Avian Gastrointestinal Anatomy and Physiology Kirk C

Total Page:16

File Type:pdf, Size:1020Kb

Avian Gastrointestinal Anatomy and Physiology Kirk C Avian Gastrointestinal Anatomy and Physiology Kirk C. Klasing, BS, MS, PhD A bird's gastrointestinal (GI) tract morphology, diges- their GI tracts appear to be morphologically tive strategy, and metabolic capability have been inti- more similar to chickens and turkeys than to mately intertwined during evolution to match the nutri- ent content and physical attributes of foods available in birds with very different dietary patterns, such as its natural habitat. The most commonly kept compan- carnivorous or herbivorous species. This permits ion species are granivorous with a tendency toward us to use the well-studied chicken as a point of omnivory. The beak, oral cavity, and tongue of granivo- reference when examining the GI tracts of com- rous birds have anatomic adaptations for shelling seeds, panion avian species. including ridges in the tomia of their beak for slicing the hull and a dexterous tongue for manipulating the seed The GI tract of a bird provides an environ- and disposing the hull. Granivorous species possess a ment for the physical and chemical reduction in sizeable crop or an expandable esophageal pouch for the size and molecular complexity of food and storing food so that large meals can be consumed. Their then absorbs the end products of digestion, proventriculus is somewhat small, and their gizzard is which are needed in widely differing quantities. large, muscular, and possesses a thick cuticle relative to carnivores or frugivores. A vestigial ceca and short A young chick requires a diet with more than rectum provide little area for use of symbiotic bacteria 15% protein, but only 0.0000003% of vitamin to aid in the digestion of the fibrous components of B12. The anatomy and digestive functions of the food. GI tract are designed to accommodate this wide Copyright 1999 by W. B. Saunders Company. range of quantitative needs. The GI tract has Key words: Digestion, companion birds, gastrointesti- sufficient morphological plasticity to accommo- nal tract. date changes in nutritional needs during the life cycle and to adapt to changing physical and nutritional characteristics of the diet. ~,4 re than 9,000 species of birds (more than ce as many as mammals) fill many of the possible niches within the earth's food web. A bird's gastrointestinal (GI) tract morphology, Anatomy and Physiology digestive strategy, and metabolic capability have of the Digestive System been intimately intertwined during evolution to The avian digestive tract is a continuous tube match the nutrient content and physical at- that opens at either end (beak and vent) to the tributes of foods available in its natural habitat. outside world and consists of a mouth, esopha- When compared across species, the GI tract is gus, crop, proventriculus, ventriculus or gizzard, the most anatomically diverse organ system. intestine, ceca, rectum, and cloaca (Fig 1). As However, distantly related species consuming food progresses through these organs, a specific similar food items often display morphological sequence of digestive events occurs, including convergence because of similar nutritional and grinding, acidifying, hydrolyzing, emulsifying, ecological selection pressures. 1,2 The most com- and transporting of the end products. monly kept companion species are granivorous The distinctive anatomy and physiology of the with a tendency toward omnivory (Table 1), and avian GI tract reflects the constraints of flight, in that most of the tract's weight is centralized within the body cavity to optimize aerial maneu- From the Department of Animal Science, University of Califor- verability. The avian GI tract has a larger number nia, Davis, Davis, CA. of organs, which have greater interorgan coopera- Address reprint requests to Kirk C. Klasing; BS, MS, PhD, tion than their mammalian counterparts. The Department of Animal Science, University of California, Davis, One Shields Ave, 2131 B. Meyo'Hall, Davis, CA 95616. precise anatomic plan of the digestive tract of Copyright 1999by W. B. Saunders Company. companion birds varies somewhat, depending 1055-937X/99/0802-0002510. 00/0 on their typical diet. 42 Seminars in Avian and Exotic Pet Medicine, Vol 8, No 2 (April), 1999:pp 42-50 Avian Digestion 43 Table 1. Eating Habits of Some Species of Captively naso-frontal hinge, permitting an increased gape Propagated Birds of the beak and providing flexion that absorbs Mostly granivorous species some of the shock associated with pecking and Gouldian Finch seed cracking. 5,6 Zebra Finch The hyoid apparatus, consisting of multiple Canary articulating bones and their associated muscula- Budgerigar Cockatiel ture, mobilizes the tongue. Psittacidae are unique Domestic Pigeons among birds in that they have additional muscles Omnivorous, but tending to be granivorous in the anterior regions of their tongues that are Conures independent of the hyoid apparatus and permit Rosella added flexibility. 7 The tongues of lories and Sulfur-crested Cockatoo African Grey Parrot lorikeets are relatively long and end in fine, Amazon Parrot hairlike processes for the collection of sap or Macaw nectar through capillary action, s Tongues of Chicken many other psittacine species are thick and Omnivorous, but tending to be frugivorous muscular, acting as fingers for the manipulation Toucan Mynah and extraction of seeds from their husks or from Barbets cones. The tongues of passerines, such as finches Omnivores, but tending to be nectarivorous and fru- and canaries, are narrow, short, and not very givorous muscular. Lofikeets The anterior part of the oral cavity is roofed Lories with a hard palate, which in finches, canaries, budgerigars, and cockatiels contains two ridges Beak, Tongue, and Oral Cavity that facilitate removal of the shell from seeds The beak, tongue, and oral cavity function in before consumption. Typically, granivorous spe- grasping, testing, mechanical processing, and cies have well-developed compound tubular sali- lubricating food and propelling the food to the vary glands scattered in groups around the lower esophagus. Their specific morphology reflects oral cavity, tongue, and pharynx. the physical requirements of obtaining and pro- The rapid transit of food through the mouth, cessing food items. The granivorous tendency of lack of mastication, relatively low saliva addition most companion birds is evident in their short to the food, and low numbers of taste receptors stout beaks with pronounced ridges designed for result in poor taste acuity relative to humans. cracking seeds and dexterous tongue for manipu- Parrots have about 350 taste receptors, com- lating the seed when shelling it. pared with 9,000 in hmnans. 9 Most taste buds are A keratin sheath (rhamphotheca) growing located on the palate and on the posterior from the upper and lower mandible forms the tongue. The palatal taste buds are usually located beak. The keratin is continually lost by wear and in regions where the epithelium is soft and replaced by new growth. The location and rate of glandular, typically near the salivary glands. The growth and wear influence the exact shape of the tongue, oral cavity, and beak have a rich supply beak, and subtle changes may occur as food types of touch receptors that augment the bird's rela- change. The tomia, or outer edges, are some- tively poor gustatory capacity with a strong tactile what sharp to facilitate cutting seed coats. Sev- sense. eral structural attributes of the beak, jaws, and Esophagus and Crop skull provide unique functional characteristics that are important in obtaining food. The attach- The esophagus extends down the neck into ment of the lower beak to the skull is somewhat the thoracic cavity and terminates in the proven- loose, permitting a large gape. A bird's gape triculus. In the budgerigar, the esophagus is places the upper limit on the size of food item dorsal to the trachea in the anterior regions of that can be consumed and is particularly large in the neck and then runs along the right side. 1~ frugivorous species (eg, toucans). A second struc- Peristaltic contraction of inner circular and outer tural adaptation found in parrots is the articula- longitudinal muscles in the tunica muscularis tion of the upper mandible in the cranium at the propels food posteriorly through the esophagus. 44 Kirk C. Klasing Cro :ulus izzard Pancreas / "Cloacal bursa Cloaca lal loop loop Figure 1. The digestive tract of a Budgerigar. (Reprinted with permission. 10 ) To aid in swallowing large food items, the esopha- side of the neck, and this organ extends trans- gus is expandable as a result of a series of versely to the left side. The presence of large longitudinal folds. This accordion-like arrange- folds of mucosa allows considerable expansion ment is enriched with mucous glands to provide and shrinkage, depending on the amount of lubrication. The epithelial lining is thick and contents. Immediately cranial to the thoracic cornified for protection against mechanical dam- inlet, the crop narrows to reform an esophageal age as a result of swallowing food items whole. In tube and passes between the coracoid bones to many species, the esophagus widens into a crop the right of the syrinx and dorsal to the heart, i~ just before entering the thoracic cavity. In the Some granivorous species (eg, Cardueline budgerigar, the inlet to the crop is on the right Finches) do not have a true crop, but they Avian Digestion 45 usually have a very expandable esophageal pouch The thickness and physical properties of the that can store food items. cuticle are highly correlated with food con- sumed, being especially thick in granivores, but Stomach thin and soft in frugivores and nectarivores. It is The stomach consists of the proventriculus thickest and toughest directly under the thick (glandular stomach) and the gizzard (muscular muscles, which provide much of the grinding stomach), which is sometimes called the ventricu- within the gizzard. The cuticle lining wears down lus. The proventriculus is the site at which steadily and undergoes continual renewal.
Recommended publications
  • Avian Crop Function–A Review
    Ann. Anim. Sci., Vol. 16, No. 3 (2016) 653–678 DOI: 10.1515/aoas-2016-0032 AVIAN CROP function – A REVIEW* * Bartosz Kierończyk1, Mateusz Rawski1, Jakub Długosz1, Sylwester Świątkiewicz2, Damian Józefiak1♦ 1Department of Animal Nutrition and Feed Management, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland 2Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland ♦Corresponding author: [email protected] Abstract The aim of this review is to present and discuss the anatomy and physiology of crop in different avian species. The avian crop (ingluvies) present in most omnivorous and herbivorous bird spe- cies, plays a major role in feed storage and moistening, as well as functional barrier for pathogens through decreasing pH value by microbial fermentation. Moreover, recent data suggest that this gastrointestinal tract segment may play an important role in the regulation of the innate immune system of birds. In some avian species ingluvies secretes “crop milk” which provides high nutri- ents and energy content for nestlings growth. The crop has a crucial role in enhancing exogenous enzymes efficiency (for instance phytase and microbial amylase,β -glucanase), as well as the activ- ity of bacteriocins. Thus, ingluvies may have a significant impact on bird performance and health status during all stages of rearing. Efficient use of the crop in case of digesta retention time is es- sential for birds’ growth performance. Thus, a functionality of the crop is dependent on a number of factors, including age, dietary factors, infections as well as flock management.
    [Show full text]
  • Life Science Journal 2013;10(2) 479
    Life Science Journal 2013;10(2) http://www.lifesciencesite.com Histological Observations on the Proventriculus and Duodenum of African Ostrich (Struthio Camelus) in Relation to Dietary Vitamin A. Fatimah A. Alhomaid1 and Hoda A. Ali2 1Dept. of Biology, Collage of Science and Arts, Qassim University, KSA 2Dept. of Nutrition and Food Science, Collage of Designs and Home Economy, Qassim University, KSA. Email: [email protected]; [email protected] Abstract: Research problem: The fine structure of the gut in different avian species in relation to dietary vitamins status have widely been studied with the exception of ostriches. Objectives: To study the histological structure of the African ostrich proventriculus and duodenum in relation to two levels of vitamin A (7500 and 9000) IU/kg diet using light microscope. Methods: Twenty male African ostriches with average age 65-67 weeks and apparently healthy were used. They were divided into two equal groups, the first one received diet adjusted to supply 7500 IU/kg diet vitamin A. The second group fed diet formulated to furnished 9000 IU/Kg diet vitamin A. Both diets were isonitrogenous and isocaloric. Body weight gain, feed intake and feed conversion rate were calculated. At the end of four weeks, pieces from the different parts of proventriculus and duodenum were taken for light microscopic examinations. Result: Body weight gain and feed conversion rate were improved in group received 9000IU of vitamin A comparable to group fed 7500IU. Histological structure of proventriculus of birds receiving 7500 IU/Kg vitamin A showing vascular congestion, thinning connective tissue and sloughing of the columnar epithelia lining the central collecting duct.
    [Show full text]
  • Ostrich Production Systems Part I: a Review
    11111111111,- 1SSN 0254-6019 Ostrich production systems Food and Agriculture Organization of 111160mmi the United Natiorp str. ro ucti s ct1rns Part A review by Dr M.M. ,,hanawany International Consultant Part II Case studies by Dr John Dingle FAO Visiting Scientist Food and , Agriculture Organization of the ' United , Nations Ot,i1 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-21 ISBN 92-5-104300-0 Reproduction of this publication for educational or other non-commercial purposes is authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale dells Terme di Caracalla, 00100 Rome, Italy. C) FAO 1999 Contents PART I - PRODUCTION SYSTEMS INTRODUCTION Chapter 1 ORIGIN AND EVOLUTION OF THE OSTRICH 5 Classification of the ostrich in the animal kingdom 5 Geographical distribution of ratites 8 Ostrich subspecies 10 The North
    [Show full text]
  • A Disease Syndrome in Young Chickens 2-To 8-Weeks - Old Characterized by Erosion and Ulceration of the Gizzard Epithelial Linmg and Black Vomit Has Been Reported
    Arch. Insh. Razi, 1981,32, 101-103 A CONDITION OF EROSION AND ULCERATION OF YOUNG CHICKEN'S GIZZARD IN IRAN By: M. Farshian SUMMARY: A disease syndrome in young chickens 2-to 8-weeks - old characterized by erosion and ulceration of the gizzard epithelial linmg and black vomit has been reported. The presence of a dark brown - co!oured fluid in the crop, proventri­ cul us, gizzard and small intestine was oftenly observed. Tue syndrome caused considerable mortaility losses and reduced weight gain in broilers. INTRODUCTION A few reports from the U.S.A. and Latin Amtrican countries have described a disease syndrome in young chickens known to poultrymen in latter terri tories as « Vomito Negro» or black vomit ( Cover and Paredes, 1971; Johnson and Pinedo; 1971). In Iran a condition very similar to the above mentioned syndrome, coming into being occasionally noticed in the past year or 50, has increased in incidence during the past six months, beginning September 1980. The following is an account of the clinical and gross pathological findings of the syndrome. Clinical signs : Affected chickens, 2-to 8 - weeks - old appeared depressed, lost their appetite and usually had pale combs and wattles. Birds were frequently Wlable to stand and sorne had their necks stretched on the groWld. A dark - coloured diarrhea was not uncommon. Death usually occurred within few hours from the onset of the symptoms. 101 The morbidity rate vearried from 5 % to 25 % and daily mortality ranged from 0.1 % to 1% The disease took a 2-to 3 - week course after which time it appeared that the birds developed sorne sort of resistance to the condition.
    [Show full text]
  • Histogenesis of the Proventricular Submucosal Gland of the Chick As Revealed by Light and Electron Microscopy Dale S
    HISTOGENESIS OF THE PROVENTRICULAR SUBMUCOSAL GLAND OF THE CHICK AS REVEALED BY LIGHT AND ELECTRON MICROSCOPY DALE S. THOMSON Malone College, Canton, Ohio ABSTRACT The development of the submucosal tubuloalveolar glands of the proventriculus was studied with both light and electron microscopes, with special reference given to the 13-18-day period. Beginning as an invagination in the stratified columnar epithelium lining the lumen of the proventriculus, the simple tubular gland, by repeated bifurcation of the invaginated portion, by sloughing of the superficial cells, and by remodeling of the residual basal cells from columnar to cuboidal, becomes a compound tubuloalveolar gland composed of numerous secretory units. Concomitant with the gross cellular changes, ultra- structural changes in the intercellular membranes are evident. By day 4 after hatching, the cells forming the secretory units appear to be functional. INTRODUCTION The avian stomach is peculiar in that it consists of two morphologically and physiologically distinct parts: the glandular portion, or proventriculus, and the muscular portion, or gizzard. The proventriculus is a relatively thick-walled structure located at the distal end of the oesophagus and containing both simple mucous-secreting glands and compound submucosal tubuloalveolar glands. The gizzard is a thick muscular bulb, the mucosa of which contains simple glandular cells which secrete a tough, horny layer. The proventriculus has been described by Cazin (1886, 1887), Zietschmann (1908), Calhoun (1933, 1954), Batt (1924), and Bradley and Graham (1950). Aitken (1958) and Toner (1963) further amplified the literature with specific reference to the compound submucosal glands. Sjogren (1941) and Hibbard (1942) described the embryonic development of the submucosal glands.
    [Show full text]
  • An Important Health and Welfare Issue of Growing Ostriches
    DOI: 10.2478/ats-2020-0016 AGRICULTURA TROPICA ET SUBTROPICA, 53/4, 161–173, 2020 Review Article Gastric impaction: an important health and welfare issue of growing ostriches Muhammad Irfan1, Nasir Mukhtar2, Tanveer Ahmad3, Muhammad Tanveer Munir4 1College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea 2Department of Poultry Sciences (Station for Ostrich research & Development), Faculty of Veterinary and Animal Sciences, PMAS‑Arid Agriculture University, Rawalpindi, Pakistan 3Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan 4LIMBHA, Ecole Supérieur du Bois, 44306 Nantes, France Correspondence to: M. T. Munir, LIMBHA, Ecole Supérieur du Bois, 7 Rue Christian Pauc, 44306 Nantes, France. E‑mail: [email protected] Abstract Ostrich farming serves as a source for meat, feathers, skin, eggs, and oil. In general, ostriches are hardy birds that can resist a wide range of climatic harshness and some diseases. However, musculoskeletal and digestive complications, including the gastric impaction, remain the major cause of mortality. The gastrointestinal impaction alone is responsible for 30 – 46% of spontaneous deaths in growing ostriches. The literature review of 21 publications on this subject has shown that 90% of these incidents happen during first six months of life. The aetiology of this problem is mostly stress and behaviour‑related gorging of feed and picking on non‑feeding materials such as stone, sand, wood pieces, plastic, glass, and metallic objects. Conservative therapy or surgical approaches show good results with almost 70 to 100% recovery depending upon the clinical presentation and timely diagnosis. Overall, this literature review describes impaction in farmed ostriches, along with diagnosis, treatment, and control and preventive measures.
    [Show full text]
  • Gastrointestinal Tract Morphometrics and Content of Commercial and Indigenous Chicken Breeds with Differing Ranging Profiles
    animals Article Gastrointestinal Tract Morphometrics and Content of Commercial and Indigenous Chicken Breeds with Differing Ranging Profiles Joanna Marchewka 1,*, Patryk Sztandarski 1 , Zaneta˙ Zdanowska-S ˛asiadek 1, Dobrochna Adamek-Urba ´nska 2 , Krzysztof Damaziak 3, Franciszek Wojciechowski 1, Anja B. Riber 4 and Stefan Gunnarsson 5 1 Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrz˛ebiec, 05-552 Magdalenka, Poland; [email protected] (P.S.); [email protected] (Z.Z.-S.);˙ [email protected] (F.W.) 2 Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; [email protected] 3 Department of Animal Breeding, Faculty of Animal Breeding, Bioengineering and Conservation, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; [email protected] 4 Department of Animal Science, Aarhus University, DK-8830 Aarhus, Tjele, Denmark; [email protected] 5 Department of Animal Environment and Health, Swedish University of Agricultural Sciences (SLU), S-532 23 Skara, Sweden; [email protected] * Correspondence: [email protected] Simple Summary: Differences in the range use by poultry exist on the individual or breed level, even if equal opportunity of outdoor access is provided. Birds reared with access to the pasture consume some of Citation: Marchewka, J.; Sztandarski, the material found outdoors, such as plants, insects, and stones. The frequency of outdoor range use may P.; Zdanowska-S ˛asiadek, Z.;˙ Adamek-Urba´nska,D.; Damaziak, K.; be associated with the ingested material and the development of the bird gut.
    [Show full text]
  • A Simulated Bird Gastric Mill and Its Implications for Fossil Gastrolith Authenticity
    Fossil Record 12 (1) 2009, 91–97 / DOI 10.1002/mmng.200800013 A simulated bird gastric mill and its implications for fossil gastrolith authenticity Oliver Wings Steinmann-Institut fr Geologie, Mineralogie und Palontologie, Universitt Bonn, Nussallee 8, 53115 Bonn, Germany. E-mail: [email protected] Current address: Museum fr Naturkunde Berlin, Invalidenstraße 43, 10115 Berlin, Germany. Abstract Received 12 June 2008 A rock tumbler, stones, water, plant material, hydrochloric acid, and pepsin were used Accepted 15 August 2008 to simulate a bird gizzard in order to study abrasion rate and influence of stomach Published 20 February 2009 juices and foodstuff on gastrolith surface development. The experiment lasted for six months. Each week, the “stomach” was supplied with fresh grass and stomach juices. After the end of the experiment, the set of stones had a combined weight loss of 22.4%, with softer rock types showing higher abrasion rates. The combination of sto- mach juices and silica phytoliths within the grass had no visible effect on stone surface development: polish or pitting did not occur. A second experiment combined only peb- bles with water in the tumbler. Results indicate that rock abrasion is mainly caused by contacts between moving stones. A comparison with authentic ostrich gastroliths Key Words showed that abrasion in the artificial stomach must have been lower than in a real gizzard, but still too high to maintain or develop surface polish. If high polish occa- stomach stones sionally seen on sauropodomorph dinosaur gastroliths was indeed caused in a stomach artificial gizzard environment, it implies digestive processes different from those of extant birds and the clast surface development “artificial gizzard”.
    [Show full text]
  • Relationships Between Carcass Traits and Offal Components in Local Poultry Populations of Benin Journal of Applied Biosciences 69:5 510 – 5522
    Tougan et al . J. Appl. Biosci. 2013 . Relationships between carcass traits and offal components in local poultry populations of Benin Journal of Applied Biosciences 69:5 510 – 5522 ISSN 1997–5902 Relationships between carcass traits and offal components in local poultry populations (gallus gallus ) of Benin Tougan P U 1, Dahouda M 2, Salifou C F A 1, Ahounou G S 1, Kpodekon M T 1, Mensah G A 3, Kossou D N F 1, Amenou C 1, Kogbeto C E 1, Lognay G 4, Thewis 5, Youssao I A K 1 1 Department of Animal Production and Health, Polytechnic School of Abomey-Calavi, 01 BP 2009,Cotonou, Republic of Benin. ² Department of Animal Production, Faculty of Agronomic Science, University of Abomey-Calavi, 01 BP 526, Republic of Benin. 3 Agricultural Research Center of Agonkanmey, National Institute of Agricultural Research of Benin, 01 BP 884, Cotonou 01, Republic of Benin. 4 Laboratory of Analytical Chemistry, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés -5030 Gembloux, Belgique. 5 Animal Sciences Unit, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés, 2, 5030 Gembloux, Belgium.. * Correspondence Prof. Issaka YOUSSAO ABDOU KARIM / EPAC / Department of Animal Production and Health, Polytechnic School of Abomey-Calavi, 01 BP 2009,Cotonou, Republic of Benin. Phone : 00 229 95 28 59 88 ou 00 229 97 91 20 74, Fax : 00 229 21 36 01 99. E-mail : [email protected] , [email protected] Original submitted in on 13 th August 2013 Published online at www.m.elewa.org on 30 th September 2013.
    [Show full text]
  • Avian Digestion
    4/5/2012 Avian digestion I. Introduction A. Shapes II. Taxonomy of food habits B. Grinding Function A. Herbivores C. Crop Milk B. Carnivores D. Other Functions A wonderful bird is the pelican, III. Mouth and Pharynx V. Stomach His bill will hold more than his belly can. A. Bill A. Proventriculus He can take in his beak B. Palate B. Ventriculus Food enough for a week, C. Tongue VI. Small Intestine But I'm damned if I see how the hell he D. Salivary Glands A. Duodenum can. IV. Esophagus and Crop B. Function A. Storage --Dixon Lanier Merritt (1879-?) The Pelican (1910) I. Introduction Digestive system needs to be as light as possible High metabolic rates require large extremely efficient amounts of fuel warbler might eat 80 percent of its body weight in a day! 1 4/5/2012 Loss of teeth and minimum jaw musculature Problem for birds – need to keep low body weight Thus, little fat storage need to locate, ingest, digest food as quickly and efficiently as possible Stellar’s Sea Eagle Major components of avian digestive system II. Taxonomy of food habits • oral cavity Many birds are generalists but many are also specialists • pharynx • esophagus (+ crop) Specializations are evident through the entire alimentary • stomach (proventriculus, canal. ventriculus) • small intestine • large intestine • cloaca 2 4/5/2012 As a group birds consume about any kind of food A. Herbivores ants nectar Granivores buds pollen Frugivores crustaceans roots Nectivores fish sap Folivores fruit snails grass wax insects etc. leaves B. Carnivores III. Mouth and Pharynx Raptors A.
    [Show full text]
  • An Emerging Exotic Disease of Parrots in Australia AVIAN, UNUSUAL & EXOTIC
    avj_109.fm Page 119 Thursday, February 15, 2007 9:35 AM AVIAN, UNUSUAL & EXOTIC Blackwell Publishing Asia CASE REPORT CORE Metadata, citation and similar papers at core.ac.uk Provided by University of QueenslandProventricular eSpace dilatation disease: an emerging exotic disease of parrots in Australia AVIAN, UNUSUAL & EXOTIC RJT DONELEY,a RI MILLERb and TE FANNINGa syndrome of weight loss associated with regurgitation and the Proventricular dilatation disease is a viral disease seen as a passage of undigested food in the faeces, other clinical signs also segmental neuropathy in parrots. It has always been believed include ataxia, abnormal head movements, progressive paresis, to be a disease exotic to Australia, with the only reported case proprioceptive deficits, anorexia, lethargy and, occasionally, being a legally imported Green Wing Macaw (Ara chloroptera) 3 in 1993. This paper reports a cluster of cases seen in south- sudden death. K Rosenthal (personal communication) and D east Queensland in 2005 to 2006. Clinical signs, autopsy Monks (personal communication) consider that, in contrast to findings and histopathological findings are described. No other species, polyuria and polydipsia are frequently seen in Gray pattern or common source for these cases could be identified. parrots (Psittacus erithacus erithacus) affected with PDD. The implications for Australian aviculture and avifauna are discussed. A variety of aetiological agents have been proposed, including paramyxovirus, togavirus, adenovirus, coronavirus,4 and Eastern Key words: proventricular dilatation disease, psittacines, parrots, exotic disease Equine Encephalitis virus. Other suggested aetiologies included Aust Vet J 2007;85:119–123 doi: 10.1111/j.1751-0813.2007.00109.x immune-mediated reactions to an unknown viral agent, how- ever, no consistent viral isolation or serological findings have AST Aspartate aminotransferase confirmed the involvement of any one virus.
    [Show full text]
  • Accumulation Patterns and Risk Assessment of Metals and Metalloid in T Muscle and Offal of Free-Range Chickens, Cattle and Goat in Benin City, Nigeria
    Ecotoxicology and Environmental Safety 151 (2018) 98–108 Contents lists available at ScienceDirect Ecotoxicology and Environmental Safety journal homepage: www.elsevier.com/locate/ecoenv Accumulation patterns and risk assessment of metals and metalloid in T muscle and offal of free-range chickens, cattle and goat in Benin City, Nigeria Emmanuel Temiotan Ogbomidaa, Shouta M.M. Nakayamab, Nesta Bortey-Samb, Balazs Oroszlanyb, Isioma Tongoc, Alex Ajeh Enunekuc, Ogbeide Ozekekec, Martins Oshioriamhe Aineruac, Iriagbonse Priscillia Fasipea, Lawrence Ikechukwu Ezemonyec, ⁎ Hazuki Mizukawab, Yoshinori Ikenakab,d, Mayumi Ishizukab, a Ecotoxicology and Environmental Forensic Unit, National Centre for Energy and Environment, Energy Commission of Nigeria, University of Benin, P.M.B 1154, Benin City, Nigeria b Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 0600818, Japan c Department of Animal and Environmental Biology (AEB), University of Benin, P.M.B 1154, Benin City, Nigeria d Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa ARTICLE INFO ABSTRACT Keywords: The use of free range animals for monitoring environmental health offers opportunities to detect exposure and Heavy metals assess the toxicological effects of pollutants in terrestrial ecosystems. Potential human health risk of dietary Offal intake of metals and metalloid via consumption of offal and muscle of free range chicken, cattle and goats by the Muscles urban population in Benin City was evaluated. Muscle, gizzard, liver and kidney samples were analyzed for Cr, Hazard Quotient Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb concentrations using inductively coupled plasma mass spectrometer (ICP- Hazard Index MS) while Hg was determined using Hg analyzer.
    [Show full text]