Axis Development and Early Review Asymmetry in Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Axis Development and Early Review Asymmetry in Mammals View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 96, 195±209, January 22, 1999, Copyright 1999 by Cell Press Axis Development and Early Review Asymmetry in Mammals Rosa S. P. Beddington* and Elizabeth J. Robertson² is activated and maternal mRNA degraded at the two- *Division of Mammalian Development cell stage, within 24 hr of fertilization. MRC National Institute for Medical Research Cleavage culminates in blastulation when two distinct The Ridgeway tissues form: the trophectoderm (TE) and the inner cell Mill Hill mass (ICM). These are mutually exclusive tissue lin- London NW7 1AA eages, since the progeny of the TE contribute only to the United Kingdom trophoblast and extraembryonic ectoderm and those of ² Department of Molecular and Cellular Biology the ICM to the fetus and extraembryonic mesoderm and Harvard University endoderm (Gardner, 1983). The segregation of these Cambridge, Massachusetts 02138 two tissues is presaged by polarization of individual blastomeres during cleavage, first manifest at the eight- cell stage. A series of asymmetric or symmetric cell divisions ensues that results in segregation of polar Introduction cells, which form the TE, and apolar cells, which form Studying the formation of the embryonic axes in mam- the ICM (Johnson and Ziomek, 1981). Formation of the mals poses a special problem because patterning of the blastocyst gives unequivocal polarity to the conceptus embryo itself is a relatively late event in development. with the ICM situated at one end, which we will call In the mouse, explicit pattern in the tissue that will gener- proximal. More recently it has been confirmed that the ate the future organism only becomes apparent one- nascent blastocyst is also bilaterally symmetrical, being third of the way through a gestational period of 3 weeks. invariably oval rather than spherical (Gardner, 1997). This tardiness of eutherian mammals is due to viviparity. However, this axis of bilateral symmetry does not seem The earliest stages of their development are necessarily to be polarized in that one end cannot be distinguished preoccupied with the generation of extraembryonic tis- from the other (Figure 1, red arrowheads). At 4.5 days, sues essential for survival in utero. This means that the a third tissue differentiates on the surface of the ICM. conceptus, comprising both the extraembryonic and This is the primitive endoderm destined to generate only embryonic components, is already a complex structure the extraembryonic parietal and visceral endoderm and implanted in the uterus by the time the embryo itself (Gardner, 1983). The remainder of the ICM, now known begins to acquire obvious pattern. For this reason, the as epiblast, will give rise to the entire fetus, including architecture of the conceptus as a whole cannot be the germ line and all the extraembryonic mesoderm. ignored when considering the origin of the embryonic Polar TE continues to divide, producing extraembry- axes of mammals. This contrasts with the develop- onic ectoderm that pushes the epiblast and enveloping ment of most invertebrates and anamniote vertebrates, visceral endoderm toward the distal pole of the concep- where, from the moment of fertilization, embryogenesis tus. A cavity forms in the center of the epiblast, due to is wholly concerned with defining the pattern of the a mixture of apoptotic and survival signals from the future organism. Indeed, in many cases, this patterning visceral endoderm (Coucouvanis and Martin, 1995), and begins during oogenesis when molecular asymmetries the epiblast becomes a cup-shaped epithelial tissue. are laid down in the egg. The first morphological sign of embryonic pattern is In this review, we will explore some of the characteris- evident 6.5 days after fertilization when gastrulation tics of mouse development relevant to axis develop- begins. Epiblast cells at one point on the rim of this ment. We will consider whether the pattern that devel- otherwise apparently homogeneous epithelium undergo ops in the mouse conceptus influences pattern that an epithelial±mesenchymal transformation to generate appears later in the embryo, and we will discuss what mesoderm and form the primitive streak. This point de- is known about how the definitive axes of the embryo fines the posterior pole of the future embryo, and, thus, (anterior±posterior [A±P]; dorsal±ventral [D±V]; and left± the diametrically opposite side of the cylinder is recog- right [L±R]) are laid down during mammalian devel- nized as anterior. During the next 12±24 hr, the streak opment. elongates from the rim of the cup to its distal tip. Here, at the anterior end of the streak, a specialized structure forms, which is known as the node (Figure 1). For rea- Anatomy of Early Mouse Development sons given below, the node is considered homologous Figure 1 illustrates the first week of mouse development to the organizer of other vertebrate embryos. The node (see Hogan et al., 1994; Tam and Behringer, 1998, for generates axial mesendoderm, which comprises that more comprehensive review). The fertilized mouse egg mesoderm which will populate the midline of the embryo is a small (approximately 80 mm in diameter) cell. It has (prechordal plate and notochord) and the definitive gut a polarity because the polar bodies generated by the endoderm. Until the node forms, and hence the definitive first and second meiotic divisions are sequentially ex- gut endoderm, the epiblast remains enveloped in extra- truded at the same site, where they remain tethered embryonic visceral endoderm. The posterior end of the during ensuing cleavage (Gardner, 1997). The site of streak gives rise to extraembryonic mesoderm, while their extrusion has been called the animal pole. Although lateral plate mesoderm and paraxial mesoderm emerge cleavage stages are prolonged, taking approximately 3 from the intervening levels of the streak. The midline days for the egg to produce 16 cells, the zygotic genome mesoderm from the node corresponds to what is called Cell 196 Figure 1. Diagram of the First 7.5 Days of Mouse Development from Fertilization Preimplantation development is depicted on the top row with postimplantation development on the bottom (not drawn to scale). The germ layers of the 6.5 and 7.5 day embryos are also shown as flattened sheets for ease of comparison with other vertebrate and mammalian embryos. The major axes of the embryo are shown superimposed on the profile of an adult mouse. dorsal mesoderm in other vertebrates and the extraem- places as fast as every 2 hr (Snow, 1977). Furthermore, bryonic and lateral mesoderm to ventral. Hence, the unlike the predominantly coherent growth seen in pre- origin of the primitive streak is critical in defining not gastrula Xenopus embryos, the epiblast cells of the only the A±P but also the D±V axis. Since the orientation mouse intermix extensively before gastrulation (see be- of the L±R axis is dependent on the orientation of the low). These differences, together with the early activa- other two axes, L±R pattern also ultimately relies on tion of the zygotic genome, early degradation of mater- where the streak forms. Not surprisingly, this morpho- nal mRNA, and the lateness of gastrulation, make it hard logical sequence of events suggested that pattern for- to see how determinants present in the mouse egg could mation in the mammalian embryo could be explained persist long enough directly to influence embryonic pat- once the cues for localizing streak formation were un- tern. However, if embryonic pattern is dictated by the derstood. early axis of bilateral asymmetry in the blastocyst, then It is worth remembering that as well as the presence of it is conceivable that pattern in the fertilized egg could elaborate extraembryonic tissues, mammalian embryos determine the axes of the conceptus and thereby those arrive at gastrulation in a very different state to that of of the embryo. other vertebrate embryos. There is a marked difference in size, there being only about 600 epiblast cells when Axes of the Conceptus gastrulation begins in mouse compared with several In a trivial sense the proximal±distal axis of the blasto- thousand cells in an equivalent stage Xenopus embryo. cyst obviously corresponds to the D±V axis of the em- Presumably because of this, mouse embryos grow rap- bryo (Figure 1). However, this is more of a geometrical idly during the periimplantation period and, unlike Xeno- coincidence than one that has meaning in terms of de- pus, continue to do so throughout gastrulation, epiblast termining pattern formation. As stated above, the D±V cells dividing on average at least every 6 hr and in some axis of the embryo, with respect to where the more Review 197 dorsal tissues of the embryo originate as opposed to has never been tested (see Gardner, 1998). However, ventral ones, is dictated not by the shape of the concep- isolated blastomeres from the two-cell stage can de- tus but rather by where the primitive streak forms. velop into mice, and at later cleavage stages adding, The first intimation that axes of the conceptus might removing, or rearranging cells seems to have no effect influence the orientation of the A±P axis of the embryo on the pattern of the surviving embryos. Such experi- came from histological studies on implanting blasto- ments also indicate that individually cells remain totipo- cysts and early postimplantation egg cylinders (Smith, tent up to the time of blastulation, although their position 1980, 1985). It appeared that the tilt of the 4.5 day blasto- during cleavage will influence their fateÐinside cells cyst was preserved during implantation as a persistent tending to become ICM and outside cells becoming TE bending of the ectoplacental cone to one side (Figure (see Hogan et al., 1994). 1). From these static descriptive studies, it was claimed The strongest argument against graded cues present that this side corresponded to the side on which the in the egg being responsible for dictating the orientation primitive streak would form.
Recommended publications
  • Lecture 19 Placentation and Maternal Recognition of Pregnancy
    Blastulation Gap Junctions Lecture 19 Inner Cell Mass Zona Pellucida Placentation and Maternal Recognition of Pregnancy Trophectoderm Na+ [Na+] Animal Science 434 John J. Parrish H2O Tight Junctions Hatching Conceptus Growth Cow • Day 15, 1-2 mm Occurs in cow, pig and sheep Bovine • Day 18-19, 10-20 cm »9 - 11 days Spherical Embryonic Equine, Ovine Area »7 - 8 days Porcine Tubular Elongating »6 days Trophoblast Filamentous Mare remains spherical! Development of Porcine Conceptuses Elongated Day 15 Porcine from Day 10 to 12 Conceptus 5 mm Spherical 10 mm Spherical Inner Cell Mass 15 mm Tubular 150 mm Filamentous Embryo 1 Uterine Location of Elongating Pig Intrauterine Migration Ruminant Blastocyst Day 5 Corpus Luteum Bovine and Ovine Pig Intrauterine Migration Pig Intrauterine Migration Day 7 Day 12 Embryos become fixed Transuterine migration is rare in cow and ewe! Trans-uterine Migration in the Mare Gastrulation Begins Day 10 Inner Cell Mass Trophectoderm Formation Endoderm of Germ Fixation can Fixation occur in either on day Layers horn! 15 - 16 Blastocoele Corpus Cavity Luteum 2 Gastrulation Gastrulation Endoderrm Endoderrm Yolk Sack Yolk Sack Gastrula Gastrula Ectoderm Ectoderm Mesoderm Ectoderm Trophectoderm Trophectoderm Extraembryonic Coelom Yolk Sack Endoderm Endoderm Trophectoderm (Chorion) Germ Layers Placenta Formation Embryonic Amniotic Folds Ectoderm Mesoderm Endoderm Ectoderm » CNS » Circulatory » Digestive » Sense organs » Skeletal » Liver » Mammary » Muscle » Lungs glands » Reproductive » Pancreas Extraembryonic »
    [Show full text]
  • Development of Chick Development of Chick
    Unit 15 Development of Chick UNIT 15 DEVELOPMENT OF CHICK StructureStructureStructure 15.1 Introduction Fully Formed Gastrula Objectives 15.6 Neurulation in Chick 15.2 Structure of Egg of Chick Mechanisms of Neural Plate 15.3 Fertilisation Formation 15.4 Cleavage and Blastulation Morphogenesis of Mesodermal Derivatives 15.5 Gastrulation 15.7 Folding of Embryo Role of Hypoblast 15.8 Development of Extra- Fate Map Embryonic Membranes The Gastrulation Process: Development of Amnion and Formation of Primitive Streak Chorion Completion of Endoderm Development of Allantois Regression of Primitive Streak 15.9 Hatching Epiboly of Ectoderm 15.10 Summary Characteristic Features of 15.11 Terminal Questions Avian Gastrulation 15.12 Answers Comparison with Amphibian Gastrulation 15.1 INTRODUCTION Different animals have evolved a variety of strategies of development. However, since all animals are related, the basic mechanism of early development has been conserved in the course of evolution, and so there are some important similarities in early embryonic development of all metazoan animals as you have already learnt in Block 3. This unit speaks about development of chick as an example of an amniote organism. Recall that amniotes are those vertebrates (reptiles, birds and mammals) that have a water sac or amnion surrounding the developing 163 Block 4 Developmental Biology of Vertebrates-II organism protecting it from the external environment. Chick has been one of the first model organisms to be studied in detail as it is easy to maintain and large enough to be manipulated surgically and genetically during all stages of development. You will study about strictly coordinated sequential changes that take place during the course of chick development viz.
    [Show full text]
  • Extracellular Vesicles Secreted During Blastulation Show Viability of Bovine Embryos
    158 6 REPRODUCTIONRESEARCH Extracellular vesicles secreted during blastulation show viability of bovine embryos Edwin A Mellisho, Mario A Briones, Alejandra E Velásquez, Joel Cabezas, Fidel O Castro and Lleretny Rodríguez-Álvarez Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepcion, Chillan, Chile Correspondence should be addressed to L Rodríguez-Álvarez; Email: [email protected] Abstract Extracellular vesicles (EVs) secreted by blastocysts may be clinically relevant, as indicator of embryo viability on in vitro fertilization. We tested if the characteristics of EVs secreted during blastulation are related to embryo viability. Morulae were individually cultured in SOF media depleted of EVs until day 7.5 post IVF. Viable embryos were determined by a system of extended in vitro culture of bovine embryos until day 11 (post-hatching development). Afterward, a retrospective classification of blastocyst and culture media was performed based on blastulation time (early blastulation (EB) or late blastulation (LB)) and post-hatching development at day 11 (viable (V) or non-viable embryo (NV)). A total of 254 blastocysts and their culture media were classified in four groups (V-EB, NV-EB, V-LB, NV-LB). Group V-EB had a larger blastocyst diameter (170.8 μm), higher proportion of good-quality blastocysts (77%) and larger mean size of population of EVs (122.9 nm), although the highest concentration of EVs (5.75 × 109 particles/mL) were in group NV-EB. Furthermore, small RNA sequencing detected two biotypes, miRNA (86–91%) and snoRNA (9–14%), with a total of 182 and 32 respectively. In differential expression analysis of miRNAs between V versus NV blastocysts, there were 12 miRNAs upregulated and 15 miRNAs downregulated.
    [Show full text]
  • Cleavage: Types and Patterns Fertilization …………..Cleavage
    Cleavage: Types and Patterns Fertilization …………..Cleavage • The transition from fertilization to cleavage is caused by the activation of mitosis promoting factor (MPF). Cleavage • Cleavage, a series of mitotic divisions whereby the enormous volume of egg cytoplasm is divided into numerous smaller, nucleated cells. • These cleavage-stage cells are called blastomeres. • In most species the rate of cell division and the placement of the blastomeres with respect to one another is completely under the control of the proteins and mRNAs stored in the oocyte by the mother. • During cleavage, however, cytoplasmic volume does not increase. Rather, the enormous volume of zygote cytoplasm is divided into increasingly smaller cells. • One consequence of this rapid cell division is that the ratio of cytoplasmic to nuclear volume gets increasingly smaller as cleavage progresses. • This decrease in the cytoplasmic to nuclear volume ratio is crucial in timing the activation of certain genes. • For example, in the frog Xenopus laevis, transcription of new messages is not activated until after 12 divisions. At that time, the rate of cleavage decreases, the blastomeres become motile, and nuclear genes begin to be transcribed. This stage is called the mid- blastula transition. • Thus, cleavage begins soon after fertilization and ends shortly after the stage when the embryo achieves a new balance between nucleus and cytoplasm. Cleavage Embryonic development Cleavage 2 • Division of first cell to many within ball of same volume (morula) is followed by hollowing
    [Show full text]
  • Developmental Biology
    DEVELOPMENTAL BIOLOGY DR. THANUJA A MATHEW DEVELOPMENT OF AMPHIOXUS • Eggs- 0.02mm in diameter, microlecithal, isolecithal Cleavage- Holoblastic equal • 1st & 2nd Cleavage- Meridional • 3rd Cleavage-lattitudinal- 4 micromeres& 4 macromeres are produced • 4th Cleavage-Meridional & double • 5th Cleavage- lattitudinal & double • 6th Cleavage onwards irregular 2 BLASTULATION • Blastocoel is filled with jelly like subtance which exerts pressure on blastomeres to become blastoderm • Blastula – equal coeloblastula but contains micromeres in animal hemisphere & macromeres in vegetal hemisphere 3 4 GASTRULATION • The process of formation of double layered gastrula. • The outer layer- ectoderm& inner layer- median notochord flanked by mesoderm. The remaining cells are endodermal cells. • Begin after 6 hrs with flattening of prospective endodermal area. • Characterized by morphogenetic movements & antero posterior elongation 6 7 Morphogenetic movements • 1. Invagination of P.endodermal cells into blastocoel reducing the cavity and a new cavity is produced- gastrocoel or archenteron which opens to outside through blastopore • Blastopore has a circular rim - lip • P.notochord lie in the dorsal lip • P.mesoderm lie in the ventro lateral lip 8 • 2. Involution – rolling in of notochord • 3.Covergence- mesoderm converge towards ventro lateral lip and involute in • 4.Epiboly- Proliferation of ectodermal cell over the entire gastrula 9 Antero posterior elongation • Notochord – long median band • Mesoderm- two horns on either sides of notochord Ectoderm • Neurectoderm -elongate into a median band above notochord • Epidermal ectoderm - cover the rest of the gastrula 10 NEURULATION • 1.Neurectoderm thickens to form neural plate. • 2. Neural plate sinks down • 3. Edges of neural plate rise up as neural folds • 4.Neural folds meet and fuse in the mid line • 5.
    [Show full text]
  • Mesoderma Differenciálódása
    Differentiation of mesoderm Dr. Bódi Ildikó 2019.12.04. 36. Germ cells, fertilization, cleavage (the division of cells in the early embryo) 37. Blastulation, implantation, decidua 38. Development of the embryo shield, ectoderm, endoderm and mesoderm 2 weeks The two-layer embryo shield: epibast and hypoblast Extra-embryonic Coelom Coelom = embryonic body cavity Implantation and gastrulation Gastrulation: The blastula continues to develop, eventually forming a structure called the gastrula. (three-plate embryo shield!!) The extraembryonic mesoderm appears Gastrulation THE DEVELOPMENT OF MESODERMA, DERIVATIVES OF GERM LAYERS (Weeks 3-8 of Development) The TRILAMINAR EMBRYO – 3rd week 1. Induction from the hypolblast cells 2. Proliferation of the epiblast cells 3. Caudal forms the primitive streak with primitive node and primitive groove Heart field (in deep) NEURAL ECTODERM Endoderm 4. The proliferated epiblast cells Epidermis migrate into the 2 layers Medial region of somites Lateral region of 5. Forming the mesoderm somites Intraembrional TRILAMINAR EMBRYO: mesoderm ectoderm, mesoderm, endoderm Stem cells Extraembrional mesoderm chorda dorsalis Parts of Mesoderm Paraxialis mesoderm - somita Intermedier mesoderm gononephrotom Parietalis mesoderm somatopleura splanchnopleura PARTS OF MESODERM AXIAL - green PARAXIAL-yellow INTERMEDIER - red LATERAL - blue •Paraxial mesoderm - somites - musculoskeletal structures •Intermediate mesoderm - urogenital (kidney and genital) •Lateral plate mesoderm - body wall, body cavities, cardiovascular and GIT structures •Paraxial mesoderm - somites - musculoskeletal structures •Intermediate mesoderm - urogenital (kidney and genital) •Lateral plate mesoderm - body wall, body cavities, cardiovascular and GIT structures Week 4Scanning electron micrograph of a cross-section of a human embryo at week 4 (stage 11). Note the mesoderm structures now present and their relative position and size within the embryo.
    [Show full text]
  • Primary Embryonic Germ Layers
    Animals Primary embryonic germ layers • Triploblastic: three germ layers Triploblastic gastrulation forms – Ectoderm: develops into epidermal & neural tissues three germ layers – Endoderm: develops into gut & accessory organs – Mesoderm — displaces blastocoel: develops into muscle, ECTODERM MESODERM ENDODERM endoskeleton, & connective tissues • Epidermis of skin and its • Notochord • Epithelial lining of derivatives (including sweat • Endoskeletal system digestive tract glands, hair follicles) • Muscular system • Epithelial lining of • Epithelial lining of mouth • Muscular layer of respiratory system and rectum stomach, intestine, etc. • Lining of urethra, urinary • Sense receptors in • Excretory system bladder, and reproductive epidermis • Circulatory and lymphatic system • Cornea and lens of eye systems • Liver • Nervous system • Reproductive system • Pancreas Archenteron • Adrenal medulla (except germ cells) • Thymus • Tooth enamel • Dermis of skin • Thyroid and parathyroid • Epithelium or pineal and • Lining of body cavity glands pituitary glands • Adrenal cortex Figure 47.16 Mesoderm Blastopore Figure 32.9b Figure 40.5 Figure 40.5 Epithelial Tissue Connective Tissue • Continuous sheet or layers of cells Loose connective tissue Blood Collagenous Plasma with direct cell-cell junctions fiber Whit e • All three germ m blood Apical µ cells 55 layers start as surface m µ epithelia, Basal Red blood 120 Cartilage so epithelial surface Elastic cells Stratified fiber tissues may squamous Fibrous connective tissue Chondrocytes epithelium derive
    [Show full text]
  • III. Early Cell Differentiation ______
    Cell Differentiation in the Early Embryo ___________________________________ • Shortly after fertilization, the cleavage of the egg ___________________________________ into cells allows different fates to begin to develop in different cell populations ___________________________________ • Different species use different strategies to determine the fate of individual cells and groups of cells during cleavage ___________________________________ • Remember: differentiation means choosing a different set of proteins to express from the DNA ___________________________________ that you (and everyone else) inherited ___________________________________ ___________________________________ III. Early Cell Differentiation ___________________________________ A. Differentiation in individual cells is all ___________________________________ about choosing which DNA to Express B. Levels of Commitment to Differentiation ___________________________________ A. Staged Commitment B. Specification C. Determination ___________________________________ C. Three Major Strategies of Specification A. Autonomous B. Conditional ___________________________________ C. Synctitial ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
    [Show full text]
  • Unit 14 Development of Frog.Pdf
    Unit 14 Development of Frog UNIT 14 DEVELOPMENT OF FROGFROGFROG StructureStructureStructure 14.1 Introduction Involution of Mesoderm Objectives Epiboly of Ectorderm 14.2 Cleavage and Blastulation 14.4 Neurulation Setting the Embryonic Axes Neural Tube Formation Cleavage and Blastula Neural Crest Cells Formation 14.5 Metamorphosis Midbastula Transition Metamorphic Changes Fate Map of Amphibian Hormonal Regulation Blastula 14.6 Neotany 14.3 Gastrulation 14.7 Summary Initiation of Gastrulation 14.8 Terminal Questions Involution of Endoderm 14.9 Answers 14.1 INTRODUCTION In Block 3 you were introduced to the basic concepts of the study of animal development. You learnt that though vertebrate development may vary among the different groups of animals, the early processes and stages of animal development are the same in all groups. You would recall that there are three main stages in early vertebrate development in which (1) the main body axes- dorsal/ventral and anterior/ posterior are to be set up; (2) the three germ layers-ectoderm, mesoderm and endoderm are formed and (3) patterning of the germ layers (early nervous system and mesoderm) takes place. Maternal genes provide factors in the form of RNAs and proteins in the cytoplasm eggs of most vertebrates (except mammals) as cues for the initial stages of development. Later the zygotic genes take over. These developmental stages shared by all vertebrates result in the formation of an embryo being born as either a larval stage which is different from the adult form and transforms into the adult form later, or as a young organism having the typical features of the adult of that species.
    [Show full text]
  • From Hatching Into Fetal Life in the P E in the P E in The
    R.C. Chebel. 2011. Use of Applied Reproductive Technologies (FTAI, FTET) to Improve the Reproductive Efficiency in Dairy Cattle. Acta Scientiae Veterinariae. 39(Suppl 1): s203 - s221. Acta Scientiae Veterinariae, 2011. 39(Suppl 1): s203 - s221. ISSN 1679-9216 (Online) From Hatching into Fetal Life in the Pig Poul Hyttel, Kristian M. Kamstrup & Sara Hyldig ABSTRACT Background: Potential adverse effects of assisted reproductive technologies may have long term consequences on embryonic and fetal development. However, the complex developmental phases occurring after hatching from the zona pellucida are less studied than those occurring before hatching. The aim of the present review is to introduce the major post-hatching developmental features bringing the embryo form the blastocyst into fetal life in the pig. Review: In the pre-hatching mouse blastocyst, the pluripotency of the inner cell mass (ICM) is sustained through expression of OCT4 and NANOG. In the pre-hatching porcine blastocyst, a different and yet unresolved mechanism is operating as OCT4 is expressed in both the ICM and trophectoderm, and NANOG is not expressed at all. Around the time of hatching, OCT4 becomes confined to the ICM. In parallel, the ICM is divided into a ventral cell layer, destined to form the hypoblast, and a dorsal cell mass, destined to form the epiblast. The hypoblast gradually develops into a complete inner lining along the epiblast and the trophectoderm. Upon hatching (around Day 7-8 of gestation), the trophectoderm covering the developing epiblast (Rauber´s layer) is lost and the embryonic disc is formed by development of a cavity in the epiblast, which subsequently “unfolds” resulting the establishment of the disc.
    [Show full text]
  • Morphological Aspects of Human Blastocysts and the Impact of Vitrification Ebner T, Vanderzwalmen P, Shebl O, Mayer RB, Moser M Tews G J
    Journal für Reproduktionsmedizin und Endokrinologie – Journal of Reproductive Medicine and Endocrinology – Andrologie • Embryologie & Biologie • Endokrinologie • Ethik & Recht • Genetik Gynäkologie • Kontrazeption • Psychosomatik • Reproduktionsmedizin • Urologie Morphological Aspects of Human Blastocysts and the Impact of Vitrification Ebner T, Vanderzwalmen P, Shebl O, Mayer RB, Moser M Tews G J. Reproduktionsmed. Endokrinol 2011; 8 (1), 13-20 www.kup.at/repromedizin Online-Datenbank mit Autoren- und Stichwortsuche Offizielles Organ: AGRBM, BRZ, DVR, DGA, DGGEF, DGRM, D·I·R, EFA, OEGRM, SRBM/DGE Indexed in EMBASE/Excerpta Medica/Scopus Krause & Pachernegg GmbH, Verlag für Medizin und Wirtschaft, A-3003 Gablitz FERRING-Symposium digitaler DVR 2021 Mission possible – personalisierte Medizin in der Reproduktionsmedizin Was kann die personalisierte Kinderwunschbehandlung in der Praxis leisten? Freuen Sie sich auf eine spannende Diskussion auf Basis aktueller Studiendaten. SAVE THE DATE 02.10.2021 Programm 12.30 – 13.20Uhr Chair: Prof. Dr. med. univ. Georg Griesinger, M.Sc. 12:30 Begrüßung Prof. Dr. med. univ. Georg Griesinger, M.Sc. & Dr. Thomas Leiers 12:35 Sind Sie bereit für die nächste Generation rFSH? Im Gespräch Prof. Dr. med. univ. Georg Griesinger, Dr. med. David S. Sauer, Dr. med. Annette Bachmann 13:05 Die smarte Erfolgsformel: Value Based Healthcare Bianca Koens 13:15 Verleihung Frederik Paulsen Preis 2021 Wir freuen uns auf Sie! Blastocyst Morphology Morphological Aspects of Human Blastocysts and the Impact of Vitrification T. Ebner1, P. Vanderzwalmen2, O. Shebl1, R. B. Mayer1, M. Moser1, G. Tews1 The topic whether blastocyst culture and transfer is a promising tool in IVF laboratories has been discussed controversially. Discrepancies in outcome may be explained by the fact that formation of a blastocyst on day 5 does not automatically correspond to its viability.
    [Show full text]
  • The Blastocyst: Perpetuating Life Special Interest Groups Embryology and Stem Cells
    The blastocyst: perpetuating life Special Interest Groups Embryology and Stem Cells 3 July 2011 Stockholm, Sweden 2 The blastocyst: perpetuating life Stockholm, Sweden 3 July 2011 Organised by Special Interest Groups Embryology and Stem Cells Contents Course coordinators, course description and target audience Page 5 Programme Page 7 Introduction to ESHRE Page 9 Speakers’ contributions Embryo development and blastocyst formation: timing and synchronization of events ‐Thorir Hardarsson (Sweden) Page 17 Cell (pre)‐destiny in the human preimplantation embryo and implications for IVF and PGD ‐ Hilde Van De Velde (Belgium) Page 25 Metabolic requirements of embryo growth and viability ‐ Henry Leese (United Kingdom) Page 42 The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation – Justin St John (United Kingdom) Page 62 Developmental stages of blastocysts: intercellular junctions and cell polarity – Takashi Hiiragi (Germany) Page 76 The role of microRNA in embryos and hESC – Gustavo Tiscornia (Spain) Page 85 Pluripotency and stem cell states – Ewart Kuijk (The Netherlands) Page 93 Blastocyst cryopreservation: maximizing survival and development – Etienne Van den Abbeel (Belgium) Page 108 Upcoming ESHRE Campus Courses Page 124 Notes Page 125 Page 3 of 132 Page 4 of 132 Course coordinators Cristina Magli (Italy, SIG Embryology), Karen Sermon (Belgium, SIG Stem Cells) Course description This advanced course aims at providing insight into the cellular and molecular
    [Show full text]