Character and Description of KINGIA, a New Genus of Plants Found on The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
Complete Sequence and Comparative Analysis of the Chloroplast Genome of Coconut Palm (Cocos Nucifera)
Complete Sequence and Comparative Analysis of the Chloroplast Genome of Coconut Palm (Cocos nucifera) Ya-Yi Huang, Antonius J. M. Matzke, Marjori Matzke* Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan Abstract Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available. Citation: Huang Y-Y, Matzke AJM, Matzke M (2013) Complete Sequence and Comparative Analysis of the Chloroplast Genome of Coconut Palm (Cocos nucifera). PLoS ONE 8(8): e74736. doi:10.1371/journal.pone.0074736 Editor: Hector Candela, Universidad Miguel Herna´ndez de Elche, Spain Received June 25, 2013; Accepted August 6, 2013; Published August 30, 2013 Copyright: ß 2013 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Complete Chloroplast Genomes Shed Light on Phylogenetic
www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya. -
ALINTA DBNGP LOOPING 10 Rehabilitation Management Plan
DBNGP (WA) Nominees Pty Ltd DBNGP LOOPING 10 Rehabilitation Management Plan ALINTA DBNGP LOOPING 10 Rehabilitation Management Plan November 2005 Ecos Consulting (Aust) Pty Ltd CONTENTS 1 INTRODUCTION ................................................................................ 1 2 REHABILITATION REVIEW............................................................ 1 2.1 REHABILITATION OBJECTIVES ............................................................... 2 3 EXISTING VEGETATION ................................................................. 2 3.1 FLORA AND VEGETATION...................................................................... 2 3.2 VEGETATION STUDIES ........................................................................... 4 3.2.1 Study Method ............................................................................... 4 3.2.2 Study Results ................................................................................ 7 3.3 OTHER ENVIRONMENTAL VALUES ...................................................... 10 4 REHABILITATION STRATEGY..................................................... 11 5 REHABILITATION METHODS ..................................................... 11 5.1 WEED MANAGEMENT.......................................................................... 11 5.2 DIEBACK (PHYTOPHTHORA CINNAMOMI) MANAGEMENT .................... 11 5.3 PRIORITY AND RARE FLORA MANAGEMENT ........................................ 12 5.4 RESOURCE MANAGEMENT ................................................................... 13 5.5 -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Flora and Fauna Guarantee Act 1988 Protected Flora List November 2019
Department of Environment, Land, Water & Planning Flora and Fauna Guarantee Act 1988 Protected Flora List November 2019 What is Protected Flora? Protected flora are native plants or communities of native plants that have legal protection under the Flora and Fauna Guarantee Act 1988. The Protected Flora List includes plants from three sources: plant taxa (species, subspecies or varieties) listed as threatened under the Flora and Fauna Guarantee Act 1988 plant taxa belonging to communities listed as threatened under the Flora and Fauna Guarantee Act 1988 plant taxa which are not threatened but require protection for other reasons. For example, some species which are attractive or highly sought after, such as orchids and grass trees, are protected so that the removal of these species from the wild can be controlled. For all listed species protection includes living (eg flowers, seeds, shoots and roots) and non-living (eg bark, leaves and other litter) plant material. Do I need a permit or licence? The handling of protected flora is regulated by the Department of Environment, Land, Water & Planning (DELWP) to ensure that any harvesting or loss is ecologically sustainable. You must obtain a ‘Protected Flora Licence’ or Permit from one of the Regional Offices of DELWP if you want to collect protected native plants or if you are planning to do works or other activities on public land which might kill, injure or disturb protected native plants. In most cases, you do not require a Licence or Permit for works or activities on private land, although you may require a planning permit from your local council. -
Threatened Plants Tasmania Newsletter July 2016
Threatened Plants Tasmania Newsletter July 2016 Leucochrysum albicans by Phil Collier Threatened Plants Tasmania Newsletter, July 2016 Page 1 of 15 Contents From the outgoing President ............................................................................................................ 3 From the incoming President ........................................................................................................... 3 TPT in the Field ................................................................................................................................... 4 Ben Lomond threatened species weekend, January 2015 ............................................................... 4 Vale of Belvoir, Surrey Hills, January 2015 ........................................................................................ 5 Leucochrysum albicans at The Nut, Stanley, February, 2016 ........................................................... 5 Weeding at Smiths Lagoon, Conara, February 2016 ......................................................................... 6 Pherosphaera hookeriana at Mt Field East, February 2016 ............................................................. 7 Boomer Marsh, Dunally, March 2016 ................................................................................................ 8 Heathy Hills Nature Reserve, March 2016 ........................................................................................ 9 Monitoring for white gum regeneration, Bruny Island, April 2016 ............................................... -
Chromosome Numbers in Lomandra (Dasypogonaceae)
Telopea 2(6): 741-744 (1986) 741 CHROMOSOME NUMBERS IN LOMANDRA (DASYPOGONACEAE) BARBARA G. BRIGGS (Accepted for publication 22.3 .1985) ABSTRACT Briggs, Barbara G. (National Herbarium of New South Wales, Royal Botanic Gardens, Sydney, Australia 2000) 1986. Chromosome numbers in Lomandra (Dasypogonaceae). Telopea 2(6): 741-744 - Chromosome numbers for Sections Lomandra (13 species studied) and Typhopsis (one species) are based on x = 8, but three species of Sect. Cephalogyne have x = 7. Eight species are reported as diploid and five as tetraploid, while four show infraspecific polyploidy. The chromosome numbers of 17 species have been determined (Table 1). Several of these counts were previously reported (in Lee 1966) but without citation of voucher specimens. Preparations were of root-tips or pre-meiotic floral buds, pre-treated with saturated aqueous p-dichlorobenzene for about 2 Y4 hours, fixed in 1:3 acetic-alcohol and stained with aceta-orcein or alcoholic carmine. The sex of many vouchers could not be determined, since they were collected out of the flowering season. One of the counts of L. preissii (Waterhouse NSW 75454), a diploid, was cultivated for nine months in Sydney and there produced female and herma phrodite flowers and set fruit in isolation from other flowering plants of Lomandra. This genus is normally dioecious but hermaphrodite flowers occur sporadically in other species (A. T. Lee pers. comm.). Two base numbers are represented: x = 8 in the 13 counted species of Sect. Lomandra and x = 7 in three species of Sect. Cephalogyne, following the classi fication of Stevens (1978). A count of 2n = 16 has been obtained on L. -
Xanthorrhoea Preissii Woodlands and Shrublands (Swan Coastal Plain Community Type 3C - Gibson Et Al
INTERIM RECOVERY PLAN NO. 60 Corymbia calophylla - Xanthorrhoea preissii woodlands and shrublands (Swan Coastal Plain Community type 3c - Gibson et al. 1994) INTERIM RECOVERY PLAN 2000-2003 by Val English and John Blyth January 2000 Department of Conservation and Land Management Western Australian Threatened Species and Communities Unit PO Box 51, Wanneroo, WA 6946 Department of Conservation and Land Management FOREWORD Interim Recovery Plans (IRPs) are developed within the framework laid down in Department of Conservation and Land Management (CALM) Policy Statements Nos 44 and 50 IRPs outline the recovery actions that are required to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. CALM is committed to ensuring that Critically Endangered ecological communities are conserved through the preparation and implementation of Recovery Plans or Interim Recovery Plans and by ensuring that conservation action commences as soon as possible and always within one year of endorsement of that rank by CALM's Director of Nature Conservation. This Interim Recovery Plan will operate from 31January 2000 but will remain in force until withdrawn or replaced. It is intended that, if the ecological community is still ranked Critically Endangered, this IRP will be replaced by a full Recovery Plan after three years. The provision of funds identified in this Interim Recovery Plan is dependent on budgetary and other constraints affecting CALM, as well as the need to address other priorities. Information in this IRP was accurate at January 2000. 2 SUMMARY Name: Corymbia calophylla - Xanthorrhoea preissii woodlands and shrublands Description: Plant community located on heavy soils of the eastern side of the Swan Coastal Plain between Bullsbrook, and Waterloo near Bunbury. -
WRA Species Report
Family: Xanthorrhoeaceae Taxon: Xanthorrhoea preissii Synonym: Xanthorrhoea reflexa D.A.Herb. Common Name: Balga Xanthorrhoea pecoris F.Muell. Grass Tree Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -5 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- Intermediate substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 n 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic -
Perth and Peel Green Growth Plan for 3.5 Million
v Government of Western Australia Department of the Premier and Cabinet Perth and Peel Green Growth Plan for 3.5 million Strategic Assessment of the Perth and Peel Regions Draft EPBC Act Strategic Impact Assessment Report Part D: MNES Assessment$IBQUFS December 2015 Acknowledgements This document has been prepared by Eco Logical Australia Pty Ltd and © Government of Western Australia Open Lines Consulting. Department of the Premier and Cabinet Disclaimer Dumas House This document may only be used for the purpose for which it was 2 Havelock Street commissioned and in accordance with the contract between Eco Logical Australia Pty Ltd and the Department of the Premier and West Perth WA 6005 Cabinet. The scope of services was defined in consultation with the Department of the Premier and Cabinet, by time and budgetary Website: www.dpc.wa.gov.au/greengrowthplan constraints imposed by the client, and the availability of reports Email: [email protected] and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing Tel: 08 6552 5151 basis and readers should obtain up to date information. Fax: 08 6552 5001 Eco Logical Australia Pty Ltd accepts no liability or responsibility Published December 2015 whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited. Strategic As sessment for the Perth and Peel Regions Contents List of Figures.......................................................................................................................................................... -
Sites of Botanical Significance Vol1 Part1
Plant Species and Sites of Botanical Significance in the Southern Bioregions of the Northern Territory Volume 1: Significant Vascular Plants Part 1: Species of Significance Prepared By Matthew White, David Albrecht, Angus Duguid, Peter Latz & Mary Hamilton for the Arid Lands Environment Centre Plant Species and Sites of Botanical Significance in the Southern Bioregions of the Northern Territory Volume 1: Significant Vascular Plants Part 1: Species of Significance Matthew White 1 David Albrecht 2 Angus Duguid 2 Peter Latz 3 Mary Hamilton4 1. Consultant to the Arid Lands Environment Centre 2. Parks & Wildlife Commission of the Northern Territory 3. Parks & Wildlife Commission of the Northern Territory (retired) 4. Independent Contractor Arid Lands Environment Centre P.O. Box 2796, Alice Springs 0871 Ph: (08) 89522497; Fax (08) 89532988 December, 2000 ISBN 0 7245 27842 This report resulted from two projects: “Rare, restricted and threatened plants of the arid lands (D95/596)”; and “Identification of off-park waterholes and rare plants of central Australia (D95/597)”. These projects were carried out with the assistance of funds made available by the Commonwealth of Australia under the National Estate Grants Program. This volume should be cited as: White,M., Albrecht,D., Duguid,A., Latz,P., and Hamilton,M. (2000). Plant species and sites of botanical significance in the southern bioregions of the Northern Territory; volume 1: significant vascular plants. A report to the Australian Heritage Commission from the Arid Lands Environment Centre. Alice Springs, Northern Territory of Australia. Front cover photograph: Eremophila A90760 Arookara Range, by David Albrecht. Forward from the Convenor of the Arid Lands Environment Centre The Arid Lands Environment Centre is pleased to present this report on the current understanding of the status of rare and threatened plants in the southern NT, and a description of sites significant to their conservation, including waterholes.