What Is the Evidence That Invasive Species Are a Significant Contributor to the Decline Or Loss of Threatened Species? Philip D

Total Page:16

File Type:pdf, Size:1020Kb

What Is the Evidence That Invasive Species Are a Significant Contributor to the Decline Or Loss of Threatened Species? Philip D Invasive Species Systematic Review, March 2015 What is the evidence that invasive species are a significant contributor to the decline or loss of threatened species? Philip D. Roberts, Hilda Diaz-Soltero, David J. Hemming, Martin J. Parr, Richard H. Shaw, Nicola Wakefield, Holly J. Wright, Arne B.R. Witt www.cabi.org KNOWLEDGE FOR LIFE Contents Contents .................................................................................................................................. 1 Abstract .................................................................................................................................... 3 Keywords ................................................................................................................................. 4 Definitions ................................................................................................................................ 4 Background .............................................................................................................................. 5 Objective of the review ............................................................................................................ 7 The primary review question: ....................................................................................... 7 Secondary question 1: ................................................................................................. 7 Secondary question 2: ................................................................................................. 7 Methods ................................................................................................................................... 8 Results ................................................................................................................................... 13 Search results ............................................................................................................ 13 Scope ......................................................................................................................... 13 Results secondary questions 1 .................................................................................. 17 Results secondary question 2 .................................................................................... 19 Discussion ............................................................................................................................. 21 Discussion secondary question 1 .............................................................................. 21 Discussion secondary question 2 .............................................................................. 22 Review limitations ...................................................................................................... 23 Recommendations for further development of the map ............................................. 26 Review Conclusions ................................................................................................... 26 Implications for Research .......................................................................................... 29 Conclusion ............................................................................................................................. 31 Competing interests ............................................................................................................... 31 Acknowledgments .................................................................................................................. 31 References ............................................................................................................................ 32 Appendix 1: Species list of the review for secondary question 1 ........................................... 33 Appendix 2: Quality coding tool ............................................................................................. 43 Appendix 3: Data presented by invasive species .................................................................. 44 Appendix 4: Data presented by Threatened species ............................................................. 66 Appendix 5: Still visuals of the taxonomic species pair data ................................................. 88 Appendix 6: List of references included in the final review from which data was extracted from. ....................................................................................................................................... 93 1 Authors Philip D. Roberts [email protected] David J. Hemming [email protected] Martin J. Parr [email protected] Nicola Wakefield [email protected] Holly J. Wright [email protected] CABI Head Office Nosworthy Way Wallingford OX108DE United Kingdom Hilda Diaz-Soltero [email protected] USDA, National Invasive Species Council, 1201 Eye Street, NW., 5th Floor, Washington, DC, USA Richard H. Shaw [email protected] CABI, Bakeham Lane, Egham, Surrey, TW209TY, United Kingdom Arne B.R. Witt [email protected] CABI Canary Bird, 673 Limuru Road, Muthaiga, PO Box 633-00621, Nairobi, KENYA 2 Abstract Background: The Convention on Biological Diversity has reported invasive species as 2nd greatest cause of species extinction (COP10). However few efforts have been made to collate the evidence to support or contest the impact of invasive species on the decline and/or extinction of threatened species across large taxonomic or geographical scales. This Systematic Review was commissioned by the United States Department for Agriculture (USDA) Invasives Causing Extinction (ICE) programme to determine if the COP10 statement was based on scientific evidence. The evidence needs to be systematically reviewed and mapped to determine the importance and relevance of any such effects in order to develop national and international policies addressing the loss of threatened species, and to prioritise research and mitigation efforts. Methods/design: The searching of online publication databases, grey literature and other resources, such as recovery plans of endangered species, aims to gather existing evidence on whether invasive species are a significant contributor to the decline and/or extinction of threatened species. This study focuses on species under threat in the United States of America (USA). The methods used to carry out the Systematic Review will address the following two fundamental questions: (a) what proportion of threatened species have an invasive species as a significant contributor to their decline?, and (b) through what mechanisms do invasive species contribute towards the decline of native species? The pool of resources gathered has been analysed for relevance and quality using a pre-defined scoring system. A systematic map has been produced, summarising information from individual studies. Results: This systematic review found broad scientific consensus that invasive species are likely to play a crucial and devastating role in driving species extinctions. The review found that the topic has been vastly understudied. Despite the level of concern raised in the COP10 statement, when considering all US FWS ‘threatened species’, for only 6.5% have studies of the impact of invasive species been conducted and published. The reasons for this lack of evidence will be explored subsequently. What is most striking, is that, despite the limited number of studies, where evidence does exist it was overwhelmingly negative. Of all studies that investigated the impact of invasive species on US ‘threatened species’ 80% reported a negative impact. To maximise the practical use of the of this systematic review map the mechanisms of impact were recorded to help provide points of management intervention. The most common mechanisms of impact reported were predation, competition for resources and herbivory. Conclusions: There is broad scientific consensus that invasive species are likely to play a crucial and devastating role in driving species extinctions. This Systematic Review set out to collect all of the available evidence relating to this claim for US FWS ‘threatened species’. This is the first time all evidence has been collated at such a large taxonomic or geographical scale. The review found that the topic has been vastly understudied. Despite the level of concern raised in the COP10 statement, when considering all US FWS ‘threatened species’, for only 6.5% have studies of the impact of invasive species been conducted and published. The reasons for this lack of evidence will be explored subsequently. What is most striking, is that, despite the limited number of studies, where evidence does exist it was overwhelmingly negative. Of all studies that investigated the impact of invasive species on US ‘threatened species’ 80% (158 cases of evidence) reported a negative impact. This dominance of negative interactions is a clear evidence-based message to policy makers and land managers of the importance of the impact that invasive species are having on already imperilled species. 3 Keywords • Invasive species • Alien species • Threatened species • Impact, Decline • Extinction, Mechanism Definitions Invasive species: As defined by the United States of America (USA) Presidential Executive Order 13112 of February 3, 1999 is being used. It states that an “Alien species” means, with respect to a particular ecosystem, any species, including its seeds, eggs, spores, or other biological material capable of propagating that species, that is not native to that ecosystem. It also states that “Invasive species” means
Recommended publications
  • Proposed Endangered Status for 23 Plants From
    55862 Federal Register I Vol. 56. No. 210 I Wednesday, October 30, 1991 / Proposed Rules rhylidosperma (no common name (NCN)), Die//ia laciniata (NCN), - Exocarpos luteolus (heau),~Hedyotis cookiana (‘awiwi), Hibiscus clay-i (Clay’s hibiscus), Lipochaeta fauriei (nehe), Lipochaeta rnicrantha (nehe), Lipochaeta wairneaensis (nehe), Lysimachia filifolla (NCN), Melicope haupuensis (alani), Melicope knudsenii (alani), Melicope pal/ida (alani), Melicope quadrangularis (alani) Munroidendron racemosum (NCN). Nothocestrum peltatum (‘aiea), Peucedanurn sandwicense (makou). Phyllostegia wairneae (NCN), Pteraiyxia kauaiensis (kaulu), Schiedea spergulina (NCN), and Solanurn sandwicense (popolo’aiakeakua). All but seven of the species are or were endemic to the island of Kauai, Hawaiian Islands; the exceptions are or were found on the islands of Niihau, Oahu, Molokai, Maui, and/or Hawaii as well as Kauai. The 23 plant species and their habitats have been variously affected or are currently threatened by 1 or more of the following: Habitat degradation by wild, feral, or domestic animals (goats, pigs, mule deer, cattle, and red jungle fowl); competition for space, light, water, and nutrients by naturalized, introduced vegetation; erosion of substrate produced by weathering or human- or animal-caused disturbance; recreational and agricultural activities; habitat loss from fires; and predation by animals (goats and rats). Due to the small number of existing individuals and their very narrow distributions, these species and most of their populations are subject to an increased likelihood of extinction and/or reduced reproductive vigor from stochastic events. This proposal. if made final, would implement the Federal protection and DEPARTMENT OF THE INTERIOR recovery provisions provided by the Fish and Wildlife Service Act.
    [Show full text]
  • Studies in Annonaceae. VIII. a Cladistic Analysis of Tetrameranthus
    TAXON 37(2): 346-353. MAY 1988 Studies in Annonaceae. VIII. A cladistic analysis of Tetrameranthus J. Koek-Noorman1,M. Zandee2and L.Y.Th. Westra1 Summary The small genus Tetrameranthus (five species) stands isolated within the Annonaceae. A cladistic analysis was carried out using macromorphologicalcharacters in order to find possible apomorphies and to attempt a phylogenetic reconstruction. In the “best” cladograms there appear two subsets, one T. formed by T. duckei, T. macrocarpus, and pachycarpus, the other by T. laomae and T. umbellatus. Both are supported by a number of apomorphic character states. Any other conclusions remain speculative. Introduction the Westra Recently, a taxonomic revision of genus Tetrameranthus was published by data and collaborators (Westra, 1985). That paper essentially deals with presentation of (including two newly described species), it does not make any statements on possible the member the because relationships other thanaccepting genus as a of Annonaceae. This is Tetrameranthus combinationof isolated within has a unique characters and stands rather these characters leaves in the the family. Principal among are: 1) arranged a spiral, 2) perianth in whorls of four, and 3) flowers subtended by a verticil of four bracts; for more data the reader is referred to Westra (1985). In Various positions for Tetrameranthus have been proposed. Fries’s (1959) compre- the T hensive survey of Annonaceaeit is placed as the sole memberofa tribe etramerantheae in subfamily Annonoideae. Walker (1971), in a classification based on his palynological It studies, places the genus in the Uvaria tribe ofthe Malmea subfamily. shouldbe remarked in this context that there is a considerablediscrepancy between palynological data by Hesse and Waha (1984) and those by Walker.
    [Show full text]
  • Conservation Triage Or Injurious Neglect in Endangered Species Recovery
    Conservation triage or injurious neglect in endangered species recovery Leah R. Gerbera,1 aCenter for Biodiversity Outcomes and School of Life Sciences, Arizona State University, Tempe, AZ 85287 Edited by James A. Estes, University of California, Santa Cruz, CA, and approved February 11, 2016 (received for review December 23, 2015) Listing endangered and threatened species under the US Endan- the ESA is presumed to offer a defense against extinction and a gered Species Act is presumed to offer a defense against extinction solution to achieve the recovery of imperiled populations (1), but and a solution to achieve recovery of imperiled populations, but only if effective conservation action ensues after listing occurs. only if effective conservation action ensues after listing occurs. The The amount of government funding available for species amount of government funding available for species protection protection and recovery is one of the best predictors of successful and recovery is one of the best predictors of successful recovery; recovery (2–7); however, government spending is both in- however, government spending is both insufficient and highly sufficient and highly disproportionate among groups of species disproportionate among groups of species, and there is significant (8). Most species recovery plans include cost estimates—a pro- discrepancy between proposed and actualized budgets across spe- posed budget for meeting recovery goals. Previous work has cies. In light of an increasing list of imperiled species requiring demonstrated a significant discrepancy between proposed and evaluation and protection, an explicit approach to allocating recovery actualized budgets across species (9). Furthermore, the literature fundsisurgentlyneeded. Here I provide a formal decision-theoretic on formal decision theory and endangered species conservation approach focusing on return on investment as an objective and a suggests that the most efficient allocation of resources to con- transparent mechanism to achieve the desired recovery goals.
    [Show full text]
  • Recovery Plan for Tyoj5llllt . I-Bland Plants
    Recovery Plan for tYOJ5llllt. i-bland Plants RECOVERY PLAN FOR MULTI-ISLAND PLANTS Published by U.S. Fish and Wildlife Service Portland, Oregon Approved: Date: / / As the Nation’s principal conservation agency, the Department of the Interior has responsibility for most ofour nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values ofour national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests ofall our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island Territories under U.S. administration. DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Costs indicated for task implementation and/or time for achievement ofrecovery are only estimates and are subject to change. Recovery plans do not necessarily represent the views nor the official positions or approval ofany individuals or agencies involved in the plan formulation, otherthan the U.S. Fish and Wildlife Service. They represent the official position ofthe U.S.
    [Show full text]
  • Vegetative Propagation
    VEGETATIVE PROPAGATION MICROPROPAGATION : AN IMPORTANT TOOL IN THE CON S ERVATION OF ENDANGERED HA W AIIAN PLANT S Nellie Sugii and Charles Lamoureux (808) 988-3177 [email protected] [email protected] Harold L. Lyon Arboretum University of Hawai‘i at Manoa 3860 Manoa Road Honolulu, Hawai‘i 96822 Abstract About half the taxa of native Hawaiian vascular plants are endangered in the biological sense. Some 25% have already been federally listed as endangered or threatened (272 endangered, 10 threatened); 49.5% of federally listed endangered plant species native to the U.S. are Hawaiian species. About 300 more have been significantly depleted and are currently treated as Species of Concern. Many endangered Hawaiian plants are exceedingly rare. Eleven taxa are currently known from only a single specimen of each remaining in the wild; more than 100 species currently have 20 or fewer plants remaining in the wild. Many rare Hawaiian plants have recalcitrant seeds, and standard seed storage techniques will not provide satisfactory long-term storage for maintenance of genetic diversity. In 1991 Lyon Arboretum initiated a project to apply any appropriate micropropaga- tion techniques to the conservation of rare Hawaiian plants. These techniques include tissue culture and cloning, as well as embryo culture, immature and mature seed culture. When material is available, embryo and seed cultures are the techniques of choice, in order to maximize genetic variability. The objectives of the project include (a) prevention of extinction of Hawaiian plant taxa, (b) propagating plants for use in approved restoration and reintroduction projects, and for garden use, and (c) main- taining an in vitro genetic safety net for the most critically endangered taxa.
    [Show full text]
  • A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
    Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U.
    [Show full text]
  • Oregon City Nuisance Plant List
    Nuisance Plant List City of Oregon City 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Acer platanoides Norway Maple Acroptilon repens Russian knapweed Aegopodium podagraria and variegated varieties Goutweed Agropyron repens Quack grass Ailanthus altissima Tree-of-heaven Alliaria officinalis Garlic Mustard Alopecuris pratensis Meadow foxtail Anthoxanthum odoratum Sweet vernalgrass Arctium minus Common burdock Arrhenatherum elatius Tall oatgrass Bambusa sp. Bamboo Betula pendula lacinata Cutleaf birch Brachypodium sylvaticum False brome Bromus diandrus Ripgut Bromus hordeaceus Soft brome Bromus inermis Smooth brome-grasses Bromus japonicus Japanese brome-grass Bromus sterilis Poverty grass Bromus tectorum Cheatgrass Buddleia davidii (except cultivars and varieties) Butterfly bush Callitriche stagnalis Pond water starwort Cardaria draba Hoary cress Carduus acanthoides Plumeless thistle Carduus nutans Musk thistle Carduus pycnocephalus Italian thistle Carduus tenufolius Slender flowered thistle Centaurea biebersteinii Spotted knapweed Centaurea diffusa Diffuse knapweed Centaurea jacea Brown knapweed Centaurea pratensis Meadow knapweed Chelidonium majou Lesser Celandine Chicorum intybus Chicory Chondrilla juncea Rush skeletonweed Cirsium arvense Canada Thistle Cirsium vulgare Common Thistle Clematis ligusticifolia Western Clematis Clematis vitalba Traveler’s Joy Conium maculatum Poison-hemlock Convolvulus arvensis Field Morning-glory 1 Nuisance Plant List
    [Show full text]
  • Comparative Reproductive Biology of Two Florida Pawpaws Asimina Reticulata Chapman and Asimina Tetramera Small Anne Cheney Cox Florida International University
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-5-1998 Comparative reproductive biology of two Florida pawpaws asimina reticulata chapman and asimina tetramera small Anne Cheney Cox Florida International University DOI: 10.25148/etd.FI14061532 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biology Commons Recommended Citation Cox, Anne Cheney, "Comparative reproductive biology of two Florida pawpaws asimina reticulata chapman and asimina tetramera small" (1998). FIU Electronic Theses and Dissertations. 2656. https://digitalcommons.fiu.edu/etd/2656 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida COMPARATIVE REPRODUCTIVE BIOLOGY OF TWO FLORIDA PAWPAWS ASIMINA RETICULATA CHAPMAN AND ASIMINA TETRAMERA SMALL A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Anne Cheney Cox To: A rthur W. H arriott College of Arts and Sciences This dissertation, written by Anne Cheney Cox, and entitled Comparative Reproductive Biology of Two Florida Pawpaws, Asimina reticulata Chapman and Asimina tetramera Small, having been approved in respect to style and intellectual content, is referred to you for judgement. We have read this dissertation and recommend that it be approved. Jorsre E. Pena Steven F. Oberbauer Bradley C. Bennett Daniel F. Austin Suzanne Koptur, Major Professor Date of Defense: November 5, 1998 The dissertation of Anne Cheney Cox is approved.
    [Show full text]
  • Federal Register/Vol. 64, No. 171/Friday, September 3, 1999/Rules and Regulations
    Federal Register / Vol. 64, No. 171 / Friday, September 3, 1999 / Rules and Regulations 48307 is consistent with statutory Dated: August 18, 1999. FOR FURTHER INFORMATION CONTACT: requirements. Section 203 requires EPA Felicia Marcus, Robert Hayne, Mass Media Bureau (202) to establish a plan for informing and Regional Administrator, Region IX. 418±2177. advising any small governments that Part 52, chapter I, title 40 of the Code SUPPLEMENTARY INFORMATION: This is a may be significantly or uniquely of Federal Regulations is amended as synopsis of the Memorandum Opinion impacted by the rule. follows: and Order in MM Docket No. 91±259, EPA has determined that the approval adopted June 17, 1999, and released action promulgated does not include a PART 52Ð[AMENDED] June 21, 1999. The full text of this Federal mandate that may result in decision is available for inspection and estimated annual costs of $100 million 1. The authority citation for part 52 copying during normal business hours or more to either State, local, or tribal continues to read as follows: in the FCC's Reference Information governments in the aggregate, or to the Authority: 42 U.S.C. 7401 et seq. Center at Portals II, CY±A257, 445 12th private sector. This Federal action 2. Section 52.220 is amended by Street, SW, Washington, D.C. The approves pre-existing requirements adding paragraph (c)(247) to read as complete text of this decision may also under State or local law, and imposes follows: be purchased from the Commission's no new requirements. Accordingly, no copy contractor, International additional costs to State, local, or tribal § 52.220 Identification of plan.
    [Show full text]
  • Sato Hawii 0085O 10652.Pdf
    RESTORATION OF HAWAIIAN TROPICAL DRY FORESTS: A BIOCULTURAL APPROACH A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BOTANY (CONSERVATION BIOLOGY) MAY 2020 By Aimee Y. Sato Thesis Committee: Tamara Ticktin, Chairperson Christian P. Giardina Rakan A. Zahawi Kewords: Tropical Dry Forest, Biocultural, Conservation, Restoration, Natural Regeneration, Social-Ecological 1 ACKNOWLEDGEMENTS I thank my graduate committee for steering and guiding me through my thesis work. Dr. Tamara Ticktin, my thesis advisor who has been the greatest kumu (teacher) that I could have asked for in my research. I also thank my two committee members, Dr. Rakan A. Zahawi and Dr. Christian P. Giardina, who both brought their expansive levels of expertise to help develop this thesis. Thank you so much to the hoaʻāina (caretakers/restoration managers) of my two project sites. I thank the hoaʻāina of Kaʻūpūlehu, ‘Aunty’ Yvonne Carter, ‘Uncle’ Keoki Carter, Wilds Brawner, Kekaulike Tomich, Lehua Alapai, Kuʻulei Keakealani, and ‘Aunty’ Hannah Kihalani Springer. Thank you to the hoaʻāina of Auwahi, Art Medeiros, Erica von-Allmen, Ainoa and Kalaʻau Kaiaokamalie, Amy Campbell, Andy Bieber, Robert Pitts, and Kailie Aina. I would also like to acknowledge Kamehameha Schools and the Ulupalakua Ranch for allowing me to conduct this research on their lands. Thank you to the dry forest restoration managers and researchers that participated in the overview survey of Hawaiian dry forests. On Oʻahu Island: Lorena ‘Tap’ Wada, James Harmon and Kapua Kawelo. On Hawaiʻi Island: Elliott Parsons, Rebecca Most, Lena Schnell, Kalā Asing, Jen Lawson, and Susan Cordell.
    [Show full text]
  • Cannen Acedo & Felix Llamas Bromus Lepidus and Bromus
    Flora Meditenanea 6 - 1996 191 Cannen Acedo & Felix Llamas Bromus lepidus and Bromus pseudothominii, two new records for the Iberian Peninsula Abstract Acedo, C. & Llamas, F.: Bromus lepidus and Bromus pseudOlhominii, two new records for the Iberian Peninsula. - Fl. Medi!. 6: 191-196. 1996 - ISSN 1120-4052. Bromus lepidus and B. pseudothominii are reported for the first time from the Iberian Peninsula. A comparative morphological and anatomical study of these c10sely rclatcd species belonging to the Bromus hordeaceus complex has been carricd ou!. Introduction This is a continuation of our former contributions to the Iberian brome-grasses. The quotation af new records (Ace do & Llamas 1994) and thc discovery of two ncw species (Acedo & Llamas in press). The genus Bromus is widely distributed in the Iberian Peninsula being represented by near thirty of thc mediterranean species, belonging to four subgenera, bcing subgenus Bromus the most difficult to undcrstand because the great morphological similarity among the different species. We think this is the rcason to find easily misidentified specimcns in some herbaria. Material and Methods Plant matcrial studicd includcs about one thousand herbarium sheets belanging to the Bronllls IlOrdeaceus complex (from BCF, COI, E, GDA, GDAC, LEB, LD, LINN, LISI, LISU, MA, MAF, SALAF, SANT, and VAB) and frcsh material, with special attentian to the Iberian Pcninsula. The herbarium abbreviations following Holmbcrg & al. (1990). Ali measuremcnts of the spikelcts and lcmmas are taken in full mature spikelcts excluding awns. For anatomical studies fresh and rehidrated samples were fixed in F.A.A. The scctions were made with a freezing microtome, and thcn cleared and stained with safranin and fast green.
    [Show full text]
  • (+)-Catechin and Quercetin from Pawpaw Pulp A
    Characterization of (+)-Catechin and Quercetin from Pawpaw Pulp A thesis presented to the faculty of the College of Health Sciences and Professions of Ohio University In partial fulfillment of the requirements for the degree Master of Science Jinsoo Ahn June 2011 © 2011 Jinsoo Ahn. All Rights Reserved. 2 This thesis titled Characterization of (+)-Catechin and Quercetin from Pawpaw Pulp by JINSOO AHN has been approved for the School of Applied Health Sciences and Wellness and the College of Health Sciences and Professions by Robert G. Brannan Assistant Professor of Applied Health Sciences and Wellness Randy Leite Interim Dean, College of Health Sciences and Professions 3 ABSTRACT AHN, JINSOO, M.S., June 2011, Human and Consumer Sciences, Food and Nutrition Characterization of (+)-Catechin and Quercetin from Pawpaw Pulp Director of Thesis: Robert G. Brannan This thesis investigates the concentration of total phenolics and total flavonoids in pulp extracts of pawpaw harvested in 2008, 2009, and 2010, and the concentration of (+)- catechin and quercetin flavonoids in 2010 pawpaw pulp extracts using high performance liquid chromatography (HPLC). Next, influence of frozen storage and air or vacuum packaging of pawpaw pulp on the concentration of (+)-catechin and quercetin flavonoids was examined. In addition, properties of pawpaw pulp such as moisture content, lipid content, percent sugar, color, and pH were measured. Total phenolics were determined using the Folin-Ciocalteu assay and reported as µmol gallic acid equivalent (GAE)/ g wet tissue. The concentration was observed in the order of 2009 sample (3.91 ± 1.61) < 2008 sample (11.19 ± 0.57) < 2010 sample (14.11 ± 1.90).
    [Show full text]