Redescription of Megalopa and Juvenile Development of Pachygrapsus Gracilis (Decapoda: Grapsidae) from the Amazon Region, Reared in the Laboratory

Total Page:16

File Type:pdf, Size:1020Kb

Redescription of Megalopa and Juvenile Development of Pachygrapsus Gracilis (Decapoda: Grapsidae) from the Amazon Region, Reared in the Laboratory ZOOLOGIA 28 (4): 465–478, August, 2011 doi: 10.1590/S1984-46702011000400008 Redescription of megalopa and juvenile development of Pachygrapsus gracilis (Decapoda: Grapsidae) from the Amazon region, reared in the laboratory Danielle C. B. Arruda1 & Fernando A. Abrunhosa1, 2 1 Laboratório de Carcinologia, Instituto de Estudos Costeiros, Universidade Federal do Pará. Campus Universitário de Bragança, Alameda Leandro Ribeiro, Aldeia, 68600-000 Bragança, PA, Brazil, E-mail: [email protected]; [email protected] 2 Corresponding author. ABSTRACT. This present study re-describes the megalopa stage and provides detailed morphological descriptions and main growth changes observed in stages I through VII of the juvenile instars of the dark shore crab Pachygrapsus gracilis (Saussure, 1858), from the Amazon region. The specimens in this study were reared in the laboratory and the megalopae were collected at Ajuruteua beach in northeastern Pará, Brazil. Previous studies had described the megalopa of P. gracilis from Mexican waters, as well as those of Pachygrapsus transversus (Gibbes, 1850) and Pachygrapsus marmoratus (Fabricius, 1787). A comparison between the Mexican and Amazonian populations of P. gracilis revealed significant morphological differences. The main difference is the presence of 3 elongated setae on the 5th pereiopods of individuals of the Amazonian population. The setal number and their arrangement in the appendages also differed. In P. gracilis, the male and female genital openings are observed from the juvenile instar III, whereas differentiation in male pleopods is observed only in juvenile instar V. In females, the pleopods undergo rapid differentiation during juvenile instar VI. These morphological comparisons and other observations on development are briefly compared and discussed with reports for other species. KEY WORDS. Description; growth; morphology; transitory stage. The dark shore crab Pachygrapsus gracilis (Saussure, 1858) Studies on crab growth are important because some mor- has a wide distribution, occurring in the western Atlantic from phological characteristics, including secondary sexual charac- the Caribbean to Texas, French Guiana, Brazil (Trinidad and ters, which arise at the juvenile phase, are useful in the from Ceará to Rio Grande do Sul) and Argentina, In the east- identification of species, as well as age and sex determinations. ern Atlantic the species occurs from Senegal to Angola (MELO The morphological characteristics found in crustaceans 1996, POUPIN et al. 2005). have contributed significantly to the understanding of the taxo- Pachygrapsus Randall, 1839 megalopae was described in nomic, systematic and phylogenetic nature of crustaceans. They the past from individuals collected in the natural environment: have also generated information which has helped the under- P. marmoratus (Fabricius, 1787) by GUERAO et al. (1997), P. trans- standing of their biology and assisted population management versus (Gibbes, 1850) by FLORES et al. (1998) and P. gracilis by (BARUTOT et al. 2001). However, morphological descriptions of CHÁRAZO-OLVERA & ROCHA-RAMÍREZ (2007). These studies used crustaceans must be accurate, and describe the setal arrange- specimens collected from the environment, probably due to ment, the number of the juvenile appendages and other struc- the difficulty of obtaining the stage of megalopae under labo- tures correctly. ratory conditions. Only two studies on the juvenile growth and In some cases, intraspecific variation has been found in morphology of this group are available in the scientific litera- individuals of different populations. Nelice M. Batistelli ture: GUERAO et al. (1997) for P. marmoratus and FLORES et al. (unpubl. data), for example, found discrepancies in setal num- (1998) for P. transversus. ber and setation arrangements in re-descriptions of various fid- GUERAO et al. (1997) described the morphology of the cara- dler crab larvae. More studies on the morphological stages and pace, pereiopods and third maxillipeds of the juvenile instar I new descriptions of larval and juvenile stages of crustaceans of P. marmoratus. Their data provide information on the size of are necessary in order to clarify these differences. the carapace up to the juvenile IV. FLORES et al. (1998) described Due to the scarcity of studies detailing the morphologi- in detail the megalopa, the first crab instar, and the juvenile cal development of crustaceans and the growth of these ani- development instars of P. transversus giving emphasis on the mals, it is necessary to conduct further studies on the growth process of pleopod differentiation up until juvenile instar VII. and morphology of juvenile instars. The present study re-de- © 2011 Sociedade Brasileira de Zoologia | www.sbzoologia.org.br | All rights reserved. 466 D. C. B. Arruda & F. A. Abrunhosa scribes the megalopa stage of P. gracilis inhabiting the Amazon RESULTS region, and describes important morphological changes ob- served during the growth from juvenile instars I to VII, of. MEGALOPA A total of 89 megalopae molted into the juvenile instar I. MATERIAL AND METHODS The remaining individuals died during the experiment. These were preserved. The first molting was recorded on the second In February 2008, 116 megalopa were obtained at day, and the last on the 18th day of culture after collections in Ajuruteua (00º49’20.2”S, 46º36’02.2”W) Beach, municipality the field (Fig. 1). Large frequencies of metamorphosed of Bragança (northeastern Pará state, Brazil). The specimens megalopae were recorded on the third and fourth days of rear- were collected off of mangrove leaves, pieces of trunks and roots ing. The mean intermolt period was 5.72 ± 4.45 days. brought by the tide. They were identified in the laboratory when JUVENILE GROWTH they reached the juvenile instar. Specimen identification fol- During the culture, the mortality of juveniles was quite lowed RODRIGUEZ (1980), MELO (1996) and POUPIN et al. (2005). low: only three specimens died in the juvenile instars I, II and In the laboratory, specimens were placed individually in III, respectively. The mean intermolt period gradually increased plastic recipients with sea water (salinity 30) and a small rock during the juvenile development and after consecutive molts shelter. The temperature was maintained at 26.5 ± 1.14ºC, pho- (Fig. 2). In juvenile instar I, the intermolt period mean was 6 ± 3 toperiod regime (12:12 h/light:dark cycle) and pH 8.1. Every days whereas in the juvenile instar VII it averaged 20 ± 12 days. two days the water of the recipients was changed. The indi- The carapace length of the juvenile instar I (1.96 ± 0.07 viduals were fed live Artemia nauplii daily and were monitored mm) was similar to that found for megalopa (1.97 ± 0.04 mm). twice a day. The exuviae and dead animals were preserved in The growth (carapace width) of each subsequent juvenile in- glycerol+ethylic alcohol 70% (1:1) solution. star showed an increase during the days of culture and molts At least 10 specimens of each stage were dissected with (Fig. 3). In the juvenile instar I, the mean carapace width was fine needles (BD Ultra-Fine®, 12.7 X 0.33 mm) under an opti- 2.21 mm and in the juvenile instar VII the mean carapace width cal Zeiss (Axioskop 40) microscope equipped with an ocular was 7.42 mm. The carapace width of male and female crabs micrometric. The appendages were extracted and transferred was similar during juvenile growth until the VII instar (Fig. 4). to another slide where they were stained with a solution of The percentage of molt increment showed a reduction methylene blue 1% (sometimes was used). The terminology at each molt event (Fig. 5). From the juvenile instar I to juve- used in the descriptions follows POHLE & TELFORD (1981), GUERAO nile instar II, the mean rate of increment was 31.13 ± 8.75%, et al. (1997), FLORES et al. (1998), GARM (2004), and CHÁRAZO- whereas from the juvenile instar VI to VII it was 18.51 ± 4.16%. OLVERA & ROCHA RAMÍREZ (2007). The studied specimens were The absolute molt increment increased at each molt event; from deposited at the crustacean collection of Museu Paraense Emílio juvenile instar I to II the mean was 0.68 mm and from the Goeldi, under the catalog number MPEG-817. juvenile instar VI to VII the mean was 1.17 mm (Fig. 5). The individuals were reared until juvenile instar VII. The width of the abdomen in juvenile forms increased During rearing, data on survival and intermolt periods were during juvenile growth (Fig. 6). However, the width of the abdo- obtained for individuals in each juvenile instar. The carapace men of males and females presented differences only in the ju- width (CW) was considered as an independent variable or as a venile instars VI and VII (Fig. 6). In the juvenile instar I, the reference (in axis x) because of its greater amplitude and be- mean abdomen width in males and females was similar, 0.70 ± cause it is the best representative dimension of organism size 0.04 mm and 0.60 ± 0.04 mm, respectively. In juvenile instars (HARTNOLL 1982). This variable was used for calculating the per- VI and VII, these values were very different for both sexes; fe- centage of molt increment and absolute increment after each males had 2.10 ± 0.4 mm and 3.20 ± 0.76 mm of abdomen width, ecdise. The abdomen width of male and female specimens was while males presented 1.70 ± 0.19 mm and 2.10 ± 0.15 mm, re- obtained by measuring the 4th abdominal somite. spectively. The percentage of molt increment (%MI) was estimated MORPHOLOGICAL DESCRIPTION by the following formula: %MI = [(CW2 – CW1) x 100]/CW1; where CW1 and CW2 are pre-molt and post-molt sizes, respec- Megalopa tively. Carapace (Fig. 7): length: 1.97 ± 0.04mm; width: 1.39 ± The absolute increment (AI) after each ecdise was ob- 0.04 mm; subretangular; surface showing four distinct lobes tained using the following equation: AI = CW2 – CW1; where on the anterior portion and few small setae; middle and poste- CW1 is the carapace width in pre-molt and CW2 the carapace rior portions fringed with numerous small marginal setae; an- width in post-molt.
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Phylogeography of Pachygrapsus Transversus (Gibbes, 1850): The
    Nauplius 13(2): 99-113, 2005 ^ Phylogeography of Pachygrapsus transversus (Gibbes, 1850): The effect of the American continent and the Atlantic Ocean as gene flow barriers and recognition of Pachygrapsus socius Stimpson 1871 as a valid species Schubart ', C. D.; Cuesta2, J. A. and Felder3, D. L. 1 Biologie I, Universitat Regensburg, D-93040 Regensburg, Germany, e-mail: [email protected] regensburg.de 2 Instituto de Ciencias Marinas de Andalucia, CSIC, Avda. Republica Saharaui, 2,11510 Puerto Real, Cadiz, Spain, e-mail: [email protected] 3 Department of Biology, Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, LA 70504- 2451, USA, e-mail: [email protected] Abstract Genetic and morphometric comparisons among a few specimens of the littoral crab Pachygrapsus transversus have revealed marked intraspecific differences between three different coastlines (Cuesta and Schubart, 1998). Here we build on the previous study by presenting a more comprehensive analysis covering the entire range of this species from the Galapagos Islands to Israel, based on 195 specimens for morphometric analysis and 39 individuals for genetic comparisons of the 16S mtDNA. It is confirmed that marked genetic differences are present between three major coastlines (eastern Pacific, western and eastern Adantic), whereas along single coastlines there is mostly high genetic homogeneity. Morphometric analyses also allow distinction of adult specimens from the three coastlines. In contrast, larval morphological and morphometric differences were less consistent and cannot be used to separate zoea I stages from the different megapopulations. In addition to the genetic separation of populations from different coastlines, this study provides new evidence for less marked, but consistent genetic differentiation between European and northern African populations of P.
    [Show full text]
  • Pachygrapsus Transversus
    Population biology of two sympatric crabs: Pachygrapsus transversus (Gibbes, 1850) (Brachyura, Grapsidae) and Eriphia gonagra (Fabricius, 1781) (Brachyura, Eriphidae) in reefs of Boa Viagem beach, Recife, Brazil MARINA DE SÁ LEITÃO CÂMARA DE ARAÚJO¹*, DAVID DOS SANTOS AZEVEDO², JULIANE VANESSA CARNEIRO DE LIMA SILVA3, CYNTHIA LETYCIA FERREIRA PEREIRA1 & DANIELA DA SILVA CASTIGLIONI4,5 1. Universidade de Pernambuco (UPE), Coleção Didática de Zoologia (CDZ/UPE), Faculdade de Ciências, Educação e Tecnologia (FACETEG), Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105, São José, CEP 55290-000, Garanhuns, PE. 2. Instituto Federal de Educação Ciência e Tecnologia de Pernambuco (IFPE), Av. Prof. Luiz Freire, 500, Cidade Universitária, CEP 55740-540, Recife, PE. 3. Universidade Federal de Pernambuco (UFPE), Programa de Pós-Graduação em Biologia Animal, Centro de Ciências Biológicas, Departamento de Zoologia, Av. Professor Moraes Rego, s-n, Cidade Universitária, CEP 50670-901, Recife, PE. 4. Universidade Federal de Santa Maria (UFSM), Departamento de Zootecnia e Ciências Biológicas, Campus de Palmeira das Missões, Avenida Independência, 3751, Bairro Vista Alegre, CEP 983000-000, Palmeira das Missões, RS. 5. Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), Prédio 17, sala 1140-D, Cidade Universitária, Camobi, km 9, Santa Maria, RS. *Corresponding author: [email protected] Abstract. This study characterizes the population biology of two crabs: Pachygrapsus transversus and Eriphia gonagra from reefs at Boa Viagem Beach, Pernambuco. Carapace width (CW) was measured and all animals were sexed. A total of 1.174 specimens of P. transversus and 558 specimens of E. gonagra were sampled.
    [Show full text]
  • Crustacea: Thalassinidea, Brachyura) from Puerto Rico, United States Territory
    Bulletin of the Mizunami Fossil Museum, no. 34 (2008), p. 1–15, 6 figs., 1 table. © 2008, Mizunami Fossil Museum New Cretaceous and Cenozoic Decapoda (Crustacea: Thalassinidea, Brachyura) from Puerto Rico, United States Territory Carrie E. Schweitzer1, Jorge Velez-Juarbe2, Michael Martinez3, Angela Collmar Hull1, 4, Rodney M. Feldmann4, and Hernan Santos2 1)Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio, 44720, USA <[email protected]> 2)Department of Geology, University of Puerto Rico, Mayagüez Campus, P. O. Box 9017, Mayagüez, Puerto Rico, 00681 United States Territory <[email protected]> 3)College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, Florida 33701, USA <[email protected]> 4)Department of Geology, Kent State University, Kent, Ohio 44242, USA <[email protected]> Abstract A large number of recently collected specimens from Puerto Rico has yielded two new species including Palaeoxanthopsis tylotus and Eurytium granulosum, the oldest known occurrence of the latter genus. Cretaceous decapods are reported from Puerto Rico for the first time, and the Cretaceous fauna is similar to that of southern Mexico. Herein is included the first report of Pleistocene decapods from Puerto Rico, which were previously known from other Caribbean localities. The Pleistocene Cardisoma guanhumi is a freshwater crab of the family Gecarcinidae. The freshwater crab families have a poor fossil record; thus, the occurrence is noteworthy and may document dispersal of the crab by humans. Key words: Decapoda, Thalassinidea, Brachyura, Puerto Rico, Cretaceous, Paleogene, Neogene. Introduction than Eocene are not separated by these fault zones and even overlie parts of the fault zones in some areas (Jolly et al., 1998).
    [Show full text]
  • Reduced Mobility Is Associated with Compensatory Feeding and Increased Diet Breadth of Marine Crabs
    MARINE ECOLOGY PROGRESS SERIES Published November 3 Mar Ecol Prog Ser Reduced mobility is associated with compensatory feeding and increased diet breadth of marine crabs John J. Stachowicz*,Mark Hay8* University of North Carolina at Chapel Hill, Institute of Marine Sciences. Morehead City, North Carolina 28557. USA ABSTRACT: Direct effects of predation have been widely recognized as important in affecting prey population dynamics and evolution. However, less attention has been devoted to the consequences of indirect effects of predators on prey behavior. For example, to avoid predation many animals restrict their activities to physical refugia and adopt low-mobility Mestyles, yet the consequences of these anti- predator behaviors for foraging and diet selection are relatively unknown. In this study we examine the relationships between mobility, feeding preferences, and compensatory feeding for 3 species of marine decapod crabs feeding on seaweeds in North Carolina, USA. Low mobility and high site fidellty of crabs were associated with a broad, non-selective diet and compensatory feeding. The majid Mithrax forceps exhibited the lowest mobility, highest site fidelity, and least selective diet of the 3 species, whereas another majid Libinia dubia was intermehate in both rnobllity and selectivity, and the xanthid Panopeus herbstii had the greatest mobility and narrowest diet. Of these 3 crabs, only M. forceps com- pensated for low food quality by increasing consumption rates in single food-species feeding assays. This may be because M. forceps is resistant to (or tolerant of) seaweed chemical defenses, while other crab species are not. The ability to consume, and presumably subsist on, a wide variety of potential foods including those defended from more mobile consumers may facilitate a low-mobllity lifestyle, allowing the crab to minimize movement and reduce exposure to predators.
    [Show full text]
  • Brachyura, Panopeidae)
    Invertebrate Reproduction & Development ISSN: 0792-4259 (Print) 2157-0272 (Online) Journal homepage: https://www.tandfonline.com/loi/tinv20 Relative growth, morphological sexual maturity, heterochely, and handedness in Panopeus occidentalis (Brachyura, Panopeidae) Fernanda Monchelato Santos, Régis Augusto Pescinelli, João Alberto Farinelli Pantaleão & Rogério Caetano Costa To cite this article: Fernanda Monchelato Santos, Régis Augusto Pescinelli, João Alberto Farinelli Pantaleão & Rogério Caetano Costa (2018) Relative growth, morphological sexual maturity, heterochely, and handedness in Panopeusoccidentalis (Brachyura, Panopeidae), Invertebrate Reproduction & Development, 62:2, 74-81, DOI: 10.1080/07924259.2017.1415987 To link to this article: https://doi.org/10.1080/07924259.2017.1415987 Published online: 15 Dec 2017. Submit your article to this journal Article views: 76 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tinv20 INVERTEBRATE REPRODUCTION & DEVELOPMENT, 2018 VOL. 62, NO. 2, 74–81 https://doi.org/10.1080/07924259.2017.1415987 Relative growth, morphological sexual maturity, heterochely, and handedness in Panopeus occidentalis (Brachyura, Panopeidae) Fernanda Monchelato Santosa, Régis Augusto Pescinellia , João Alberto Farinelli Pantaleãoa,b and Rogério Caetano Costaa aLaboratory of Biology of Marine and Freshwater Shrimp (LABCAM), Faculty of Sciences, Department of Biological Sciences, São Paulo State University (UNESP), São Paulo,
    [Show full text]
  • The Crabs from Mayotte Island (Crustacea, Decapoda, Brachyura)
    THE CRABS FROM MAYOTTE ISLAND (CRUSTACEA, DECAPODA, BRACHYURA) Joseph Poupin, Régis Cleva, Jean-Marie Bouchard, Vincent Dinhut, and Jacques Dumas Atoll Research Bulletin No. 617 1 May 2018 Washington, D.C. All statements made in papers published in the Atoll Research Bulletin are the sole responsibility of the authors and do not necessarily represent the views of the Smithsonian Institution or of the editors of the bulletin. Articles submitted for publication in the Atoll Research Bulletin should be original papers and must be made available by authors for open access publication. Manuscripts should be consistent with the “Author Formatting Guidelines for Publication in the Atoll Research Bulletin.” All submissions to the bulletin are peer reviewed and, after revision, are evaluated prior to acceptance and publication through the publisher’s open access portal, Open SI (http://opensi.si.edu). Published by SMITHSONIAN INSTITUTION SCHOLARLY PRESS P.O. Box 37012, MRC 957 Washington, D.C. 20013-7012 https://scholarlypress.si.edu/ The rights to all text and images in this publication are owned either by the contributing authors or by third parties. Fair use of materials is permitted for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify the content, and must comply with all other terms or restrictions that may be applicable. Users are responsible for securing permission from a rights holder for any other use. ISSN: 0077-5630 (online) This work is dedicated to our friend Alain Crosnier, great contributor for crab sampling in Mayotte region between 1958-1971 and author of several important taxonomic contributions in the region.
    [Show full text]
  • The Oceanic Crabs of the Genera Planes and Pachygrapsus
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued IflfNvA-QJsl|} by ^e SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 101 Washington: 1951 No. 3272 THE OCEANIC CRABS OF THE GENERA PLANES AND PACHYGRAPSUS By FENNEB A. CHACE, Jr. ON September 17, 1492, at latitude approximately 28° N. and longitude 37° W., Columbus and his crew, during their first voyage to the New World, "saw much more weed appearing, like herbs from rivers, in which they found a live crab, which the Admiral kept. He says that these crabs are certain signs of land . "(Markham, 1893, p. 25). This is possibly the first recorded reference to oceanic crabs. Whether it refers to Planes or to the larger swimming crab, Portunus (Portunus) sayi (Gibbes), which is seldom found this far to the east, may be open to question, but the smaller and commoner Planes is frequently called Columbus's crab after this item in the discov­ erer's diary. Although these crabs must have been a source of wonder to mariners on the high seas in the past as they are today, the first adequate description of them did not appear until more than two centuries after Columbus's voyage when Sloane (1725, p. 270, pi. 245, fig. 1) recorded specimens from seaweed north of Jamaica. A short time later Linnaeus (1747, p. 137, pi. 1, figs. 1, a-b) described a similar form, which he had received from a Gflteborg druggist and which was reputed to have come from Canton. This specimen, which Linnaeus named Cancer cantonensis, may he the first record of the Pacific Planes cyaneus.
    [Show full text]
  • Pachygrapsus Crassipes Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Pachygrapsus crassipes Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Eucarida, Decapoda, Pleocyemata, Brachyura, The lined shore crab Eubrachyura, Heterotremata Family: Majoidea, Epialtidae, Epialtinae Taxonomy: Until recently the brachyuran Cephalothorax: family Grapsidae, the shore crabs, was very Eyes: Eyes present at anterolateral large with several subfamilies and little taxo- angle and eyestalks of moderate size with nomic scrutiny. Based on molecular and orbits deep and oblique (Fig. 2). morphological evidence, authors (von Stern- Antenna: berg and Cumberlidge 2000; Schubart et al. Mouthparts: The mouth of decapod 2000; de Grave et al. 2009; Schubart 2011) crustaceans comprises six pairs of appendag- elevated all grapsid subfamilies to the family es including one pair of mandibles (on either level, reducing the number of species for- side of the mouth), two pairs of maxillae and mally within the Grapsidae. Although recent three pairs of maxillipeds. The maxillae and molecular evidence suggest that maxillipeds attach posterior to the mouth and Hemigrapsus is no longer within this family, extend to cover the mandibles (Ruppert et al. Pachygrapsus remains one of the few 2004). The third maxilliped in P. crassipes members of the Grapsidae sensu stricto has merus, lobate and at an angle (Wicksten based on morphological evidence from 2011). adults, larvae and molecular data (Schubart Carapace: Nearly square in shape and 2011). a little broader than long, transverse lines or grooves on anterior. Lateral margins are Description most broad posterior to orbit (Wicksten 2011). Size: Carapace approximately 40 mm in Carapace sides nearly parallel, but arched width and males are larger than females (Fig. 1). (Hiatt 1948) (Fig.
    [Show full text]
  • Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages Within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D
    Molecular Phylogenetics and Evolution Vol. 15, No. 2, May, pp. 179–190, 2000 doi:10.1006/mpev.1999.0754, available online at http://www.idealibrary.com on Molecular Phylogeny, Taxonomy, and Evolution of Nonmarine Lineages within the American Grapsoid Crabs (Crustacea: Brachyura) Christoph D. Schubart*,§, Jose´ A. Cuesta†, Rudolf Diesel‡, and Darryl L. Felder§ *Fakulta¨tfu¨ r Biologie I: VHF, Universita¨ t Bielefeld, Postfach 100131, 33501 Bielefeld, Germany; †Departamento de Ecologı´a,Facultad de Biologı´a,Universidad de Sevilla, Apdo. 1095, 41080 Sevilla, Spain; ‡Max-Planck-Institut fu¨ r Verhaltensphysiologie, Postfach 1564, 82305 Starnberg, Germany; and §Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451 Received January 4, 1999; revised November 9, 1999 have attained lifelong independence from the sea (Hart- Grapsoid crabs are best known from the marine noll, 1964; Diesel, 1989; Ng and Tan, 1995; Table 1). intertidal and supratidal. However, some species also The Grapsidae and Gecarcinidae have an almost inhabit shallow subtidal and freshwater habitats. In worldwide distribution, being most predominant and the tropics and subtropics, their distribution even species rich in subtropical and tropical regions. Over- includes mountain streams and tree tops. At present, all, there are 57 grapsid genera with approximately 400 the Grapsoidea consists of the families Grapsidae, recognized species (Schubart and Cuesta, unpubl. data) Gecarcinidae, and Mictyridae, the first being subdi- and 6 gecarcinid genera with 18 species (Tu¨ rkay, 1983; vided into four subfamilies (Grapsinae, Plagusiinae, Tavares, 1991). The Mictyridae consists of a single Sesarminae, and Varuninae). To help resolve phyloge- genus and currently 4 recognized species restricted to netic relationships among these highly adaptive crabs, portions of the mitochondrial genome corresponding the Indo-West Pacific (P.
    [Show full text]
  • The Stalk-Eyed Crustacea of Peru and the Adjacent Coast
    \\ ij- ,^y j 1 ^cj^Vibon THE STALK-EYED CRUSTACEA OF PERU AND THE ADJACENT COAST u ¥' A- tX %'<" £ BY MARY J. RATHBUN Assistant Curator, Division of Marine Invertebrates, U. S. National Museur No. 1766.—From the Proceedings of the United States National Museum, '<•: Vol.*38, pages 531-620, with Plates 36-56 * Published October 20, 1910 Washington Government Printing Office 1910 UQS3> THE STALK-EYED CRUSTACEA OF PERU AND THE ADJA­ CENT COAST. By MARY J. RATHBUN, Assistant Curator, Division of Marine Invertebrates, U. S. National Museum. INTKODUCTION. Among the collections obtained by Dr. Robert E. Coker during his investigations of the fishery resources of Peru during 1906-1908 were a large number of Crustacea, representing 80 species. It was the original intention to publish the reports on the Crustacea under one cover, but as it has not been feasible to complete them at the same time, the accounts of the barnacles a and isopods b have been issued first. There remain the decapods, which comprise the bulk of the collection, the stomatopods, and two species of amphipods. One of these, inhabiting the sea-coast, has been determined by Mr. Alfred O. Walker; the other, from Lake Titicaca, by Miss Ada L. Weckel. See papers immediately following. Throughout this paper, the notes printed in smaller type were con­ tributed by Doctor Coker. One set of specimens has been returned to the Peruvian Government; the other has been given to the United States National Museum. Economic value.—The west coast of South America supports an unusual number of species of large crabs, which form an important article of food.
    [Show full text]
  • First Record of the Marbled Crab Pachygrapsus Marmoratus
    First record of the marbled crab Pachygrapsus marmoratus (Fabricius, 1787) on the coast of Calvados (Bay of Seine, English Channel) Jean-Philippe Pezy, Jean-Claude Dauvin To cite this version: Jean-Philippe Pezy, Jean-Claude Dauvin. First record of the marbled crab Pachygrapsus marmoratus (Fabricius, 1787) on the coast of Calvados (Bay of Seine, English Channel). Cahiers de Biologie Marine, Station Biologique, 2015, 56 (2), pp.151-154. hal-01540879 HAL Id: hal-01540879 https://hal.archives-ouvertes.fr/hal-01540879 Submitted on 16 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cah. Biol. Mar. (2015) 56 : 151-154 First record of the marbled crab Pachygrapsus marmoratus (Fabricius, 1787) on the coast of Calvados (Bay of Seine, English Channel) Jean-Philippe PEZY 1,2,3 and Jean-Claude DAUVIN 1,2 (1) Normandie Université, France (2) Université de Caen Basse-Normandie, Laboratoire Morphodynamique Continentale et Côtière, UMR M2C, 24 rue des Tilleuls, F-14000 Caen, France (3) CNRS UMR CNRS 6143M2C, 24 rue des Tilleuls, 14000 Caen E-mail: [email protected] Abstract: A unique specimen of the decapod Pachygrapsus marmoratus, the marbled crab, was reported for the first time in August 2014 from the intertidal zone on the Calvados coast (western part of the Bay of Seine, Eastern English Channel).
    [Show full text]