Pachygrapsus Crassipes Class: Malacostraca Order: Decapoda the Lined Shore Crab Section: Brachyura Family: Grapsidae

Total Page:16

File Type:pdf, Size:1020Kb

Pachygrapsus Crassipes Class: Malacostraca Order: Decapoda the Lined Shore Crab Section: Brachyura Family: Grapsidae Phylum: Arthropoda, Crustacea Pachygrapsus crassipes Class: Malacostraca Order: Decapoda The lined shore crab Section: Brachyura Family: Grapsidae Taxonomy: Until recently the brachyuran (on either side of the mouth), two pairs of family Grapsidae, the shore crabs, was very maxillae and three pairs of maxillipeds. The large with several subfamilies and little maxillae and maxillipeds attach posterior to taxonomic scrutiny. Based on molecular and the mouth and extend to cover the mandibles morphological evidence, authors (von (Ruppert et al. 2004). The third maxilliped in Sternberg and Cumberlidge 2000; Schubart P. crassipes has merus, lobate and at an et al. 2000; de Grave et al. 2009; Schubart angle (Wicksten 2011). 2011) elevated all grapsid subfamilies to the Carapace: Nearly square in shape family level, reducing the number of species and a little broader than long, transverse lines formally within the Grapsidae. Although or grooves on anterior. Lateral margins are recent molecular evidence suggest that most broad posterior to orbit (Wicksten 2011). Hemigrapsus is no longer within this family, Carapace sides nearly parallel, but arched Pachygrapsus remains one of the few (Fig. 1). members of the Grapsidae sensu stricto Frontal Area: Broad margin that is based on morphological evidence from adults, smooth, slightly arched and half as wide as larvae and molecular data (Schubart 2011). carapace. Four slight lobes present below margin with small lobes at outer corners (Fig. Description 2). Size: Carapace approximately 40 mm in Teeth: One strong lateral carapace width and males are larger than females (Hiatt tooth (below the orbital tooth) (Fig. 2). 1948) (Fig. 1). Mature individuals weighed 15 Pereopods: Merus of each leg broad g. (Gross and Marshall 1960) and measure and bearing a single tooth at each postero- 48 mm in width (Puls 2001). distal angle, except the fifth (last) pair smooth Color: Dark green carapace, with dark red or at distal end, and no sharply distinct teeth blue transverse lines and some light markings (Fig. 3) (Wicksten 2011). Leg shape broad, (Plate 21, Kozloff 1993). Chela white compressed and bristled (Rathbun 1918). ventrally and bright red dorsally (males) Dactyls spinulose (Wicksten 2011). (Wicksten 2011). Chelipeds: Usually subequal and General Morphology: The body of decapod massive. Chela almost smooth with arm and crustaceans can be divided into the wrist striated (Rathbun 1918). Male chela cephalothorax (fused head and thorax) and broad with raised line present on propodus, abdomen. They have a large plate-like fingers spooned. Female chela, on the other carapace dorsally, beneath which are five hand, less broad. pairs of thoracic appendages (see chelipeds Abdomen (Pleon): Females with wide and pereopods) and three pairs of abdomen and male H. oregonensis have maxillipeds (see mouthparts). The abdomen narrow abdomens that exposes the sternum and associated appendages are reduced and at the base (see Sexual Dimorphism, see folded ventrally (Decapoda, Kuris et al. 2007). Fig. 3, Hemigrapsus oregonensis). Cephalothorax: Telson & Uropods: Eyes: Eyes present at anterolateral Sexual Dimorphism: Male and female angle and eyestalks of moderate size with brachyuran crabs are easily differentiable. orbits deep and oblique (Fig. 2). The most conspicuous feature, the abdomen, Antennae: is narrow and triangular in males while it is Mouthparts: The mouth of decapod wide and flap-like in females (Brachyura, crustaceans comprises six pairs of Kuris et al. 2007). Male P. crassipes appendages including one pair of mandibles Hiebert, T.C. 2015. Pachygrapsus crassipes. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12727 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to [email protected] abdomen is narrow and triangular, exposing Local Distribution: Northernmost boundary sternum at sides (as in Hemigrapsus nudus is 45° N (Newport, Oregon), probably due to and H. oregonensis.) Female abdomen is cold winter temperatures found on protected rounded, wide and hiding sternum in the rocky beaches and in southern Oregon adult. Dimorphism obvious when animals estuaries. only 6 mm wide (Hiatt 1948). Habitat: Prefers hard substrates, especially rocks, jetties and boulders with crevices and Possible Misidentifications crannies covered in algal growth. Also occurs Pachygrapsus species are members of the in Salicornia marshes where Salicornia roots Grapsidae, a family characterized by the provide burrows. carpus of the third maxilliped not articulating Salinity: Most aspects of the biology of P. near the anterior merus angle and by lateral crassipes, in the following categories, were mouth margins that are parallel or convergent described by Hiatt (1948). Osmoregulatory (Wicksten 2011). There is only one local adaptations indicate movement toward Pachygrapsus species, but it may be terrestrial habitat and can regulate against confused with other grapsid crabs from the salt concentrations in the body during periods family Varunidae, characterized by chelae of exposure, and thus maintain a constant morphology, gaping third maxillipeds and body salinity (Jones 1941). Occurs less setose walking legs (Ng et al. 2008). frequently in brackish water than does Pachygrapsus crassipes is superficially Hemigrapsus (Hiatt 1948). similar to the slower Hemigrapsus nudus, but Temperature: Northern limit of range the latter has obvious red spots on its apparently determined by low winter chelipeds, and lacks the dark green color and temperatures and individuals can tolerate transverse striations of P. crassipes. greater temperature fluctuation than can Furthermore, the frontal margin of P. Hemigrapsus (Hiatt 1948). crassipes is straight and it has one lateral Tidal Level: Lives over an extensive vertical tooth, not two (Symons 1964). Two similar range from mean low water to + 2.5 m. shore crabs in the genus Hemigrapsus are H. Pachygrapsus crassipes is found highest in oregonensis, which is smaller, and H. nudus, intertidal of all Pacific Northwest crabs and is with two lateral teeth and a smooth, square especially abundant at the higher levels carapace. The only other species of (upper intertidal, Schmitt 1921) progressing Pachygrapsus, the smaller P. transversus, toward terrestrial habitat (Hiatt 1948). occurs only as far north as California. The However, as blood concentrations of only other locally occurring member of the potassium, calcium, and magnesium increase Grapsidae, Planes cyaneus, is a pelagic more than sodium when animal is desiccated, species that is only found washed ashore on terrestrial adaptation may be inhibited. Also, drift logs with gooseneck barnacles (Kuris et efficiency of the animal's vascular system, al. 2007). Rhithropanopeus harrisii, an affected by osmotic stress, further limits introduced xanthid (Panopeidae) mud crab, ecological range (Gross 1959). occurs locally with shore crabs. It has a Associates: Pachygrapsus crassipes occurs slightly convergent sides, strong dorsal ridges with Hemigrapsus oregonensis in bays, and on its carapace and three sharp carapace with H. nudus on rocky outer shores. , It teeth. competes with both for shelter (Hiatt 1948), but not for food. Fucus (alga) and Salicornia Ecological Information (pickleweed) often provide protection. Range: Type locality is probably Oregon Individuals can be infested by bopyrid isopods (erroneously Hawaii, Hiatt 1948; Wicksten (Southern California, Schmitt 1921). 2011). Known range includes Oregon to Gulf Hemigrapsus oregonensis, H. nudus and P. of California, however there is significant crassipes can be all be host to the nemertean genetic structuring between populations north egg predator, Carcinonemertes epialti, which and south of Pt. Conception, California can negatively impact brood mortality in these (Cassone and Boulding 2006). species (Shields and Kuris 1988). These three species can also serve as intermediate Hiebert, T.C. 2015. Pachygrapsus crassipes. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. hosts for a variety of parasites including (Schlotterbeck 1976). In P. crassipes, the trematode metacercariae, trypanorhynch lateral spines are not present until the second tapeworm, Polymorphus acanthocephalan zoea stage. The first zoea has no exospines and Ascarophis nematode larvae (Kuris et al. on the telson, is approximately 1.0 mm 2007). (measured from tip of rostrum to tip of telson) Abundance: Ubiquitous in upper intertidal of and has lateral knobs on the second and third rocky areas (Kuris et al. 2007) and more segments, where H. oregonensis has lateral abundant on outer shores than in bays. knobs on only the second segment (Puls 2001). The zoea of Hemigrapsus species Life-History Information and P. crassipes can be differentiated by Reproduction: No pairing or exhibitionism. body and eye size (Schlotterbeck 1976). Copulation occurs when females are soft Pachygrapsus crassipes megalopae have a (post-molting) and copulatory behavior has square carapace and, at 5.6 mm in length and been described by Hiatt (1948) and Bovbjerg
Recommended publications
  • Phylogeography of Pachygrapsus Transversus (Gibbes, 1850): The
    Nauplius 13(2): 99-113, 2005 ^ Phylogeography of Pachygrapsus transversus (Gibbes, 1850): The effect of the American continent and the Atlantic Ocean as gene flow barriers and recognition of Pachygrapsus socius Stimpson 1871 as a valid species Schubart ', C. D.; Cuesta2, J. A. and Felder3, D. L. 1 Biologie I, Universitat Regensburg, D-93040 Regensburg, Germany, e-mail: [email protected] regensburg.de 2 Instituto de Ciencias Marinas de Andalucia, CSIC, Avda. Republica Saharaui, 2,11510 Puerto Real, Cadiz, Spain, e-mail: [email protected] 3 Department of Biology, Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, LA 70504- 2451, USA, e-mail: [email protected] Abstract Genetic and morphometric comparisons among a few specimens of the littoral crab Pachygrapsus transversus have revealed marked intraspecific differences between three different coastlines (Cuesta and Schubart, 1998). Here we build on the previous study by presenting a more comprehensive analysis covering the entire range of this species from the Galapagos Islands to Israel, based on 195 specimens for morphometric analysis and 39 individuals for genetic comparisons of the 16S mtDNA. It is confirmed that marked genetic differences are present between three major coastlines (eastern Pacific, western and eastern Adantic), whereas along single coastlines there is mostly high genetic homogeneity. Morphometric analyses also allow distinction of adult specimens from the three coastlines. In contrast, larval morphological and morphometric differences were less consistent and cannot be used to separate zoea I stages from the different megapopulations. In addition to the genetic separation of populations from different coastlines, this study provides new evidence for less marked, but consistent genetic differentiation between European and northern African populations of P.
    [Show full text]
  • Pachygrapsus Transversus
    Population biology of two sympatric crabs: Pachygrapsus transversus (Gibbes, 1850) (Brachyura, Grapsidae) and Eriphia gonagra (Fabricius, 1781) (Brachyura, Eriphidae) in reefs of Boa Viagem beach, Recife, Brazil MARINA DE SÁ LEITÃO CÂMARA DE ARAÚJO¹*, DAVID DOS SANTOS AZEVEDO², JULIANE VANESSA CARNEIRO DE LIMA SILVA3, CYNTHIA LETYCIA FERREIRA PEREIRA1 & DANIELA DA SILVA CASTIGLIONI4,5 1. Universidade de Pernambuco (UPE), Coleção Didática de Zoologia (CDZ/UPE), Faculdade de Ciências, Educação e Tecnologia (FACETEG), Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105, São José, CEP 55290-000, Garanhuns, PE. 2. Instituto Federal de Educação Ciência e Tecnologia de Pernambuco (IFPE), Av. Prof. Luiz Freire, 500, Cidade Universitária, CEP 55740-540, Recife, PE. 3. Universidade Federal de Pernambuco (UFPE), Programa de Pós-Graduação em Biologia Animal, Centro de Ciências Biológicas, Departamento de Zoologia, Av. Professor Moraes Rego, s-n, Cidade Universitária, CEP 50670-901, Recife, PE. 4. Universidade Federal de Santa Maria (UFSM), Departamento de Zootecnia e Ciências Biológicas, Campus de Palmeira das Missões, Avenida Independência, 3751, Bairro Vista Alegre, CEP 983000-000, Palmeira das Missões, RS. 5. Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), Prédio 17, sala 1140-D, Cidade Universitária, Camobi, km 9, Santa Maria, RS. *Corresponding author: [email protected] Abstract. This study characterizes the population biology of two crabs: Pachygrapsus transversus and Eriphia gonagra from reefs at Boa Viagem Beach, Pernambuco. Carapace width (CW) was measured and all animals were sexed. A total of 1.174 specimens of P. transversus and 558 specimens of E. gonagra were sampled.
    [Show full text]
  • Geographic Varia Tion in Size at Maturity in Brachyuran Crabs
    BULLETIN OF MARINE SCIENCE, 45(2): 356-368, 1989 GEOGRAPHIC VARIA TION IN SIZE AT MATURITY IN BRACHYURAN CRABS Anson H. Hines ABSTRACT Geographic variation in size of sexually mature females was compared in five species of crabs at sites spanning about 10 degrees of latitude along the east and west coasts of North America. Populations were sampled along the west coast at six sites for Pachygrapsuscrassipes, four sites for Hernigrapsus nudus, eight sites for H. orgenensis, and two sites for Scyra acutifrons, and along the east coast at eight sites for Panopeus herbstii. Four of the five species showed significant geographic variation in size at onset of maturity, mean size, and size frequency distribution. P. herbstii and P. crassipes exhibited latitudinal variations and marked changes in population structure of mature females at biogeographic boundaries; P. herbstii matured at larger sizes at latitudes below Cape Hatteras; while P. crassipes matured at smaller sizes below Point Conception. H. nudus showed variation in the size distribution of mature females, but little variation in size at onset of maturity. For H. oregonensis and S. acutifrons, size at maturity varied on a local scale among neighboring populations. For S. acutifrons, a difference of about seven molts before the terminal molt at puberty was deduced to produce the observed variation in maturity. Its molt increment percentage was constant across all sizes of crabs and did not differ between two populations with disparate size structures. For H. oregonensis variation in molt increment and in the number of molts appears to account for differences in size at maturity among populations.
    [Show full text]
  • Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
    Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult).
    [Show full text]
  • 2020 Monitoring of Eelgrass Resources in Newport Bay Newport Beach, California
    MARINE TAXONOMIC SERVICES, LTD 2020 Monitoring of Eelgrass Resources in Newport Bay Newport Beach, California December 25, 2020 Prepared For: City of Newport Beach Public Works Department 100 Civic Center Drive, Newport Beach, CA 92660 Contact: Chris Miller, Public Works Manager [email protected], (949) 644-3043 Newport Harbor Shallow-Water and Deep-Water Eelgrass Survey Prepared By: MARINE TAXONOMIC SERVICES, LLC COASTAL RESOURCES MANAGEMENT, INC 920 RANCHEROS DRIVE, STE F-1 23 Morning Wood Drive SAN MARCOS, CA 92069 Laguna Niguel, CA 92677 2020 NEWPORT BAY EELGRASS RESOURCES REPORT Contents Contents ........................................................................................................................................................................ ii Appendices .................................................................................................................................................................. iii Abbreviations ...............................................................................................................................................................iv Introduction ................................................................................................................................................................... 1 Project Purpose .......................................................................................................................................................... 1 Background ...............................................................................................................................................................
    [Show full text]
  • The Crabs from Mayotte Island (Crustacea, Decapoda, Brachyura)
    THE CRABS FROM MAYOTTE ISLAND (CRUSTACEA, DECAPODA, BRACHYURA) Joseph Poupin, Régis Cleva, Jean-Marie Bouchard, Vincent Dinhut, and Jacques Dumas Atoll Research Bulletin No. 617 1 May 2018 Washington, D.C. All statements made in papers published in the Atoll Research Bulletin are the sole responsibility of the authors and do not necessarily represent the views of the Smithsonian Institution or of the editors of the bulletin. Articles submitted for publication in the Atoll Research Bulletin should be original papers and must be made available by authors for open access publication. Manuscripts should be consistent with the “Author Formatting Guidelines for Publication in the Atoll Research Bulletin.” All submissions to the bulletin are peer reviewed and, after revision, are evaluated prior to acceptance and publication through the publisher’s open access portal, Open SI (http://opensi.si.edu). Published by SMITHSONIAN INSTITUTION SCHOLARLY PRESS P.O. Box 37012, MRC 957 Washington, D.C. 20013-7012 https://scholarlypress.si.edu/ The rights to all text and images in this publication are owned either by the contributing authors or by third parties. Fair use of materials is permitted for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify the content, and must comply with all other terms or restrictions that may be applicable. Users are responsible for securing permission from a rights holder for any other use. ISSN: 0077-5630 (online) This work is dedicated to our friend Alain Crosnier, great contributor for crab sampling in Mayotte region between 1958-1971 and author of several important taxonomic contributions in the region.
    [Show full text]
  • California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida)
    California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida) by Timothy D. Stebbins Presented to SCAMIT 13 February 2012 City of San Diego Marine Biology Laboratory Environmental Monitoring & Technical Services Division • Public Utilities Department (Revised 1/18/12) California Epicarideans Suborder Cymothoida Subfamily Phyllodurinae Superfamily Bopyroidea Phyllodurus abdominalis Stimpson, 1857 Subfamily Athelginae Family Bopyridae * Anathelges hyphalus (Markham, 1974) Subfamily Pseudioninae Subfamily Hemiarthrinae Aporobopyrus muguensis Shiino, 1964 Hemiarthrus abdominalis (Krøyer, 1840) Aporobopyrus oviformis Shiino, 1934 Unidentified species † Asymmetrione ambodistorta Markham, 1985 Family Dajidae Discomorphus magnifoliatus Markham, 2008 Holophryxus alaskensis Richardson, 1905 Goleathopseudione bilobatus Román-Contreras, 2008 Family Entoniscidae Munidion pleuroncodis Markham, 1975 Portunion conformis Muscatine, 1956 Orthione griffenis Markham, 2004 Superfamily Cryptoniscoidea Pseudione galacanthae Hansen, 1897 Family Cabiropidae Pseudione giardi Calman, 1898 Cabirops montereyensis Sassaman, 1985 Subfamily Bopyrinae Family Cryptoniscidae Bathygyge grandis Hansen, 1897 Faba setosa Nierstrasz & Brender à Brandis, 1930 Bopyrella calmani (Richardson, 1905) Family Hemioniscidae Probopyria sp. A Stebbins, 2011 Hemioniscus balani Buchholz, 1866 Schizobopyrina striata (Nierstrasz & Brender à Brandis, 1929) Subfamily Argeiinae † Unidentified species of Hemiarthrinae infesting Argeia pugettensis
    [Show full text]
  • The Oceanic Crabs of the Genera Planes and Pachygrapsus
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued IflfNvA-QJsl|} by ^e SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 101 Washington: 1951 No. 3272 THE OCEANIC CRABS OF THE GENERA PLANES AND PACHYGRAPSUS By FENNEB A. CHACE, Jr. ON September 17, 1492, at latitude approximately 28° N. and longitude 37° W., Columbus and his crew, during their first voyage to the New World, "saw much more weed appearing, like herbs from rivers, in which they found a live crab, which the Admiral kept. He says that these crabs are certain signs of land . "(Markham, 1893, p. 25). This is possibly the first recorded reference to oceanic crabs. Whether it refers to Planes or to the larger swimming crab, Portunus (Portunus) sayi (Gibbes), which is seldom found this far to the east, may be open to question, but the smaller and commoner Planes is frequently called Columbus's crab after this item in the discov­ erer's diary. Although these crabs must have been a source of wonder to mariners on the high seas in the past as they are today, the first adequate description of them did not appear until more than two centuries after Columbus's voyage when Sloane (1725, p. 270, pi. 245, fig. 1) recorded specimens from seaweed north of Jamaica. A short time later Linnaeus (1747, p. 137, pi. 1, figs. 1, a-b) described a similar form, which he had received from a Gflteborg druggist and which was reputed to have come from Canton. This specimen, which Linnaeus named Cancer cantonensis, may he the first record of the Pacific Planes cyaneus.
    [Show full text]
  • Pachygrapsus Crassipes Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Pachygrapsus crassipes Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Eucarida, Decapoda, Pleocyemata, Brachyura, The lined shore crab Eubrachyura, Heterotremata Family: Majoidea, Epialtidae, Epialtinae Taxonomy: Until recently the brachyuran Cephalothorax: family Grapsidae, the shore crabs, was very Eyes: Eyes present at anterolateral large with several subfamilies and little taxo- angle and eyestalks of moderate size with nomic scrutiny. Based on molecular and orbits deep and oblique (Fig. 2). morphological evidence, authors (von Stern- Antenna: berg and Cumberlidge 2000; Schubart et al. Mouthparts: The mouth of decapod 2000; de Grave et al. 2009; Schubart 2011) crustaceans comprises six pairs of appendag- elevated all grapsid subfamilies to the family es including one pair of mandibles (on either level, reducing the number of species for- side of the mouth), two pairs of maxillae and mally within the Grapsidae. Although recent three pairs of maxillipeds. The maxillae and molecular evidence suggest that maxillipeds attach posterior to the mouth and Hemigrapsus is no longer within this family, extend to cover the mandibles (Ruppert et al. Pachygrapsus remains one of the few 2004). The third maxilliped in P. crassipes members of the Grapsidae sensu stricto has merus, lobate and at an angle (Wicksten based on morphological evidence from 2011). adults, larvae and molecular data (Schubart Carapace: Nearly square in shape and 2011). a little broader than long, transverse lines or grooves on anterior. Lateral margins are Description most broad posterior to orbit (Wicksten 2011). Size: Carapace approximately 40 mm in Carapace sides nearly parallel, but arched width and males are larger than females (Fig. 1). (Hiatt 1948) (Fig.
    [Show full text]
  • Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages Within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D
    Molecular Phylogenetics and Evolution Vol. 15, No. 2, May, pp. 179–190, 2000 doi:10.1006/mpev.1999.0754, available online at http://www.idealibrary.com on Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D. Schubart*,§, Jose´ A. Cuesta†, Rudolf Diesel‡, and Darryl L. Felder§ *Fakulta¨tfu¨ r Biologie I: VHF, Universita¨ t Bielefeld, Postfach 100131, 33501 Bielefeld, Germany; †Departamento de Ecologı´a,Facultad de Biologı´a,Universidad de Sevilla, Apdo. 1095, 41080 Sevilla, Spain; ‡Max-Planck-Institut fu¨ r Verhaltensphysiologie, Postfach 1564, 82305 Starnberg, Germany; and §Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451 Received January 4, 1999; revised November 9, 1999 have attained lifelong independence from the sea (Hart- Grapsoid crabs are best known from the marine noll, 1964; Diesel, 1989; Ng and Tan, 1995; Table 1). intertidal and supratidal. However, some species also The Grapsidae and Gecarcinidae have an almost inhabit shallow subtidal and freshwater habitats. In worldwide distribution, being most predominant and the tropics and subtropics, their distribution even species rich in subtropical and tropical regions. Over- includes mountain streams and tree tops. At present, all, there are 57 grapsid genera with approximately 400 the Grapsoidea consists of the families Grapsidae, recognized species (Schubart and Cuesta, unpubl. data) Gecarcinidae, and Mictyridae, the first being subdi- and 6 gecarcinid genera with 18 species (Tu¨ rkay, 1983; vided into four subfamilies (Grapsinae, Plagusiinae, Tavares, 1991). The Mictyridae consists of a single Sesarminae, and Varuninae). To help resolve phyloge- genus and currently 4 recognized species restricted to netic relationships among these highly adaptive crabs, portions of the mitochondrial genome corresponding the Indo-West Pacific (P.
    [Show full text]
  • The Stalk-Eyed Crustacea of Peru and the Adjacent Coast
    \\ ij- ,^y j 1 ^cj^Vibon THE STALK-EYED CRUSTACEA OF PERU AND THE ADJACENT COAST u ¥' A- tX %'<" £ BY MARY J. RATHBUN Assistant Curator, Division of Marine Invertebrates, U. S. National Museur No. 1766.—From the Proceedings of the United States National Museum, '<•: Vol.*38, pages 531-620, with Plates 36-56 * Published October 20, 1910 Washington Government Printing Office 1910 UQS3> THE STALK-EYED CRUSTACEA OF PERU AND THE ADJA­ CENT COAST. By MARY J. RATHBUN, Assistant Curator, Division of Marine Invertebrates, U. S. National Museum. INTKODUCTION. Among the collections obtained by Dr. Robert E. Coker during his investigations of the fishery resources of Peru during 1906-1908 were a large number of Crustacea, representing 80 species. It was the original intention to publish the reports on the Crustacea under one cover, but as it has not been feasible to complete them at the same time, the accounts of the barnacles a and isopods b have been issued first. There remain the decapods, which comprise the bulk of the collection, the stomatopods, and two species of amphipods. One of these, inhabiting the sea-coast, has been determined by Mr. Alfred O. Walker; the other, from Lake Titicaca, by Miss Ada L. Weckel. See papers immediately following. Throughout this paper, the notes printed in smaller type were con­ tributed by Doctor Coker. One set of specimens has been returned to the Peruvian Government; the other has been given to the United States National Museum. Economic value.—The west coast of South America supports an unusual number of species of large crabs, which form an important article of food.
    [Show full text]
  • Black Abalone Status Review Report (Status Review) As Mandated by the ESA
    Status Review Report for Black Abalone Status Review Report for Black Abalone (Haliotis cracherodii Leach, 1814) Glenn VanBlaricom, Melissa Neuman, John Butler, Andrew DeVogelaere, Rick Gustafson, Chris Mobley, Dan Richards, Scott Rumsey, and Barbara Taylor NMFS Southwest Region 501 West Ocean Boulevard, Suite 4200 Long Beach, CA 90802 January 2009 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Table of Contents List of Figures ................................................................................................................... iv List of Tables .................................................................................................................... vi Executive Summary ........................................................................................................ vii Acknowledgements ........................................................................................................... x 1.0 Introduction ......................................................................................................... 11 1.1 Scope and Intent of Present Document ................................................. 11 1.2 Key Questions in ESA Evaluations ....................................................... 12 1.2.1 The “Species” Question ...................................................................... 12 1.2.2 Extinction Risk .................................................................................... 12 1.3 Summary of Information Presented
    [Show full text]