Long-Term Monitoring Protocol

Total Page:16

File Type:pdf, Size:1020Kb

Long-Term Monitoring Protocol Unified Monitoring Protocols for the Multi-Agency Rocky Intertidal Network (November 2008) John M. Engle Unified Monitoring Protocols for the Multi-Agency Rocky Intertidal Network (November 2008) John M. Engle Marine Science Institute University of California Santa Barbara, CA 93106 Prepared under MMS Cooperative Agreement No. 14-35-0001-30761 Marine Science Institute University of California Santa Barbara, CA 93106 U.S. Department of the Interior Minerals Management Service Pacific OCS Region Camarillo, California J. Engle MARINE Protocol Handbook 0811.doc 11/05/08 Page 2 TABLE OF CONTENTS LIST OF TABLES.......................................................................................................................... 4 LIST OF FORMS ........................................................................................................................... 5 1. INTRODUCTION ..................................................................................................................... 6 1.1 Multi-Agency Rocky Intertidal Network Monitoring Program Background ...................... 6 1.2 Handbook Purpose............................................................................................................... 7 2. TARGET SPECIES ASSEMBLAGE MONITORING SURVEYS.......................................... 8 2.1 Monitoring Sites .................................................................................................................. 8 2.2 Sampling Design: Target Species Assemblage/Fixed Plot Methodology ........................... 9 2.2.1 Target, Core, and Optional Species .............................................................................. 9 2.2.2 Fixed Plot Sampling Design ....................................................................................... 11 3. SURVEY PROTOCOLS ......................................................................................................... 16 3.1 Field Log and Site Reconnaissance Protocol..................................................................... 16 3.1.1 Completing the Field Log and Conducting Site-Wide Reconnaissance..................... 16 3.1.2 Managing Field Log and Site Reconnaissance Data................................................... 18 3.2 Habitat Overview Photograph Protocol............................................................................. 18 3.2.1 Photographing Habitats and Other Site Features........................................................ 18 3.2.2 Managing Habitat Overview Photographs.................................................................. 20 3.3 Photoplot Protocol ............................................................................................................. 20 3.3.1 Photographing Photoplots........................................................................................... 20 3.3.2 Sketching Plots and Taking Notes .............................................................................. 22 3.3.3 Scoring Cover in Photoplots – General Procedures.................................................... 23 3.3.4 Scoring Cover in Photoplots – Specific Procedures ................................................... 24 3.3.5 Managing Photoplot Data and Photographs ............................................................... 26 3.4 Point-Intercept Transect Protocol ...................................................................................... 28 3.4.1 Scoring Cover on Point-Intercept Transects............................................................... 28 3.4.2 Managing Point-Intercept Transect Data.................................................................... 30 3.5 Owl Limpet Plot Protocol .................................................................................................. 31 3.5.1 Counting and Measuring Owl Limpets in Plots.......................................................... 31 3.5.2 Managing Owl Limpet Plot Data................................................................................ 32 3.6 Black Abalone and Ochre Seastar Monitoring Protocol.................................................... 32 3.6.1 Counting and Measuring Black Abalone and Ochre Seastars .................................... 32 3.6.2 Timed Search Protocol................................................................................................ 34 3.6.3 Managing Black Abalone and Ochre Seastar Plot Data ............................................. 35 3.7 Northern Sea Palm Monitoring Protocol ........................................................................... 35 3.7.1 Counting Northern Sea Palms in Grid Transects........................................................ 35 3.7.2 Managing Northern Sea Palm Data ............................................................................ 35 3.8 Motile Invertebrate Monitoring Protocol........................................................................... 36 3.8.1 Counting and Measuring Motile Invertebrates in Photoplots..................................... 36 3.8.2 Managing Motile Invertebrate Data............................................................................ 37 3.9 Invertebrate Recruitment Protocol..................................................................................... 38 3.9.1 Field scoring barnacle clearings and collecting barnacle plates and mussel Tuffys... 38 3.9.2 Lab scoring barnacle plates and mussel Tuffys .......................................................... 38 3.10 Intertidal Temperature Loggers ....................................................................................... 38 4. MARINE DATA MANAGEMENT........................................................................................ 39 5. REFERENCES ........................................................................................................................ 40 J. Engle MARINE Protocol Handbook 0811.doc 11/05/08 Page 3 LIST OF TABLES Table 1. MARINe Core Monitoring and PISCO Biodiversity Survey Sites..…………………..44 Table 2. MARINe Partners……………………………………….……………………………..50 Table 3. MARINe Monitoring Groups………………………………….………………………52 Table 4. Standardized Names for Target Species Plots…………………………………………53 Table 5. MARINe Core Species, Higher Taxa, and Substrates…………………………………54 Table 6. Definitions for Core Higher Taxa and Substrates………………………….…………..56 Table 7. Target Species Monitored in Photoplots at MARINe Core Sites….......………………57 Table 8. Target Species Monitored in Transects and Plots (not photoplots)……………………61 Table 9. Motile Invertebrate Monitoring at MARINe Sites…………..…………...……………64 Table 10. Barnacle and Mussel Recruitment Monitoring at MARINe Sites……………………67 Table 11. Temperature Logger Deployment at MARINe Sites…………………………………69 J. Engle MARINE Protocol Handbook 0811.doc 11/05/08 Page 4 LIST OF FORMS Form 1a. Prototype MARINe Rocky Intertidal Field Log………………………………………71 Form 1b. Prototype MARINe Rocky Intertidal Site-Wide Species Conditions………………...72 Form 1c: MARINe Rocky Intertidal Field Log Definitions…………………………………….73 Form 2. Prototype MARINe Rocky Intertidal Photo Log………………………………………74 Form 3. Prototype MARINe Rocky Intertidal Photoplot Sketch Data Sheet…………………...76 Form 4. Prototype MARINe Rocky Intertidal Photoplot Slide-Scoring Data Sheet……………78 Form 5. Prototype MARINe Rocky Intertidal Point Intercept Transect Data Sheet……………79 Form 6. Prototype MARINe Rocky Intertidal Owl Limpet Data Sheet………………………...80 Form 7. Prototype MARINe Rocky Intertidal Abalone and Seastar Data Sheet………….…….82 Form 8. Prototype MARINe Rocky Intertidal Northern Sea Palm Data Sheet…………………83 Form 9. Prototype MARINe Rocky Intertidal Motile Invertebrate Data Sheet…………………84 J. Engle MARINE Protocol Handbook 0811.doc 11/05/08 Page 5 1. INTRODUCTION 1.1 Multi-Agency Rocky Intertidal Network Monitoring Program Background Periodic monitoring of the condition and dynamics of rocky shore marine life is critical for detecting and understanding community dynamics in order to develop management measures to anticipate and reduce acute or chronic environmental impacts. Goals of long-term rocky intertidal monitoring include the following: • Maintain an historical perspective of important resources. • Document the effects of long-term climatic changes. • Enhance understanding of the extent of temporal variation in natural systems. • Determine compliance with standards or regulations. • Provide an early warning of abnormal conditions. • Help assess and reduce environmental impacts. • Identify trends that may reflect cumulative impacts. • Guide development and evaluation of impact mitigation measures. • Provide information to assist in natural resource damage assessments. The Bureau of Land Management (BLM) (now the Minerals Management Service (MMS)) funded detailed rocky intertidal monitoring at 22 sites in southern California over a 3-4 year period in the mid to late 1970’s (Littler 1977, 1978, 1979). However, costs for these intensive surveys precluded their long-term continuation. Channel Islands National Park (CINP) was created in 1980, with a mandate to inventory and monitor biological resources. As a result, they developed a permanent, cost-effective rocky shore monitoring program based on semi- annual surveys of target species assemblages in fixed plots or transects. This innovative program was expanded to the Cabrillo National Monument (Point Loma, San Diego) in 1990. In 1992, as a result of regulatory responsibilities and an increased public concern for oil spills after the EXXON VALDEZ spill in Alaska, MMS
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • Geographic Varia Tion in Size at Maturity in Brachyuran Crabs
    BULLETIN OF MARINE SCIENCE, 45(2): 356-368, 1989 GEOGRAPHIC VARIA TION IN SIZE AT MATURITY IN BRACHYURAN CRABS Anson H. Hines ABSTRACT Geographic variation in size of sexually mature females was compared in five species of crabs at sites spanning about 10 degrees of latitude along the east and west coasts of North America. Populations were sampled along the west coast at six sites for Pachygrapsuscrassipes, four sites for Hernigrapsus nudus, eight sites for H. orgenensis, and two sites for Scyra acutifrons, and along the east coast at eight sites for Panopeus herbstii. Four of the five species showed significant geographic variation in size at onset of maturity, mean size, and size frequency distribution. P. herbstii and P. crassipes exhibited latitudinal variations and marked changes in population structure of mature females at biogeographic boundaries; P. herbstii matured at larger sizes at latitudes below Cape Hatteras; while P. crassipes matured at smaller sizes below Point Conception. H. nudus showed variation in the size distribution of mature females, but little variation in size at onset of maturity. For H. oregonensis and S. acutifrons, size at maturity varied on a local scale among neighboring populations. For S. acutifrons, a difference of about seven molts before the terminal molt at puberty was deduced to produce the observed variation in maturity. Its molt increment percentage was constant across all sizes of crabs and did not differ between two populations with disparate size structures. For H. oregonensis variation in molt increment and in the number of molts appears to account for differences in size at maturity among populations.
    [Show full text]
  • Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
    Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult).
    [Show full text]
  • 2020 Monitoring of Eelgrass Resources in Newport Bay Newport Beach, California
    MARINE TAXONOMIC SERVICES, LTD 2020 Monitoring of Eelgrass Resources in Newport Bay Newport Beach, California December 25, 2020 Prepared For: City of Newport Beach Public Works Department 100 Civic Center Drive, Newport Beach, CA 92660 Contact: Chris Miller, Public Works Manager [email protected], (949) 644-3043 Newport Harbor Shallow-Water and Deep-Water Eelgrass Survey Prepared By: MARINE TAXONOMIC SERVICES, LLC COASTAL RESOURCES MANAGEMENT, INC 920 RANCHEROS DRIVE, STE F-1 23 Morning Wood Drive SAN MARCOS, CA 92069 Laguna Niguel, CA 92677 2020 NEWPORT BAY EELGRASS RESOURCES REPORT Contents Contents ........................................................................................................................................................................ ii Appendices .................................................................................................................................................................. iii Abbreviations ...............................................................................................................................................................iv Introduction ................................................................................................................................................................... 1 Project Purpose .......................................................................................................................................................... 1 Background ...............................................................................................................................................................
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida)
    California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida) by Timothy D. Stebbins Presented to SCAMIT 13 February 2012 City of San Diego Marine Biology Laboratory Environmental Monitoring & Technical Services Division • Public Utilities Department (Revised 1/18/12) California Epicarideans Suborder Cymothoida Subfamily Phyllodurinae Superfamily Bopyroidea Phyllodurus abdominalis Stimpson, 1857 Subfamily Athelginae Family Bopyridae * Anathelges hyphalus (Markham, 1974) Subfamily Pseudioninae Subfamily Hemiarthrinae Aporobopyrus muguensis Shiino, 1964 Hemiarthrus abdominalis (Krøyer, 1840) Aporobopyrus oviformis Shiino, 1934 Unidentified species † Asymmetrione ambodistorta Markham, 1985 Family Dajidae Discomorphus magnifoliatus Markham, 2008 Holophryxus alaskensis Richardson, 1905 Goleathopseudione bilobatus Román-Contreras, 2008 Family Entoniscidae Munidion pleuroncodis Markham, 1975 Portunion conformis Muscatine, 1956 Orthione griffenis Markham, 2004 Superfamily Cryptoniscoidea Pseudione galacanthae Hansen, 1897 Family Cabiropidae Pseudione giardi Calman, 1898 Cabirops montereyensis Sassaman, 1985 Subfamily Bopyrinae Family Cryptoniscidae Bathygyge grandis Hansen, 1897 Faba setosa Nierstrasz & Brender à Brandis, 1930 Bopyrella calmani (Richardson, 1905) Family Hemioniscidae Probopyria sp. A Stebbins, 2011 Hemioniscus balani Buchholz, 1866 Schizobopyrina striata (Nierstrasz & Brender à Brandis, 1929) Subfamily Argeiinae † Unidentified species of Hemiarthrinae infesting Argeia pugettensis
    [Show full text]
  • The Oceanic Crabs of the Genera Planes and Pachygrapsus
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued IflfNvA-QJsl|} by ^e SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 101 Washington: 1951 No. 3272 THE OCEANIC CRABS OF THE GENERA PLANES AND PACHYGRAPSUS By FENNEB A. CHACE, Jr. ON September 17, 1492, at latitude approximately 28° N. and longitude 37° W., Columbus and his crew, during their first voyage to the New World, "saw much more weed appearing, like herbs from rivers, in which they found a live crab, which the Admiral kept. He says that these crabs are certain signs of land . "(Markham, 1893, p. 25). This is possibly the first recorded reference to oceanic crabs. Whether it refers to Planes or to the larger swimming crab, Portunus (Portunus) sayi (Gibbes), which is seldom found this far to the east, may be open to question, but the smaller and commoner Planes is frequently called Columbus's crab after this item in the discov­ erer's diary. Although these crabs must have been a source of wonder to mariners on the high seas in the past as they are today, the first adequate description of them did not appear until more than two centuries after Columbus's voyage when Sloane (1725, p. 270, pi. 245, fig. 1) recorded specimens from seaweed north of Jamaica. A short time later Linnaeus (1747, p. 137, pi. 1, figs. 1, a-b) described a similar form, which he had received from a Gflteborg druggist and which was reputed to have come from Canton. This specimen, which Linnaeus named Cancer cantonensis, may he the first record of the Pacific Planes cyaneus.
    [Show full text]
  • Pachygrapsus Crassipes Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Pachygrapsus crassipes Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Eucarida, Decapoda, Pleocyemata, Brachyura, The lined shore crab Eubrachyura, Heterotremata Family: Majoidea, Epialtidae, Epialtinae Taxonomy: Until recently the brachyuran Cephalothorax: family Grapsidae, the shore crabs, was very Eyes: Eyes present at anterolateral large with several subfamilies and little taxo- angle and eyestalks of moderate size with nomic scrutiny. Based on molecular and orbits deep and oblique (Fig. 2). morphological evidence, authors (von Stern- Antenna: berg and Cumberlidge 2000; Schubart et al. Mouthparts: The mouth of decapod 2000; de Grave et al. 2009; Schubart 2011) crustaceans comprises six pairs of appendag- elevated all grapsid subfamilies to the family es including one pair of mandibles (on either level, reducing the number of species for- side of the mouth), two pairs of maxillae and mally within the Grapsidae. Although recent three pairs of maxillipeds. The maxillae and molecular evidence suggest that maxillipeds attach posterior to the mouth and Hemigrapsus is no longer within this family, extend to cover the mandibles (Ruppert et al. Pachygrapsus remains one of the few 2004). The third maxilliped in P. crassipes members of the Grapsidae sensu stricto has merus, lobate and at an angle (Wicksten based on morphological evidence from 2011). adults, larvae and molecular data (Schubart Carapace: Nearly square in shape and 2011). a little broader than long, transverse lines or grooves on anterior. Lateral margins are Description most broad posterior to orbit (Wicksten 2011). Size: Carapace approximately 40 mm in Carapace sides nearly parallel, but arched width and males are larger than females (Fig. 1). (Hiatt 1948) (Fig.
    [Show full text]
  • Evolutionary Consequences of Food Chain Length in Kelp Forest Communities (Biogeography/Coevolution/Herbivory/Phlorotannins/Predation) PETER D
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 8145-8148, August 1995 Ecology Evolutionary consequences of food chain length in kelp forest communities (biogeography/coevolution/herbivory/phlorotannins/predation) PETER D. STEINBERG*, JAMES A. ESTEStt, AND FRANK C. WINTER§ *School of Biological Sciences, University of New South Wales, P.O. Box 1, Kensington, New South Wales, 2033, Australia; tNational Biological Service, A-316 Earth and Marine Sciences Building, University of California, Santa Cruz, CA 95064; and §University of Auckland, Leigh Marine Laboratory, P.O. Box 349, Warkworth, New Zealand Communicated by Robert T. Paine, University of Washington, Seattle, WA, May 12, 1995 ABSTRACT Kelp forests are strongly influenced by mac- consistently important structuring processes throughout the roinvertebrate grazing on fleshy macroalgae. In the North food web. Under these conditions, we would predict that Pacific Ocean, sea otter predation on macroinvertebrates top-level consumers are resource limited. Consequently, the substantially reduces the intensity of herbivory on macroal- next lower trophic level should be consumer limited, in turn gae. Temperate Australasia, in contrast, has no known pred- causing the level below that (if one exists) to again be resource ator of comparable influence. These ecological and biogeo- limited. Looking downward through the food web from this graphic patterns led us to predict that (i) the intensity of very generalized perspective, a pattern emerges of strongly herbivory should be greater in temperate Australasia than in interacting couplets of adjacent trophic levels. Given these the North Pacific Ocean; thus (ii) Australasian seaweeds have circumstances, the interactive coupling between plants and been under stronger selection to evolve chemical defenses and herbivores should be strong in even-numbered systems and (iii) Australasian herbivores have been more strongly selected weak in odd-numbered systems, a prediction recently substan- to tolerate these compounds.
    [Show full text]
  • Intertidal Narrative
    Warner Pacific College Boiler Bay Intertidal Trip - Dwight J. Kimberly This is a summary of things to look for on the field trip and a few suggestions to make the trip more enjoyable for you. Be careful where you step because the intertidal floor is the home of many animals. No animals will be collected without a permit. When close to the surf, watch the ocean at all times. Take your time climbing around the rocks. They are slick and a fall could break a bone or remove skin. Use the accompanying checklist to key the phyla that you have learned in the course The following discussion is based upon Ricketts and Calvin, Between the Pacific Tides. Three factors modify the intertidal marine fauna: 1) wave shock, 2) tidal exposure and 3) type of bottom. You will see an example of the protected rocky coast in which the shock of the waves is reduced by the influence of a long sloping shelf. Other possible modifications which produce the same result are offshore reefs, headlands, islands or large kelp beds. The bottom is typically rocky and affords a firm substrate for animal attachment to plants and animals. By turning over rocks you will uncover a myriad of animals, but at the same time expose them to the fatal effects of the sun. Therefore, replace the rocks as you found them to assure the survival of these animals. The zonation of the animal life as a result of the tides is apparent. Familiarize yourself with the zones and their characteristics. ZONE 1.
    [Show full text]
  • Tezula Funebralis Shell Height Variance in the Intertidal Zones
    Laci Uyesono Structural Comparison Adaptations of Marine Animals Tezula funebralis Shell height variance in the Intertidal zones Introduction The Pacific Coast of the United States is home to a great diversity of biota that populates both extremes, from the constantly battered rocks to the calm ocean floor. As a result of this diversity or because of this diversity there are distinct zones created by the physical, chemical, and biological constraints of the organisms. Tegula funebralis (T funebralis) commonly called the Black Turban shell is found in the low to high intertidal zones of rocky shores on or under rocks grazing on macroalgae. T funebralis can be purple to black in color with four whirls on top (usually worn down to a light color at the top), average 3cm in diameter, and can live up to 100 years (Sept 1999). T funebralis' density tends to be greater in the mid to high intertidal zone due to predation by octopus, Pisaster ochraceous, and crabs (Fawcett 1984). They also show a pattern of distribution where juveniles (those not of reproductive size —14mm) stay in the mid intertidal zone because it is midway between the physical stress of desiccation and the biological stress of predation (Fawcett 1984). Generally larger snails are able to withstand desiccation more then smaller snails, but larger Tegula have a greater advantage living lower in the intertidal even at the risk of predation. They are kept at moderate levels in this zone because Pisaster feeds on them and reduces their density, which then increases the food abundance for those who remain (Doering and Phillips 1983).
    [Show full text]