวจวิเคราะหทางหอง การตรวจสเมียรเลือด ผูตรวจตองดูดวยกลองใชกำาลังขยาย ปฏิบัติการซึ่งไดผลถูกตองและรวดเร็ว การตรวจสเมียรเลือด ต่ำา (10X10) กอนเสมอ เพื่อดูคุณภาพของสไลด (slide) การติด (blood smear) จึงถูกลดบทบาทลงไปนอยกวารอยละ 10 – 15 สีรวมทั้งจะไดเห็นภาพทั่วๆ ไป ของเม็ดเลือดแดง เม็ดเลือดขาว อยางไรก็ดี การตรวจสเมียรเลือดมีราคาถูกกวา แมวายังตองอาศัย และเกร็ดเลือด โดยจะทำาใหเห็นเม็ดเลือดขาวที่ผิดปกติไดงายขึ้น ขั้นตอนในการเตรียม ใชบุคลากรที่มีทักษะในการแปลผล แตยัง แลวจึงตรวจดูเม็ดเลือดทุกชนิดในสเมียรเลือดนั้น เปนเครื่องมือที่สำาคัญในการชวยการวินิจฉัยที่สำาคัญ (crucial รูปรางเม็ดเลือดแดง (red cell morphology) diagnosis aid)1 ตารางที่ 1 แสดงขอบงชี้ทางคลินิกที่ตองตรวจ เม็ดเลือดแดงปกติมีขนาด 7.2 – 7.9 µm. รูปรางเปน biconcave สเมียรเลือด เพื่อการวินิจฉัยเบื้องตน (provisional diagnosis) disc ขอบติดสี hemoglobin ตรงกลางไมติดสี (clear central เพื่อวินิจฉัยแยกโรค และการตรวจทางหองปฏิบัติการอื่นๆ ตอไป area) สามารถดูปริมาตร (MCV) ไดจากเครื่องนับเม็ดเลือดแดง หลักการวินิจฉัยจากการตรวจสเมียรเลือด อัตโนมัติ การดู blood smear จะชวย confirm ผลที่เครื่องนับ การวินิจฉัยโรคนอกจากการใชขอมูลประวัติ การตรวจรางกาย เม็ดเลือดอัตโนมัติและยังเปนการชวยวินิจฉัยโรคไดงายและรวดเร็ว และการตรวจทางหองปฏิบัติการเบื้องตนไดแก CBC, Urine ศัพทตอไปนี้ใชในการบรรยายลักษณะตางๆ ของเม็ดเลือดแดง3 examination แลวการตรวจสเมียรเลือดจะทำาใหสามารถวินิจฉัย -
    [Show full text]
  • Red-Cell and Plasma Lipids in Acanthocytosis
    RED-CELL AND PLASMA LIPIDS IN ACANTHOCYTOSIS Peter Ways, … , Claude F. Reed, Donald J. Hanahan J Clin Invest. 1963;42(8):1248-1260. https://doi.org/10.1172/JCI104810. Research Article Find the latest version: https://jci.me/104810/pdf Journal of Clinical Investigation Vol. 42, No. 8, 1963 RED-CELL AND PLASMA LIPIDS IN ACANTHOCYTOSIS * By PETER WAYS,t CLAUDE F. REED, AND DONALD J. HANAHAN WITH THE TECHNICAL ASSISTANCE OF DOLORES DONG, SUSAN PALMER, MARION MURPHY, AND GERALDINE ROBERTS (From the Departments of Biochemistry and Medicine, University of Washington, Seattle, Wash., and the Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, N. Y.) (Submitted for publication January 18, 1963; accepted April 11, 1963) The rare syndrome of acanthocytosis was first tological, and gastrointestinal) are all secondary described in 1950 by Bassen and Kornzweig (1) to the absence of low-density lipoprotein (6, 7). and two years later by Singer, Fisher, and Perl- This is still conjectural, however, and the bio- stein (2). The principal manifestations reported chemical defect responsible for the disease has not were steatorrhea, "atypical" retinitis pigmentosa, been elucidated. progressive neurological deficits, and "thorny" The clinical and chemical abnormalities of acan- red cells. The most complete case reports to date thocytosis suggested that it might be an ideal syn- are those of Meir, Schwartz, and Boshes (3) and drome in which to seek abnormalities in red-cell Rey (4), who well review the clinical aspects. lipids. Values previously reported for total red- The erythrocytes of affected individuals have char- cell lipids in one case (3) and for red-cell choles- acteristic, spikelike excrescences, a normal or de- terol and total phospholipid (6) in another were creased life-span, probably normal osmotic fragil- probably normal (normal values were not given), ity, normal acid fragility, increased susceptibility but the possibilities of qualitative changes were to mechanical trauma, and an increased rate of not investigated.
    [Show full text]
  • Morphologic Evaluation of Anemia – I Adewoyin S
    nd M y a ed g ic lo i o n i e B Adewoyin and Ogbenna, Biol Med (Aligarh) 2016, 8:6 DOI: 10.4172/0974-8369.1000322 ISSN: 0974-8369 Biology and Medicine Review Article Open Access Morphologic Evaluation of Anemia – I Adewoyin S. Ademola1* and Ogbenna A. Abiola2 1Department of Haematology and Blood Transfusion, University of Benin Teaching Hospital, PMB 1111, Ugbowo, Benin City, Nigeria 2Department of Haematology and Blood Transfusion, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria *Corresponding author: Adewoyin S. Ademola, Department of Haematology and Blood Transfusion, University of Benin Teaching Hospital, PMB 1111, Ugbowo, Benin City, Nigeria, Tel: +2347033966347; E-mail: [email protected] Received date: June 20, 2016; Accepted date: July 15, 2016; Published date: July 22, 2016 Copyright: © 2016 Adewoyin AS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Abstract Anaemia is a feature of many tropical diseases. Anaemia diagnosis therefore remains a crucial intervention among physicians in developing countries. A barrage of laboratory test (anaemic work-up) is usually deployed in differentiating its underlying cause. However, central to anaemia evaluation is the morphology of the red cells and other cell lines. Conventionally, initial laboratory tests include full blood count, reticulocyte count and peripheral blood film (PBF). PBF is often a clinical request, performed by skilled technologist and reported by haematologist/ haematomorphologist. Findings from PBF are reviewed and reported in the light of patient’s clinical history and examination findings.
    [Show full text]
  • Hereditary Elliptocytosis CASE REPORT
    JMEDS 10.5005/jp-journals-10045-0012Hereditary Elliptocytosis CASE REPORT Hereditary Elliptocytosis 1PS Sharmila, 2Kannupriya, 3MF Paul ABSTRACT Thailand.4 Inheritance of HE is autosomal dominant. Hereditary elliptocytosis (HE) is a group of disorders However, de novo mutations have been reported in rare characterized by the presence of elliptical-shaped erythrocytes cases. on peripheral blood smear. Hereditary elliptocytosis and its related disorders are characterized by clinical, biochemical, CASE REPORT and genetic heterogeneity. Manifestations range from the asymptomatic carrier state to severe, transfusion dependent A 72 years old male presented to our hospital with history hemolytic anemia. Abnormalities of various membrane protein of abdominal pain and loss of appetite for 1 week. There defects contribute to mechanical defects of the erythrocyte was no significant past or family history. He was a non- membrane skeleton. We present a rare case of HE, an alcoholic, vegetarian. No history of any drug therapy. incidental finding without any clinical symptoms related to it. We also discuss on pathophysiology and being. On clinical examination, patient had tenderness at renal, angle. Ultrasonography (USG) examination of abdomen Keywords: Elliptocytes, Erythrocyte, Hemolysis. and pelvis revealed right-sided mild hydronephrosis How to cite this article: Sharmila PS, Kannupriya, Paul MF. and a small calculus in lower one-third of right ureter. Hereditary Elliptocytosis. J Med Sci 2015;1(2):41-43. Thus with these clinical findings, the diagnosis of right Source of support: Nil hydroureteronephrosis with ureteric calculus was Conflict of interest: None made and patient underwent for lithotripsy for ureteric stone. Laboratory investigations included complete INTRODUCTION hemogram, renal function test and liver function test, Hereditary elliptocytosis (HE) and its variants are preoperatively and postoperatively.
    [Show full text]
  • Hereditary Elliptocytosis in Two Maltese Families
    J Clin Pathol: first published as 10.1136/jcp.14.4.365 on 1 July 1961. Downloaded from J. clin. Path. (1961), 14, 365 Hereditary elliptocytosis in two Maltese families J. L. GRECH, E. A. CACHIA, F. CALLEJA, AND F. PULLICINO From the Department ofPathology, the Royal University of Malta, and a Paediatric Unit, St. Luke's Hospital, Malta SYNOPSIS The findings in two elliptocytic families are recorded and compared. It is the first report of the anomaly in the Maltese population. A variable degree of clinical and haematological expression among the members of the two families has been observed, ranging from healthy individuals with normal cell morphology to others with only elliptocytic erythrocytes and mild anaemia. Two subjects have been studied during anaemic crises, and are considered to represent the homozygous state. The phenomenon of elliptocytosis was first observed Two members of one of the families are believed to by Dresbach in 1904, and since then several reports represent the homozygous state. of its occurrence in various races have been pub- lished. The anomaly is transmitted as a Mendelian FAMILY S dominant (Cheney, 1932; Strauss and Daland, 1937) linked with the Rh genes but is unrelated to sex The pedigree of family S is shown in Fig. 1, and the (Goodall, Hendry, Lawler, and Stephen, 1953, 1954; laboratory findings of the members examined in Table I. Lawler and Sandler, 1954; Marshall, Bird, Bailey, CASE iv.10 A baby boy was well till the age of 4 months http://jcp.bmj.com/ and Beckner, 1954; Morton, 1956; Clarke, Donohoe, when he was admitted to hospital for gastroenteritis and Finn, McConnell, Sheppard, and Nicol, 1960).
    [Show full text]