45th Lunar and Planetary Science Conference (2014) 2364.pdf ORBITAL DETECTION AND IMPLICATIONS OF AKAGANEITE ON MARS. J. Carter1, C. Viviano-Beck2, L. Le Deit3, J. Bishop4, D. Loizeau5, 1IAS (Paris-Sud University, France,
[email protected]), 2JHU/APL (Laurel, MD), 3LPGN (Nantes University, France), 4SETI Institute (Mountain View, CA), 5LGL (Lyon 1 University, France). Introduction: Recent orbital and landed investiga- lands, and intertidal marshes; and within hydrothermal tions of the Martian surface have demonstrated that the brines [13,14,15,16]. The main conditions necessary planet underwent a complex geological and aqueous for akaganéite precipitation are high salinity, mild acid- alteration history, fragments of which are recorded in ity (pH ~6), oxidizing conditions, and most important- the mineralogy of the heavily disrupted surface [1,2,3]. ly, high iron (II/III) and chlorine concentrations. On Of particular interest are aqueously altered minerals Earth, the source of Fe in akaganéite formation is typi- that trace warmer and wetter surface environments on cally iron ore or sulfides (the latter also providing acid- Early Mars, some of which also exhibit biogenic for- ity as they dissolve) [15,16]. Highly concentrated chlo- mation pathways [4,5]. rine occurs within volcanic fumaroles or deep sea vents The most abundant alteration minerals on Mars that as well as within evaporating, closed or semi-closed have likely been detected are hydrated silicates, hy- water systems [15,16,17]. drated sulfates, and chloride salts [6,7,8]. The detection of minor phases remains important, however, as they further constrain localized geochemical environments at different epochs in the timeline of Mars’s geological history.