Crystal Cove, Orange County, California April 29, 2001 Species List

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Cove, Orange County, California April 29, 2001 Species List PISCO Coastal Biodiversity Survey University of California Santa Cruz http://cbsurveys.ucsc.edu Please note: The information listed below is provided for your convenience. We ask that you please contact the SWAT Team ([email protected]) prior to using this information for any purpose. We make this request to: 1. Reduce redundancy; we may be currently working on projects that involve this information. 2. We would like to be informed of and involved in projects developed using this information. We have been careful to voucher any organisms that were difficult to identify in the field so that more detailed evaluation could be done in the lab. We are therefore confident that the identification of organisms listed below is reliable with the caveat that some sponges and tunicates are very difficult to identify to species without detailed histological evaluation, which we have not done. The number of cases where this could have been a problem is very small. For more information please visit our website above or link directly to our protocols at: http://cbsurveys.ucsc.edu/sampling/images/dataprotocols.pdf Crystal Cove, Orange County, California April 29, 2001 Species list: Acanthinucella spp Haliptylon gracile Amphiroa beauvoisii Hildenbrandia/Peyssonnelia spp Anthopleura elegantissima Hypnea johnstonii Anthopleura sola Jania crassa Aplidium californica/solidum Laurencia pacifica/masonii Balanus glandula Lepidochitona dentiens Blue green algae Lepidochitona hartwegii Brachidontes/Septifer spp Lithothrix aspergillum Calliarthron spp Littorina keenae Callithamnion pikeanum Littorina plena/scutulata Caulacanthus ustulatus Lottia austrodigitalis/digitalis Centroceras/Ceramium/Corallophila spp Lottia limatula Centroceras/Ceramium/Polysiphonia spp Lottia paradigitalis/strigatella Ceratostoma foliatum Lottia pelta Chondracanthus canaliculatus Lottia scabra/conus Chondria decipiens Lottia scutum Chthamalus spp Macron lividus Colpomenia/Leathesia spp Mazzaella leptorhynchos Conus californicus Mopalia spp Corallina spp Mytilus californianus Cryptopleura/Hymenena spp Nemalion helminthoides Diatoms Nucella emarginata/ostrina Dictyopteris undulata Nuttallina spp Dictyota binghamiae/flabellata Ocenebra circumtexta Dictyota/pachydictyon spp Opalia funiculata Egregia menziesii Osmundea spectabilis Eisenia arborea Pachydictyon coriaceum Encrusting coralline Pachygrapsus crassipes Endarachne binghamiae Pagurus granisomanus Epitonium tinctum Pagurus hirsutiusculus Fissurella volcano Pagurus samuelis Gastroclonium subarticulatum Petrocelis spp Gelidium coulteri Petrospongium rugosum Gelidium pusillum Phragmatopoma californica Gelidium spp Phyllospadix torreyi Halidrys dioica Pisaster ochraceus Pista spp Serpula vermicularis Plocamium cartilagineum Serpulorbis squamigerus Pollicipes polymerus Silvetia compressa Porphyra spp Spirorbis spp Pseudochama exogyra Strongylocentrotus purpuratus Pterocladiella capillacea Taonia lennebackerae Pterosiphonia baileyi Tegula aureotincta Pterosiphonia dendroidea/pennata Tegula eiseni Ralfsiaceae Tegula funebralis Rhodymenia californica Tegula gallina Rhodymenia pacifica Tetraclita rubescens Sargassum muticum Ulva spp Scytosiphon spp Zonaria farlowii PISCO Coastal Biodiversity Survey University of California Santa Cruz http://cbsurveys.ucsc.edu Please note: The information listed below is provided for your convenience. We ask that you please contact the SWAT Team ([email protected]) prior to using this information for any purpose. We make this request to: 1. Reduce redundancy; we may be currently working on projects that involve this information. 2. We would like to be informed of and involved in projects developed using this information. We have been careful to voucher any organisms that were difficult to identify in the field so that more detailed evaluation could be done in the lab. We are therefore confident that the identification of organisms listed below is reliable with the caveat that some sponges and tunicates are very difficult to identify to species without detailed histological evaluation, which we have not done. The number of cases where this could have been a problem is very small. For more information please visit our website above or link directly to our protocols at: http://cbsurveys.ucsc.edu/sampling/images/dataprotocols.pdf Crystal Cove, Orange County, California May 19, 2003 Species list: Acanthinucella spp Gastroclonium subarticulatum Acrosorium ciliolatum Gelidium coulteri Ahnfeltiopsis leptophylla Gelidium coulteri/pusillum Amphissa versicolor Gelidium robustum Anthopleura elegantissima Haliptylon gracile Anthopleura sola Hildenbrandia/Peyssonnelia spp Aplysia californica Hypnea spp Balanus glandula Hypnea valentiae Blue green algae Jania crassa Bossiella spp Jania tenella Brachidontes/Septifer spp Laurencia pacifica/masonii Caulacanthus ustulatus Lepidochitona dentiens Centroceras/Ceramium/Corallophila spp Lepidochitona hartwegii Chaetomorpha spiralis Leucetta losangelensis Chondracanthus canaliculatus Lithothrix aspergillum Chondria decipiens Littorina keenae Chondria nidifica Littorina plena/scutulata Chthamalus spp Lottia austrodigitalis/digitalis Colpomenia/Leathesia spp Lottia limatula Conus californicus Lottia ochracea Corallina spp Lottia paradigitalis/strigatella Cryptopleura/Hymenena spp Lottia pelta Cumagloia andersonii Lottia scabra/conus Cystoseira osmundacea Macron lividus Diatoms Mazzaella affinis Dictyopteris undulata Mazzaella spp Dictyota binghamiae/flabellata Mytilus californianus Egregia menziesii Mytilus galloprovincialis/trossulus Eisenia arborea Nemalion helminthoides Encrusting coralline Nienburgia andersoniana Endarachne binghamiae Norrisia norrisi Epitonium tinctum Nucella emarginata/ostrina Erythroglossum californicum Nuttallina spp Fissurella volcano Ocenebra circumtexta Gastroclonium parvum Odonthalia floccosa Opalia funiculata Pterosiphonia baileyi Ophlitaspongia pennata Pterosiphonia dendroidea/pennata Osmundea sinicola Ralfsiaceae Osmundea spectabilis Rhodymenia californica Pachydictyon coriaceum Rhodymenia pacifica Pachygrapsus crassipes Roperia poulsoni Pagurus hirsutiusculus Sarcodiotheca gaudichaudii Pagurus samuelis Sargassum muticum Petrocelis spp Scytosiphon spp Petrolisthes spp Serpulorbis squamigerus Petrospongium rugosum Silvetia compressa Phragmatopoma californica Spirorbis spp Phyllospadix torreyi Strongylocentrotus purpuratus Pisaster ochraceus Tegula aureotincta Plocamium cartilagineum Tegula eiseni Pollicipes polymerus Tegula funebralis Polysiphonia spp Tegula gallina Porphyra spp Tetraclita rubescens Pseudochama exogyra Tiffaniella snyderiae Pseudolithoderma nigra Ulva spp Pterocladia media Zonaria farlowii Pterocladiella capillacea PISCO Coastal Biodiversity Survey University of California Santa Cruz http://cbsurveys.ucsc.edu Please note: The information listed below is provided for your convenience. We ask that you please contact the SWAT Team ([email protected]) prior to using this information for any purpose. We make this request to: 1. Reduce redundancy; we may be currently working on projects that involve this information. 2. We would like to be informed of and involved in projects developed using this information. We have been careful to voucher any organisms that were difficult to identify in the field so that more detailed evaluation could be done in the lab. We are therefore confident that the identification of organisms listed below is reliable with the caveat that some sponges and tunicates are very difficult to identify to species without detailed histological evaluation, which we have not done. The number of cases where this could have been a problem is very small. For more information please visit our website above or link directly to our protocols at: http://cbsurveys.ucsc.edu/sampling/images/dataprotocols.pdf Crystal Cove, Orange County, California May 9, 2004 Species list: Acanthinucella spp Fissurella volcano Ahnfeltiopsis leptophylla Gastroclonium subarticulatum Alia spp Gelidium coulteri Amphissa versicolor Gelidium coulteri/pusillum Anthopleura elegantissima Gelidium purpurascens Anthopleura sola Gelidium pusillum Aplysia californica Gracilariopsis andersonii/papenfussii Balanus glandula Halidrys dioica Boring clam Haliptylon gracile Bossiella spp Hypnea valentiae Brachidontes/Septifer spp Jania crassa Bulla gouldiana Laurencia pacifica/masonii Calliarthron spp Lepidochitona hartwegii Callithamnion pikeanum Lepidozona spp Callophyllis violacea Lithothrix aspergillum Caulacanthus ustulatus Littorina keenae Centroceras/Ceramium/Corallophila spp Littorina plena/scutulata Chondracanthus canaliculatus Lottia austrodigitalis/digitalis Chondria californica Lottia limatula Chondria decipiens Lottia paradigitalis/strigatella Chthamalus spp Lottia pelta Cladophora columbiana Lottia scabra/conus Colpomenia/Leathesia spp Lottia scutum Conus californicus Macron lividus Corallina spp Mazzaella affinis Cryptopleura/Hymenena spp Mazzaella leptorhynchos Diatoms Mopalia spp Dictyota binghamiae/flabellata Mytilus californianus Ectocarpales Mytilus galloprovincialis/trossulus Egregia menziesii Nienburgia andersoniana Eisenia arborea Nucella canaliculata Encrusting coralline Nuttallina spp Endarachne binghamiae Ocenebra circumtexta Epitonium tinctum Osmundea sinicola Erythroglossum californicum Pachydictyon coriaceum Pachygrapsus crassipes Ralfsiaceae Pagurus hirsutiusculus Rhodymenia pacifica Pagurus samuelis Roperia poulsoni Petrocelis spp Sargassum agardhianum Petrolisthes spp Sargassum muticum Petrospongium rugosum Serpula vermicularis Phragmatopoma californica Serpulorbis squamigerus Phyllospadix scouleri Silvetia compressa Phyllospadix torreyi Strongylocentrotus purpuratus Pisaster ochraceus Tegula aureotincta Plocamium cartilagineum Tegula eiseni Plocamium violaceum Tegula funebralis Pollicipes polymerus Tegula gallina Polysiphonia spp Tetraclita rubescens Pseudochama exogyra Tiffaniella snyderiae Pseudolithoderma nigra Ulva spp Pterocladiella capillacea Zonaria farlowii Pterosiphonia dendroidea/pennata .
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • Mollusks of Manuel Antonio National Park, Pacific Costa Rica
    Rev. Biol. Trop. 49. Supl. 2: 25-36, 2001 www.rbt.ac.cr, www.ucr.ac.cr Mollusks of Manuel Antonio National Park, Pacific Costa Rica Samuel Willis 1 and Jorge Cortés 2-3 1140 East Middle Street, Gettysburg, Pennsylvania 17325, USA. 2Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, 2060 San José, Costa Rica. FAX: (506) 207-3280. E-mail: [email protected] 3Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. (Received 14-VII-2000. Corrected 23-III-2001. Accepted 11-V-2001) Abstract: The mollusks in Manuel Antonio National Park on the central section of the Pacific coast of Costa Rica were studied along thirty-six transects done perpendicular to the shore, and by random sampling of subtidal environments, beaches and mangrove forest. Seventy-four species of mollusks belonging to three classes and 40 families were found: 63 gastropods, 9 bivalves and 2 chitons, during this study in 1995. Of these, 16 species were found only as empty shells (11) or inhabited by hermit crabs (5). Forty-eight species were found at only one locality. Half the species were found at one site, Puerto Escondido. The most diverse habitat was the low rocky intertidal zone. Nodilittorina modesta was present in 34 transects and Nerita scabricosta in 30. Nodilittorina aspera had the highest density of mollusks in the transects. Only four transects did not clustered into the four main groups. The species composition of one cluster of transects is associated with a boulder substrate, while another cluster of transects associates with site.
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of Central Chile
    Journal of South American Earth Sciences 17 (2004) 73–88 www.elsevier.com/locate/jsames Miocene Vetigastropoda and Neritimorpha (Mollusca, Gastropoda) of central Chile Sven N. Nielsena,*, Daniel Frassinettib, Klaus Bandela aGeologisch-Pala¨ontologisches Institut und Museum, Universita¨t Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany bMuseo Nacional de Historia Natural, Casilla 787, Santiago, Chile Abstract Species of Vetigastropoda (Fissurellidae, Turbinidae, Trochidae) and one species of Neritimorpha (Neritidae) from the Navidad area, south of Valparaı´so, and the Arauco Peninsula, south of Concepcio´n, are described. Among these, the Fissurellidae comprise Diodora fragilis n. sp., Diodora pupuyana n. sp., two additional unnamed species of Diodora, and a species resembling Fissurellidea. Turbinidae are represented by Cantrainea sp., and Trochidae include Tegula (Chlorostoma) austropacifica n. sp., Tegula (Chlorostoma) chilena n. sp., Tegula (Chlorostoma) matanzensis n. sp., Tegula (Agathistoma) antiqua n. sp., Bathybembix mcleani n. sp., Gibbula poeppigii [Philippi, 1887] n. comb., Diloma miocenica n. sp., Fagnastesia venefica [Philippi, 1887] n. gen. n. comb., Fagnastesia matanzana n. gen. n. sp., Calliostoma mapucherum n. sp., Calliostoma kleppi n. sp., Calliostoma covacevichi n. sp., Astele laevis [Sowerby, 1846] n. comb., and Monilea riorapelensis n. sp. The Neritidae are represented by Nerita (Heminerita) chilensis [Philippi, 1887]. The new genus Fagnastesia is introduced to represent low-spired trochoideans with a sculpture of nodes below the suture, angulated whorls, and a wide umbilicus. This Miocene Chilean fauna includes genera that have lived at the coast and in shallow, relatively warm water or deeper, much cooler water. This composition therefore suggests that many of the Miocene formations along the central Chilean coast consist of displaced sediments.
    [Show full text]
  • Evolutionary Consequences of Food Chain Length in Kelp Forest Communities (Biogeography/Coevolution/Herbivory/Phlorotannins/Predation) PETER D
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 8145-8148, August 1995 Ecology Evolutionary consequences of food chain length in kelp forest communities (biogeography/coevolution/herbivory/phlorotannins/predation) PETER D. STEINBERG*, JAMES A. ESTEStt, AND FRANK C. WINTER§ *School of Biological Sciences, University of New South Wales, P.O. Box 1, Kensington, New South Wales, 2033, Australia; tNational Biological Service, A-316 Earth and Marine Sciences Building, University of California, Santa Cruz, CA 95064; and §University of Auckland, Leigh Marine Laboratory, P.O. Box 349, Warkworth, New Zealand Communicated by Robert T. Paine, University of Washington, Seattle, WA, May 12, 1995 ABSTRACT Kelp forests are strongly influenced by mac- consistently important structuring processes throughout the roinvertebrate grazing on fleshy macroalgae. In the North food web. Under these conditions, we would predict that Pacific Ocean, sea otter predation on macroinvertebrates top-level consumers are resource limited. Consequently, the substantially reduces the intensity of herbivory on macroal- next lower trophic level should be consumer limited, in turn gae. Temperate Australasia, in contrast, has no known pred- causing the level below that (if one exists) to again be resource ator of comparable influence. These ecological and biogeo- limited. Looking downward through the food web from this graphic patterns led us to predict that (i) the intensity of very generalized perspective, a pattern emerges of strongly herbivory should be greater in temperate Australasia than in interacting couplets of adjacent trophic levels. Given these the North Pacific Ocean; thus (ii) Australasian seaweeds have circumstances, the interactive coupling between plants and been under stronger selection to evolve chemical defenses and herbivores should be strong in even-numbered systems and (iii) Australasian herbivores have been more strongly selected weak in odd-numbered systems, a prediction recently substan- to tolerate these compounds.
    [Show full text]
  • Intertidal Narrative
    Warner Pacific College Boiler Bay Intertidal Trip - Dwight J. Kimberly This is a summary of things to look for on the field trip and a few suggestions to make the trip more enjoyable for you. Be careful where you step because the intertidal floor is the home of many animals. No animals will be collected without a permit. When close to the surf, watch the ocean at all times. Take your time climbing around the rocks. They are slick and a fall could break a bone or remove skin. Use the accompanying checklist to key the phyla that you have learned in the course The following discussion is based upon Ricketts and Calvin, Between the Pacific Tides. Three factors modify the intertidal marine fauna: 1) wave shock, 2) tidal exposure and 3) type of bottom. You will see an example of the protected rocky coast in which the shock of the waves is reduced by the influence of a long sloping shelf. Other possible modifications which produce the same result are offshore reefs, headlands, islands or large kelp beds. The bottom is typically rocky and affords a firm substrate for animal attachment to plants and animals. By turning over rocks you will uncover a myriad of animals, but at the same time expose them to the fatal effects of the sun. Therefore, replace the rocks as you found them to assure the survival of these animals. The zonation of the animal life as a result of the tides is apparent. Familiarize yourself with the zones and their characteristics. ZONE 1.
    [Show full text]
  • Tezula Funebralis Shell Height Variance in the Intertidal Zones
    Laci Uyesono Structural Comparison Adaptations of Marine Animals Tezula funebralis Shell height variance in the Intertidal zones Introduction The Pacific Coast of the United States is home to a great diversity of biota that populates both extremes, from the constantly battered rocks to the calm ocean floor. As a result of this diversity or because of this diversity there are distinct zones created by the physical, chemical, and biological constraints of the organisms. Tegula funebralis (T funebralis) commonly called the Black Turban shell is found in the low to high intertidal zones of rocky shores on or under rocks grazing on macroalgae. T funebralis can be purple to black in color with four whirls on top (usually worn down to a light color at the top), average 3cm in diameter, and can live up to 100 years (Sept 1999). T funebralis' density tends to be greater in the mid to high intertidal zone due to predation by octopus, Pisaster ochraceous, and crabs (Fawcett 1984). They also show a pattern of distribution where juveniles (those not of reproductive size —14mm) stay in the mid intertidal zone because it is midway between the physical stress of desiccation and the biological stress of predation (Fawcett 1984). Generally larger snails are able to withstand desiccation more then smaller snails, but larger Tegula have a greater advantage living lower in the intertidal even at the risk of predation. They are kept at moderate levels in this zone because Pisaster feeds on them and reduces their density, which then increases the food abundance for those who remain (Doering and Phillips 1983).
    [Show full text]
  • Studies on the Ecological Distribution of the Genus Tegula at Bodega Bay, California
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1950 Studies on the ecological distribution of the genus Tegula at Bodega Bay, California Allen Emmert Breed University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Breed, Allen Emmert. (1950). Studies on the ecological distribution of the genus Tegula at Bodega Bay, California. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/1115 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. &rUD! ES ON THE l!VOLOGICAL DISTRIBUTION OF THE I' GENUS TEGULA AT BODEGA BAY , CALIFORNIA A Thesis Presented to t he Faculty of the Department of Zoology College of the Pacific I I I n Partial Fulfillment of the Requirements for the Degree Mas·ter of Arts by Al len Emmert Breed •II June 1950 l ) TABLE OF CO!'-."'TENrS PAGE I. IN'l'HODUC'l'ION ............................. ., • 1 The Pro bl ern ••••••••••••••••••••••••••••• 1 I mportanc e of the Study ••••••••••••••• 1 Stat ement of t he Problem •••••••••••••• 2 Acknowledgment • • • • • • • • • • • • • • • • • • • • • • • • • • 2 Description of t he Local Species •••••••• 3 II. AREA OF OBSroiVATION ••••••••••••••••••••••• 9 General Location •••••••••• • ••••••••••••• 9 Geological History •••••••••••.••••••••••• 9 III. Mh~HODS AND EQUIPMENT ................ ... 12 Field Equipment .......................... l B Prepar ation of the Radulae •••••••••••••• 13 IV • EJOLOG-IG.AL OBSERVAT-IONS • ......- •••••• •• •• ;-;-••••- - 17 Perch·Rock Area •••••••••••• ••• •••••••••• 17 Second Sled Ro ad Areo •••••••• • •••••••••• 20 East Side of Toma l es Point •••••••••••••• 25 West Side of Tomol es Point •••••••••••••• 29 v.
    [Show full text]
  • See Life Trunk
    See Life Trunk CABRILLO NATIONAL MONUMENT Objective The See Life Trunk is designed to help students experience the vast biodiversity of earth’s marine ecosystems from the comfort of their classroom. The activities, books, and DVDs in this trunk specifically target third and fourth grade students based on Next Generation Science Standards. The trunk will bring to life the meaning of biodiversity in the ocean, its role in the maintenance and function of healthy marine ecosystems, and what students can do to help protect this environment for generations to come. What’s Inside Books: In One Tidepool: Crabs, Snails and Salty Tails SEASHORE (One Small Square series) CORAL REEFS (One Small Square series) The Secrets of Kelp Forests The Secrets of the Tide Pools Shells of San Diego DVDs: Eyewitness Life Eyewitness Seashore Eyewitness Ocean Bill Nye the Science Guy: Ocean Life On the Edge of Land and Sea Activities, Resources & Worksheets: Marine Bio-Bingo Guess Who: Intertidal Patterns in Nature See Life & Habitats o Classroom set of Michael Ready photographs o 3D-printed biomodels Science Sampler Intro to Nature Journaling o Creature Features o Baseball Cards Who Am I? Beyond the Classroom Activities Intertidal Exploration 3D Cabrillo Bioblitz Beach clean-up How to Use this Trunk The See Life Trunk is designed to be used in a variety of ways. Most of the activities in the trunk can be adapted for any number of people for any amount of time, but some activities are better suited for entire-class participation (i.e. watching DVDs, Nature Journaling) while others are better suited for small groups (i.e.
    [Show full text]
  • Range Expansion of a Non-Native, Invasive Macroalga Sargassum Horneri (Turner) C. Agardh, 1820 in the Eastern Pacific
    BioInvasions Records (2015) Volume 4, Issue 4: 243–248 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.4.02 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication Range expansion of a non-native, invasive macroalga Sargassum horneri (Turner) C. Agardh, 1820 in the eastern Pacific 1,2 2 2 1,2 2,3 Lindsay M. Marks *, Paulina Salinas-Ruiz , Daniel C. Reed , Sally J. Holbrook , Carolynn S. Culver , 2 4 2 5 6 John M. Engle , David J. Kushner , Jennifer E. Caselle , Jan Freiwald , Jonathan P. Williams , Jayson R. 7 8 9 Smith , Luis E. Aguilar-Rosas and Nikolas J. Kaplanis 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California 93106-6150, USA 2Marine Science Institute, University of California Santa Barbara, Santa Barbara, California 93106-6150, USA 3California Sea Grant, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0232, USA 4Channel Islands National Park, 1901 Spinnaker Drive, Ventura, California 93001, USA 5Reef Check Foundation, 13723 Fiji Way, B-2, Marina del Rey, California 90292, USA 6Moore Laboratory of Zoology, Occidental College, Los Angeles, California 90041, USA 7Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA 8Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carr. Transpeninsular Ensenada-Tijuana, 3917. Frac. Playitas, Ensenada, Baja California, México. C.P. 22860 9Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0202, USA *Corresponding author E-mail: [email protected] Received: 11 July 2015 / Accepted: 18 August 2015 / Published online: 19 October 2015 Handling editor: Charles Martin Abstract Sargassum horneri (Turner) C.
    [Show full text]
  • Marine Mollusks of Bahía Málaga, Colombia (Tropical Eastern Pacific)
    10TH ANNIVERSARY ISSUE Check List the journal of biodiversity data LISTS OF SPECIES Check List 11(1): 1497, January 2015 doi: http://dx.doi.org/10.15560/11.1.1497 ISSN 1809-127X © 2015 Check List and Authors Marine mollusks of Bahía Málaga, Colombia (Tropical Eastern Pacific) Luz Ángela López de Mesa1* and Jaime R. Cantera2 1 Texas A&M University-Corpus Christi, Biology, 6300 Ocean Dr. CS 239 annex, Corpus Christi, TX, USA 2 Universidad del Valle, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Calle 13 # 100-00, Cali, Colombia * Corresponding author. E-mail: [email protected] Abstract: A checklist of mollusks reported in Bahía Málaga hence high biodiversity. Its littoral zone, with an area of 136 (Valle del Cauca, Colombia) was developed through recent km2, is composed of different ecosystems, such as rocky and samplings in the zone (2004–2012), together with bibliograph- sandy shores, muddy flats, and mangrove forests (Cantera ic and museums’ collections reviews. Species’ distributions 1991). in Bahía Málaga were established through 18 different sub- Rocky shores in Bahía Málaga may consist of cliffs and/or regions, which included the inner, middle and outer zones of boulders. The range in the size and texture of the particles the bay. A revision of the western American distribution for present in the rocky shores allow for a variety of microhabi- the species was also carried out. A total of 426 species were tats, making it a very diverse ecosystem (INVEMAR et al. found, of which 44 were new reports for the Colombian Pacific 2007). Sandy beaches consist of very fine particles that may coast.
    [Show full text]