Variants in PRKCE and KLC1, Potential Negative Regulators of Type I Psoriasis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent -
Hares, K. M., Miners, S., Scolding, N
Hares, K. M. , Miners, S., Scolding, N., Love, S., & Wilkins, A. (2019). KIF5A and KLC1 expression in Alzheimer’s disease: relationship and genetic influences. AMRC Open Research, 1, [1]. https://doi.org/10.12688/amrcopenres.12861.1 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.12688/amrcopenres.12861.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via F1000 Research at https://amrcopenresearch.org/articles/1-1/v1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ AMRC Open Research AMRC Open Research 2019, 1:1 Last updated: 11 APR 2019 RESEARCH ARTICLE KIF5A and KLC1 expression in Alzheimer’s disease: relationship and genetic influences [version 1; peer review: 1 approved, 1 approved with reservations, 1 not approved] Kelly Hares 1, Scott Miners2, Neil Scolding1, Seth Love2, Alastair Wilkins1 1Bristol Medical School: Translational Health Sciences, MS and Stem Cell Group, University of Bristol, Bristol, BS10 5NB, UK 2Bristol Medical School: Translational Health Sciences, Dementia Research Group, University of Bristol, Bristol, BS10 5NB, UK First published: 19 Feb 2019, 1:1 (https://doi.org/10.12688/amrcopenres.12861.1 Open Peer Review v1 ) Latest published: 19 Feb 2019, 1:1 ( https://doi.org/10.12688/amrcopenres.12861.1) Referee Status: Abstract Invited Referees Background: Early disturbances in axonal transport, before the onset of gross 1 2 3 neuropathology, occur in a spectrum of neurodegenerative diseases including Alzheimer’s disease. -
Drp1 Overexpression Induces Desmin Disassembling and Drives Kinesin-1 Activation Promoting Mitochondrial Trafficking in Skeletal Muscle
Cell Death & Differentiation (2020) 27:2383–2401 https://doi.org/10.1038/s41418-020-0510-7 ARTICLE Drp1 overexpression induces desmin disassembling and drives kinesin-1 activation promoting mitochondrial trafficking in skeletal muscle 1 1 2 2 2 3 Matteo Giovarelli ● Silvia Zecchini ● Emanuele Martini ● Massimiliano Garrè ● Sara Barozzi ● Michela Ripolone ● 3 1 4 1 5 Laura Napoli ● Marco Coazzoli ● Chiara Vantaggiato ● Paulina Roux-Biejat ● Davide Cervia ● 1 1 2 1,4 6 Claudia Moscheni ● Cristiana Perrotta ● Dario Parazzoli ● Emilio Clementi ● Clara De Palma Received: 1 August 2019 / Revised: 13 December 2019 / Accepted: 23 January 2020 / Published online: 10 February 2020 © The Author(s) 2020. This article is published with open access Abstract Mitochondria change distribution across cells following a variety of pathophysiological stimuli. The mechanisms presiding over this redistribution are yet undefined. In a murine model overexpressing Drp1 specifically in skeletal muscle, we find marked mitochondria repositioning in muscle fibres and we demonstrate that Drp1 is involved in this process. Drp1 binds KLC1 and enhances microtubule-dependent transport of mitochondria. Drp1-KLC1 coupling triggers the displacement of KIF5B from 1234567890();,: 1234567890();,: kinesin-1 complex increasing its binding to microtubule tracks and mitochondrial transport. High levels of Drp1 exacerbate this mechanism leading to the repositioning of mitochondria closer to nuclei. The reduction of Drp1 levels decreases kinesin-1 activation and induces the partial recovery of mitochondrial distribution. Drp1 overexpression is also associated with higher cyclin-dependent kinase-1 (Cdk-1) activation that promotes the persistent phosphorylation of desmin at Ser-31 and its disassembling. Fission inhibition has a positive effect on desmin Ser-31 phosphorylation, regardless of Cdk-1 activation, suggesting that induction of both fission and Cdk-1 are required for desmin collapse. -
Understanding the Role of the Chromosome 15Q25.1 in COPD Through Epigenetics and Transcriptomics
European Journal of Human Genetics (2018) 26:709–722 https://doi.org/10.1038/s41431-017-0089-8 ARTICLE Understanding the role of the chromosome 15q25.1 in COPD through epigenetics and transcriptomics 1 1,2 1,3,4 5,6 5,6 Ivana Nedeljkovic ● Elena Carnero-Montoro ● Lies Lahousse ● Diana A. van der Plaat ● Kim de Jong ● 5,6 5,7 6 8 9 10 Judith M. Vonk ● Cleo C. van Diemen ● Alen Faiz ● Maarten van den Berge ● Ma’en Obeidat ● Yohan Bossé ● 11 1,12 12 1 David C. Nickle ● BIOS Consortium ● Andre G. Uitterlinden ● Joyce J. B. van Meurs ● Bruno C. H. Stricker ● 1,4,13 6,8 5,6 1 1 Guy G. Brusselle ● Dirkje S. Postma ● H. Marike Boezen ● Cornelia M. van Duijn ● Najaf Amin Received: 14 March 2017 / Revised: 6 November 2017 / Accepted: 19 December 2017 / Published online: 8 February 2018 © The Author(s) 2018. This article is published with open access Abstract Chronic obstructive pulmonary disease (COPD) is a major health burden in adults and cigarette smoking is considered the most important environmental risk factor of COPD. Chromosome 15q25.1 locus is associated with both COPD and smoking. Our study aims at understanding the mechanism underlying the association of chromosome 15q25.1 with COPD through epigenetic and transcriptional variation in a population-based setting. To assess if COPD-associated variants in 1234567890();,: 15q25.1 are methylation quantitative trait loci, epigenome-wide association analysis of four genetic variants, previously associated with COPD (P < 5 × 10−8) in the 15q25.1 locus (rs12914385:C>T-CHRNA3, rs8034191:T>C-HYKK, rs13180: C>T-IREB2 and rs8042238:C>T-IREB2), was performed in the Rotterdam study (n = 1489). -
1 Supporting Information for a Microrna Network Regulates
Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia. -
Endothelial Cell Injury in Atherosclerosis Is Regulated by Glycolysis (Review)
INTERNATIONAL JOURNAL OF MOleCular meDICine 47: 65-76, 2021 Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review) RUIYING WANG1-5, MIN WANG1-5, JINGXUE YE1-5, GUIBO SUN1-5 and XIAOBO SUN1-5 1Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences; 2Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences; 3Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences; 4Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences; 5Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing 100193, P.R. China Received August 14, 2020; Accepted November 5, 2020 DOI: 10.3892/ijmm.2020.4798 Abstract. Atherosclerosis (AS) is a chronic disease with a In conclusion, endothelial cell injury in AS may be alleviated by complex pathology that may lead to several cardiovascular and glycolysis and is a potential clinical treatment strategy for AS. cerebrovascular diseases; however, further research is neces- sary to fully elucidate its pathogenesis. The main risk factors for AS include lipid metabolism disorders, endothelial cell Contents injury, inflammation and immune dysfunction, among which vascular endothelial cell damage is considered as the main 1. -
Deep Multiomics Profiling of Brain Tumors Identifies Signaling Networks
ARTICLE https://doi.org/10.1038/s41467-019-11661-4 OPEN Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes Hong Wang 1,2,3, Alexander K. Diaz3,4, Timothy I. Shaw2,5, Yuxin Li1,2,4, Mingming Niu1,4, Ji-Hoon Cho2, Barbara S. Paugh4, Yang Zhang6, Jeffrey Sifford1,4, Bing Bai1,4,10, Zhiping Wu1,4, Haiyan Tan2, Suiping Zhou2, Laura D. Hover4, Heather S. Tillman 7, Abbas Shirinifard8, Suresh Thiagarajan9, Andras Sablauer 8, Vishwajeeth Pagala2, Anthony A. High2, Xusheng Wang 2, Chunliang Li 6, Suzanne J. Baker4 & Junmin Peng 1,2,4 1234567890():,; High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT down- stream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics inte- grative approaches, and providing novel tumor vulnerabilities. -
Structural Basis for Isoform-Specific Kinesin-1 Recognition of Y-Acidic
bioRxiv preprint doi: https://doi.org/10.1101/322057; this version posted May 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Structural basis for isoform-specific kinesin-1 recognition of Y-acidic cargo adaptors Stefano Pernigo1, Magda Chegkazi1, Yan Y. Yip1, Conor Treacy1, Giulia Glorani1, Kjetil Hansen2, Argyris Politis2, Mark P. Dodding1,3,*, Roberto A. Steiner1,* 1Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK 2Department of Chemistry, King’s College London Britannia House 7 Trinity Street, London, SE1 1DB (UK) 3current address School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD *Correspondence email: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/322057; this version posted May 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The light chains (KLCs) of the heterotetrameric microtubule motor kinesin-1, that bind to cargo adaptor proteins and regulate its activity, have a capacity to recognize short peptides via their tetratricopeptide repeat domains (KLCTPR). Here, using X-ray crystallography, we show how kinesin-1 recognizes a novel class of adaptor motifs that we call ‘Y-acidic’ (tyrosine flanked by acidic residues), in a KLC-isoform specific manner. Binding specificities of Y-acidic motifs (present in JIP1 and in TorsinA) to KLC1TPR are distinct from those utilized for the recognition of W-acidic motifs found in adaptors that are KLC- isoform non-selective. -
KLC1 (NM 182923) Human Tagged ORF Clone – RC220210L4 | Origene
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC220210L4 KLC1 (NM_182923) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: KLC1 (NM_182923) Human Tagged ORF Clone Tag: mGFP Symbol: KLC1 Synonyms: KLC; KNS2; KNS2A Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC220210). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_182923 ORF Size: 1814 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 KLC1 (NM_182923) Human Tagged ORF Clone – RC220210L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_182923.2, NP_891553.2 RefSeq Size: 2548 bp RefSeq ORF: 1722 bp Locus ID: 3831 UniProt ID: Q07866 Protein Families: Druggable Genome MW: 65.1 kDa Gene Summary: Conventional kinesin is a tetrameric molecule composed of two heavy chains and two light chains, and transports various cargos along microtubules toward their plus ends. -
Activation of Conventional Kinesin Motors in Clusters by Shaw Voltage
Research Article 2027 Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels Joshua Barry1, Mingxuan Xu2,*, Yuanzheng Gu2, Andrew W. Dangel3, Peter Jukkola4, Chandra Shrestha2,` and Chen Gu1,2,4,§ 1Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA 2Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA 3Plant-Microbe Genomics Facility, The Ohio State University, Columbus, OH 43210, USA 4Integrated Biomedical Graduate Program, The Ohio State University, Columbus, OH 43210, USA *Present address: Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA `Present address: Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA 24061, USA §Author for correspondence ([email protected]) Accepted 19 February 2013 Journal of Cell Science 126, 2027–2041 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.122234 Summary The conventional kinesin motor transports many different cargos to specific locations in neurons. How cargos regulate motor function remains unclear. Here we focus on KIF5, the heavy chain of conventional kinesin, and report that the Kv3 (Shaw) voltage-gated K+ channel, the only known tetrameric KIF5-binding protein, clusters and activates KIF5 motors during axonal transport. Endogenous KIF5 often forms clusters along axons, suggesting a potential role of KIF5-binding proteins. Our biochemical assays reveal that the high- affinity multimeric binding between the Kv3.1 T1 domain and KIF5B requires three basic residues in the KIF5B tail. Kv3.1 T1 competes with the motor domain and microtubules, but not with kinesin light chain 1 (KLC1), for binding to the KIF5B tail. -
Profiling Haplotype Specific Cpg and Cph Methylation Within A
www.nature.com/scientificreports OPEN Profling haplotype specifc CpG and CpH methylation within a schizophrenia GWAS locus on chromosome 14 in schizophrenia and healthy subjects Margarita Alfmova*, Nikolay Kondratyev, Arkadiy Golov & Vera Golimbet Interrogating DNA methylation within schizophrenia risk loci holds promise to identify mechanisms by which genes infuence the disease. Based on the hypothesis that allele specifc methylation (ASM) of a single CpG, or perhaps CpH, might mediate or mark the efects of genetic variants on disease risk and phenotypes, we explored haplotype specifc methylation levels of individual cytosines within a genomic region harbouring the BAG5, APOPT1 and KLC1 genes in peripheral blood of schizophrenia patients and healthy controls. Three DNA fragments located in promoter, intronic and intergenic areas were studied by single-molecule real-time bisulfte sequencing enabling the analysis of long reads of DNA with base-pair resolution and the determination of haplotypes directly from sequencing data. Among 1,012 cytosines studied, we did not fnd any site where methylation correlated with the disease or cognitive defcits after correction for multiple testing. At the same time, we determined the methylation profle associated with the schizophrenia risk haplotype within the KLC1 fourth intron and confrmed ASM for cytosines located in the vicinity of rs67899457. These genetically associated DNA methylation variations may be related to the pathophysiological mechanism diferentiating the risk and non-risk haplotypes and merit further investigation. Schizophrenia is a common, highly heritable disorder characterized by positive, negative, and cognitive symp- toms. Large genome-wide association studies (GWAS) of the Psychiatric Genomics Consortium (PGC) have identifed more than 100 genomic regions that are signifcantly associated with schizophrenia1,2. -
Fast Transport of RNA Granules by Direct Interactions with KIF5A/KLC1 Motors Prevents Axon 2 Degeneration 3 4 Yusuke Fukuda1,2, Maria F
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.02.931204; this version posted February 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Fast Transport of RNA Granules by Direct Interactions with KIF5A/KLC1 Motors Prevents Axon 2 Degeneration 3 4 Yusuke Fukuda1,2, Maria F. Pazyra-Murphy1,2, Ozge E. Tasdemir-Yilmaz1,2, Yihang Li1,2, Lillian Rose1,2, Zoe 5 C. Yeoh2, Nicholas E. Vangos2, Ezekiel A. Geffken2, Hyuk-Soo Seo2,3, Guillaume Adelmant2,4, Gregory H. 6 Bird2,5,6, Loren D. Walensky2,5,6 Jarrod A. Marto2,4, Sirano Dhe-Paganon2,3, and Rosalind A. Segal1,2,7,* 7 8 1Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA 9 2Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA 10 3Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 11 02115, USA 12 4Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA 13 5Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA 14 6Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA 15 7Lead Contact 16 *Correspondence: [email protected] (R.A.S.) 17 18 19 20 Abstract 21 Complex neural circuitry requires stable connections formed by lengthy axons. To maintain these 22 functional circuits, fast transport delivers RNAs to distal axons where they undergo local translation.