Southern Gulf Region Grazing Land Management Land Type Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gulf Coast Assessment
Prepared by: NRM Planning @ Northern Gulf Resource Management Group Ltd Lead author: Jim Tait, Econcern Consulting Contributors: Sarah Rizvi, Prof Alan Dale, Riki Gunn & Sarah Connor Reviewers & advisors: Riki Gunn, Natalie Waller and Anissa Lawrence Design work: Clare Powell & Federico Vanni Editing: Nina Bailey Photography: Federico Vanni This project is supported by the Northern Gulf Resource Management Group Ltd through funding from the Australian Government TABLE OF CONTENTS 3.1 Income .................................................................................................................................................................................. 7 3.2 Employment ......................................................................................................................................................................... 7 3.3 Health .................................................................................................................................................................................. 9 8.1 3.4 Education .............................................................................................................................................................. 9 8.2 3.5 Housing ................................................................................................................................................................. 9 8.3 3.6 Social Services ................................................................................................................................................ -
Seed Ecology Iii
SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst -
Conservation Management Zones of Australia
Conservation Management Zones of Australia Mitchell Grasslands Prepared by the Department of the Environment Acknowledgements This project and its associated products are the result of collaboration between the Department of the Environment’s Biodiversity Conservation Division and the Environmental Resources Information Network (ERIN). Invaluable input, advice and support were provided by staff and leading researchers from across the Department of Environment (DotE), Department of Agriculture (DoA), the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the academic community. We would particularly like to thank staff within the Wildlife, Heritage and Marine Division, Parks Australia and the Environment Assessment and Compliance Division of DotE; Nyree Stenekes and Robert Kancans (DoA), Sue McIntyre (CSIRO), Richard Hobbs (University of Western Australia), Michael Hutchinson (ANU); David Lindenmayer and Emma Burns (ANU); and Gilly Llewellyn, Martin Taylor and other staff from the World Wildlife Fund for their generosity and advice. Special thanks to CSIRO researchers Kristen Williams and Simon Ferrier whose modelling of biodiversity patterns underpinned identification of the Conservation Management Zones of Australia. Image Credits Front Cover: Lawn Hill National Park – Peter Lik Page 4: Kowaris (Dasyuroides byrnei) – Leong Lim Page 10: Oriental Pratincole (Glareola maldivarum) – JJ Harrison Page 16: Australian Fossil Mammal Sites (Riversleigh) – World Heritage Listed site – Colin Totterdell Page 18: Mitchell Grasslands -
Kingdom Class Family Scientific Name Common Name I Q a Records
Kingdom Class Family Scientific Name Common Name I Q A Records plants monocots Poaceae Paspalidium rarum C 2/2 plants monocots Poaceae Aristida latifolia feathertop wiregrass C 3/3 plants monocots Poaceae Aristida lazaridis C 1/1 plants monocots Poaceae Astrebla pectinata barley mitchell grass C 1/1 plants monocots Poaceae Cenchrus setigerus Y 1/1 plants monocots Poaceae Echinochloa colona awnless barnyard grass Y 2/2 plants monocots Poaceae Aristida polyclados C 1/1 plants monocots Poaceae Cymbopogon ambiguus lemon grass C 1/1 plants monocots Poaceae Digitaria ctenantha C 1/1 plants monocots Poaceae Enteropogon ramosus C 1/1 plants monocots Poaceae Enneapogon avenaceus C 1/1 plants monocots Poaceae Eragrostis tenellula delicate lovegrass C 2/2 plants monocots Poaceae Urochloa praetervisa C 1/1 plants monocots Poaceae Heteropogon contortus black speargrass C 1/1 plants monocots Poaceae Iseilema membranaceum small flinders grass C 1/1 plants monocots Poaceae Bothriochloa ewartiana desert bluegrass C 2/2 plants monocots Poaceae Brachyachne convergens common native couch C 2/2 plants monocots Poaceae Enneapogon lindleyanus C 3/3 plants monocots Poaceae Enneapogon polyphyllus leafy nineawn C 1/1 plants monocots Poaceae Sporobolus actinocladus katoora grass C 1/1 plants monocots Poaceae Cenchrus pennisetiformis Y 1/1 plants monocots Poaceae Sporobolus australasicus C 1/1 plants monocots Poaceae Eriachne pulchella subsp. dominii C 1/1 plants monocots Poaceae Dichanthium sericeum subsp. humilius C 1/1 plants monocots Poaceae Digitaria divaricatissima var. divaricatissima C 1/1 plants monocots Poaceae Eriachne mucronata forma (Alpha C.E.Hubbard 7882) C 1/1 plants monocots Poaceae Sehima nervosum C 1/1 plants monocots Poaceae Eulalia aurea silky browntop C 2/2 plants monocots Poaceae Chloris virgata feathertop rhodes grass Y 1/1 CODES I - Y indicates that the taxon is introduced to Queensland and has naturalised. -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Northwest Highlands Bioregion Technical Descriptions
Department of Environment and Science Regional Ecosystem Technical Descriptions Technical descriptions provide a detailed description of the full range in structure and floristic composition of regional ecosystems (e.g. 1.1.10) and their component vegetation communities (e.g. 1.11.10a, 1.11.10b). The descriptions are compiled using site survey data from the Queensland Herbarium’s CORVEG database. Distribution maps, representative images (if available) and the pre-clearing and remnant area (hectares) of each vegetation community derived from the regional ecosystem mapping (spatial) data are included. The technical descriptions should be used in conjunction with the fields from the regional ecosystem description database (REDD) for a full description of the regional ecosystem. Quantitative site data from relatively undisturbed sites are extracted from CORVEG and summarized to provide information specific to each vegetation community. Technical descriptions include the attributes: tree canopy height and cover and native plant species composition of the predominant layer, which are used to assess the remnant status of vegetation under the Vegetation Management Act 1999. However, as technical descriptions reflect the full range in structure and floristic composition across the climatic, natural disturbance and geographic range of the regional ecosystem, local reference sites should be used where possible (Neldner et al. 2005 section 3.3.3). The technical descriptions are subject to review and are updated as additional data becomes available. -
The Nature of Northern Australia
THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF). -
Queensland Rail Holidays
QUEENSLAND RAIL HOLIDAYS 2021/22 QUEENSLAND RAIL HOLIDAYS Sunlover Holidays loves Queensland and you will too. Discover the beautiful coastline and marvel at spectacular outback landscapes as you traverse Queensland on an unforgettable rail holiday. We have combined a great range of accommodation and tour options with these iconic rail journeys to create your perfect holiday. Whether you’re planning a short break, a romantic getaway or the ultimate family adventure, Sunlover Holidays can tailor-make your dream holiday. Use this brochure for inspiration, then let our travel experts assist you to experience Queensland your way – happy travelling! Front cover image: Spirit of Queensland Image this page: Tilt Train Enjoy hearty Outback inspired cuisine and unparalleled service on the Spirit of the Outback CONTENTS Planning Your Rail Holiday 5 COASTAL RAIL 6 Tilt Train 7 Tilt Train Holiday Packages 8 Spirit of Queensland 10 Spirit of Queensland Holiday Packages 12 Kuranda Scenic Railway 17 GULF SAVANNAH RAIL 18 Lawn Hill Gorge, Queensland Gulflander 19 Gulf Savannah Holiday Packages 20 OUTBACK RAIL 23 Spirit of the Outback 24 Ultimate Outback Queensland Adventure – Fully Escorted 26 Spirit of the Outback Holiday Packages 28 Westlander 33 Westlander Holiday Packages 33 Inlander 34 Inlander Holiday Packages 34 Booking Conditions 35 Michaelmas Cay, Tropical North Queensland Valid 1 April 2021 – 31 March 2022 3 Take the track less travelled onboard the Inlander Thursday Island Weipa Cooktown Green Island Kuranda Cairns Karumba Normanton Tully -
1090 the Queensland Fruit Trade
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Queensland eSpace 1090 THE QUEENSLAND FRUIT TRADE [By B. FLEWELL-SMITH, General Manager, Committee of Direction of Fruit Marketing.] (Address to the Historical Society of Queensland on April 28, 1955.) The General Marketing, Canning and Export of Queensland Fruit Development of the fruit industry in Queensland, from its inception, has been very largely dependent on transport. It was poor transport facilities in the early years, in particular, which limited the production of fruit in Central and North Queensland. In the very early days, large quantities of bananas produced in the Caims area were shipped in the bunch to the Sydney and Melbourne markets, with varied and all too fre quently disastrous results. It has been difficult to obtain much information about the fruit industry in the early stages; but some very helpful information has been made available by Mr. Austin, Honorary Librarian of this Society, by the Brisbane City Council and by the Department of Agri culture. The following extract from "Queensland Past and Present" (Weedon) published in 1897, is interesting to note: "Pineapples: 1,138 acres in the year 1891; 823 acres in the year 1896. Citrus oranges: 1,423 acres in the year 1891; 1,791 in the year 1896. Bananas: 3,897 acres in the year 1891; 4,477 acres in the year 1896. "In 1891 there was a large trade to Melbourne; but this fellaway. The crops were attacked by dis ease. The producers complained that they fre quently did not obtain a fair return for fruit sent to the South in consequence of the middleman con triving to form a corner. -
Diversity in Host Preference of Rotylenchus Spp. Y.S
International Journal of Science, Environment ISSN 2278-3687 (O) and Technology, Vol. 7, No 5, 2018, 1786 – 1793 2277-663X (P) DIVERSITY IN HOST PREFERENCE OF ROTYLENCHUS SPP. Y.S. Rathore Principal Scientist (Retd.), Indian Institute of Pulses Research, Kanpur -208024 (U.P.) E-mail: [email protected] Abstract: Species of the genus Rotylenchus are ecto- or semi-endo parasites and feed on roots of their host plants. In the study it was found that 50% species of Rotylenchus were monophagous and mostly on plants in the clade Rosids followed by monocots, Asterids and gymnosperms. In general, Rosids and Asterids combined parasitized more than 50% host species followed by monocots. Though food preference was species specific but by and large woody plants were preferred from very primitive families like Magnoliaceae and Lauraceae to representatives of advanced families. Woody plants like pines and others made a substantial contribution in the host range of Rotylenchus. Maximum number of Rotylenchus species harboured plants in families Poaceae (monocots), Rosaceae (Rosids) and Oleaceae (Asterids) followed by Fabaceae, Fagaceae, Asteraceae and Pinaceae. It is, therefore, suggested that agricultural crops should be grown far away from wild vegetation and forest plantations. Keywords: Rotylenchus, Magnoliids, Rosids, Asterids, Gymnosperms, Host preference. INTRODUCTION Species of the genus Rotylenchus (Nematoda: Haplolaimidae) are migratory ectoparasites and browse on the surface of roots. The damage caused by them is usually limited to necrosis of penetrated cells (1). However, species with longer stylet penetrate to tissues more deeply and killing more cells and called as semi-endoparasites (2,3). The genus contains 97 nominal species which parasitize on a wide range of wild and cultivated plants worldwide (3). -
Impacts of Land Clearing
Impacts of Land Clearing on Australian Wildlife in Queensland January 2003 WWF Australia Report Authors: Dr Hal Cogger, Professor Hugh Ford, Dr Christopher Johnson, James Holman & Don Butler. Impacts of Land Clearing on Australian Wildlife in Queensland ABOUT THE AUTHORS Dr Hal Cogger Australasian region” by the Royal Australasian Ornithologists Union. He is a WWF Australia Trustee Dr Hal Cogger is a leading Australian herpetologist and former member of WWF’s Scientific Advisory and author of the definitive Reptiles and Amphibians Panel. of Australia. He is a former Deputy Director of the Australian Museum. He has participated on a range of policy and scientific committees, including the Dr Christopher Johnson Commonwealth Biological Diversity Advisory Committee, Chair of the Australian Biological Dr Chris Johnson is an authority on the ecology and Resources Study, and Chair of the Australasian conservation of Australian marsupials. He has done Reptile & Amphibian Specialist Group (IUCN’s extensive research on herbivorous marsupials of Species Survival Commission). He also held a forests and woodlands, including landmark studies of Conjoint Professorship in the Faculty of Science & the behavioural ecology of kangaroos and wombats, Mathematics at the University of Newcastle (1997- the ecology of rat-kangaroos, and the sociobiology of 2001). He is a member of the International possums. He has also worked on large-scale patterns Commission on Zoological Nomenclature and is a in the distribution and abundance of marsupial past Secretary of the Division of Zoology of the species and the biology of extinction. He is a member International Union of Biological Sciences. He is of the Marsupial and Monotreme Specialist Group of currently the John Evans Memorial Fellow at the the IUCN Species Survival Commission, and has Australian Museum. -
Final Milestone Report on the Gulf Reconnaissance Component
Report to Land & Water Australia Ecosystem processes in tropical rivers: conceptual models and future research. Final milestone report on the gulf reconnaissance component August 2005 Prepared by: DR ANDREW BROOKS Centre for Riverine Landscapes, Griffith University Email: [email protected] Project Reference: GRU34 ABSTRACT As part of the developmental phase of the Tropical Rivers and Coastal Knowledge (TRaCK) Program this project was instigated to undertake a reconnaissance of all rivers draining into the Gulf of Carpentaria, as well as collecting baseline data and undertaking regional stakeholder consultation. The primary field component of this project was undertaken during September and October 2004, during which time an aerial reconnaissance was completed along the trunk streams of all major rivers draining into the Gulf of Carpentaria. Global Positioning System (GPS) located videography was successfully trialled in this reconnaissance using a non gyro-stabilised mounting from a twin engine, fixed wing platform. Using this approach, high-resolution imagery (1 – 2m) of the channel and riparian zone was collected along 13500km of river channel over 43 hours of flying time. The imagery collected equates to around 52% of the channel network defined by the 1:5M topographic network, which is the network being used to define the streams being classified in an affiliated project. At around $5.50 per river kilometre, this approach has proved to be an efficient and cost effective method of undertaking reconnaissance of large remote area river systems, which at the same time provides a high quality permanent record of the river channel that can effectively form the baseline inventory for subsequent research.