High-Resolution PDF for Printing
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Cravens Peak Scientific Study Report
Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10. -
Offset Proposal Letter
Your ref: Government of Western Australia 08/2569, 09/5380-02 Department of Environment and Conservation Our ref: CPS 818/5 Enquiries: Chloe Sykes Phone: 9219 8744 Fax: 9219 8701 Email: [email protected] gov.au Mr Shane Collins Environmental Officer Metropolitan Region Main Roads Western Australia PO Box 6202 EAST PERTH WA 6892 • Dear Mr Collins CPS 818/5 - OFFSET PROPOSAL - INDIAN OCEAN DRIVE OVERTAKING LANES, NORTH OF YANCHEP - AMENDEMENT I refer to your letter dated 18 January 2011, in relation to the Main Roads Western Australia's (MRWA) offset proposal "Indian Ocean Drive (M045) - Road Construction of Northbound and Southbound Overtaking Lanes between 6.3 and 9.2 SLK" (version 2, dated 19 November 2010). The offset proposal was approved by the Department of Environment and Conservation's (DEC) CEO on 30 November 2010 in accordance with conditions 5(a)(ii), 9(c) and Part V of cleahng permit CPS 818/5. The approved offset proposal sought to offset the proposed clearing of 1.023 hectares of native vegetation through the revegetation of 1.91 hectares in two disused roads (an old military road {UCL} and Clover Road {Gnangara-Moore River State Forest}) and a disused gravel pit within Gnangara-Moore River State Forest and a research plot within Yanchep National Park. MRWA is seeking an amended approval letter to change the current requirement for monitoring to occur monthly from September 2011 to August 2014 to monthly monitoring from September-November 2011, March-May 2012 and September-November 2012 only, followed by six-monthly monitoring, with annual reports submitted to DEC in August each year. -
Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Pollination Ecology and Evolution of Epacrids
Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes. -
Martu Aboriginal People's Uses and Knowledge of Their
To hunt and to hold: Martu Aboriginal people’s uses and knowledge of their country, with implications for co-management in Karlamilyi (Rudall River) National Park and the Great Sandy Desert, Western Australia Fiona J. Walsh, B.Sc. (Zoology), M.Sc. Prelim. (Botany) This thesis is presented for the degree of Doctor of Philosophy of The University of Western Australia School of Social and Cultural Studies (Anthropology) and School of Plant Biology (Ecology) 2008 i Photo i (title page) Rita Milangka displays Lil-lilpa (Fimbristylis eremophila), the UWA Department of Botany field research vehicle is in background. This sedge has numerous small seeds that were ground into an edible paste. Whilst Martu did not consume sedge and grass seeds in contemporary times, their use was demonstrated to younger people and visitors. ii DEDICATION This dissertation is dedicated to my parents, Dianne and John Walsh. My mother cultivated my joy in plants and wildlife. She introduced me to my first bush foods (including kurarra, kogla, ‘honeysuckle’, bardi grubs) on Murchison lands inhabited by Yamatji people then my European pastoralist forbearers.1 My father shares bush skills, a love of learning and long stories. He provided his Toyota vehicle and field support to me on Martu country in 1988. The dedication is also to Martu yakurti (mothers) and mama (fathers) who returned to custodial lands to make safe homes for children and their grandparents and to hold their country for those past and future generations. Photo ii John, Dianne and Melissa Walsh (right to left) net for Gilgie (Freshwater crayfish) on Murrum in the Murchison. -
Connaissance Et Histoire Des Plantes Utiles De Nouvelle-Calédonie : Une Pièce À Tiroirs
Dossier spécial : Nouvelle-Calédonie Connaissance et histoire des plantes utiles de Nouvelle-Calédonie : une pièce à tiroirs P. Cabalion1, E. Hnawia2 La connaissance naturaliste des plantes de toute région du monde s'acquiert généralement de deux manières qui se complètent, l'approche traditionnelle et l'approche scientifique. En Nouvelle-Calédonie, les savoirs locaux sur les "plantes utiles" (d'intérêt alimentaire, médicinal, artisanal, culturel) se sont construits à partir d'un fond culturel océanien qui s'est appliqué et diversifié localement. Il en résulte théoriquement 28 corpus de connaissances liés aux 28 langues mélanésiennes présentes, regroupées en 8 aires culturelles. Quant à l'approche scientifique de ces mêmes plantes et de la flore en général, elle s'est construite à partir des contacts entre Européens et Océaniens. Un tableau historique des démarches qui ont fait connaître et reconnaître les plantes de Nouvelle-Calédonie ainsi que leurs usages est présenté dans cet article de manière très succincte. La course aux épices et à la soie qui a fait voyager Marco Polo vers l'Asie et la Chine n'est pas sans importance pour la suite des événements dans le Pacifique : voyages d'exploration, le long des routes du poivre, de la muscade et du clou de girofle, recherches du "siècle des lumières" puis perspectives économiques et/ou coloniales, avant d'en arriver aux évolutions actuelles. Un tableau des plantes médicinales de Calédonie identifiées en 1862 est présenté en annexe. La conclusion reste bien sûr à écrire. Résumé INTRODUCTION Les quatre derniers siècles ont vu sʼamplifier les contacts entre ceux qui étaient devenus les autochtones, en tant que premiers Les savoirs empiriques et la connaissance scientifique de ces arrivants, et divers Européens. -
Supporting Documentation
Westdeen Holdings Jurien Lime Sand Project M70/307 Jurien Clearing Application CPS 5652/1 - Supporting Document 29 July 2011 Revision: 1 Prepared by: Bill Biggs on behalf of: Biggs & Associates Consulting Services 42 Sandpiper Cove BAACS Broadwater Western Australia 6280 ABN: 90 139 089 384 Phone: +61 8 9751 1948 Mobile: +61 4 1894 3624 Email: [email protected] Westdeen Holdings Jurien Clearing Application CPS 5652/1 - Supporting Document Jurien Lime Sand Project M70/307 29 July 2011 © Biggs & Associates Consulting Services Page 2 of 12 Westdeen Holdings Jurien Clearing Application CPS 5652/1 - Supporting Document Jurien Lime Sand Project M70/307 29 July 2011 Table of Contents Executive Summary ........................................................................................................................................ 4 1 Introduction ........................................................................................................................................ 5 1.1 Background ....................................................................................................................................... 6 1.2 Floristics ............................................................................................................................................ 6 2 State and National Database Searches ................................................................................................. 7 2.1 Naturebase ...................................................................................................................................... -
Bossiaea Tasmanica
Threatened Species Link www.tas.gov.au SPECIES MANAGEMENT PROFILE Bossiaea tasmanica spiny bossia Group: Magnoliophyta (flowering plants), Magnoliopsida (dicots), Fabales, Fabaceae Status: Threatened Species Protection Act 1995: rare Environment Protection and Biodiversity Conservation Act 1999: Not listed Endemic Found only in Tasmania Status: Key Points Important: Is this species in your area? Do you need a permit? Ensure you’ve covered all the issues by checking the Planning Ahead page. Important: Different threatened species may have different requirements. For any activity you are considering, read the Activity Advice pages for background information and important advice about managing around the needs of multiple threatened species. Surveying Key Survey reliability more info To ensure you follow the law - check whether your M Best time to survey survey requires a permit. Always report any new records M Potential time to survey to the Natural Values Atlas, or send the information direct to the Threatened Species Section. Refer to the Activity Advice: Surveying page for background information. M Poor time to survey M Non-survey period Bossiaea obcordata Spring Summer Autumn Winter spiny bossia S S O O N N D D J J F F M M A A M M J J J J A A Flowering of this shrub is in late spring and early summer. Most herbarium specimens have been collected from October to January. It is identifiable from vegetative characteristics. Bossiaea obcordata is found in very dry sites within dry sclerophyll forest in the north-east and on the East Coast of the State. It is often recorded with Eucalyptus sieberi (ironbark). -
Rare Or Threatened Vascular Plant Species of Wollemi National Park, Central Eastern New South Wales
Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales. Stephen A.J. Bell Eastcoast Flora Survey PO Box 216 Kotara Fair, NSW 2289, AUSTRALIA Abstract: Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation signiicance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of signiicant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classiication, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp. -
Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al. -
Ecology of Pyrmont Peninsula 1788 - 2008
Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Sydney, 2010. Ecology of Pyrmont peninsula iii Executive summary City Council’s ‘Sustainable Sydney 2030’ initiative ‘is a vision for the sustainable development of the City for the next 20 years and beyond’. It has a largely anthropocentric basis, that is ‘viewing and interpreting everything in terms of human experience and values’(Macquarie Dictionary, 2005). The perspective taken here is that Council’s initiative, vital though it is, should be underpinned by an ecocentric ethic to succeed. This latter was defined by Aldo Leopold in 1949, 60 years ago, as ‘a philosophy that recognizes[sic] that the ecosphere, rather than any individual organism[notably humans] is the source and support of all life and as such advises a holistic and eco-centric approach to government, industry, and individual’(http://dictionary.babylon.com). Some relevant considerations are set out in Part 1: General Introduction. In this report, Pyrmont peninsula - that is the communities of Pyrmont and Ultimo – is considered as a microcosm of the City of Sydney, indeed of urban areas globally. An extensive series of early views of the peninsula are presented to help the reader better visualise this place as it was early in European settlement (Part 2: Early views of Pyrmont peninsula). The physical geography of Pyrmont peninsula has been transformed since European settlement, and Part 3: Physical geography of Pyrmont peninsula describes the geology, soils, topography, shoreline and drainage as they would most likely have appeared to the first Europeans to set foot there. -
Gardens and Stewardship
GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point.