Embryo and Its Mitochondria

Total Page:16

File Type:pdf, Size:1020Kb

Embryo and Its Mitochondria antioxidants Review Embryo and Its Mitochondria Pascale May-Panloup 1,2,* , Magalie Boguenet 2 , Hady El Hachem 3 , Pierre-Emmanuel Bouet 4 and Pascal Reynier 2,5 1 Reproductive Biology Unit, Angers University Hospital, 49000 Angers, France 2 MITOVASC, Angers University, INSERM 1083-CNRS 6015, IBS–CHU, 49000 Angers, France; [email protected] (M.B.); [email protected] (P.R.) 3 Department of Reproductive Medicine, Saint Joseph Fertility Center, Beirut 1100, Lebanon; [email protected] 4 Department of Reproductive Medicine, Angers University Hospital, 49000 Angers, France; [email protected] 5 Department of Biochemistry and Genetics, Angers University Hospital, 49000 Angers, France * Correspondence: [email protected]; Tel.: +33-2-41-35-45-94 Abstract: The mitochondria, present in almost all eukaryotic cells, produce energy but also contribute to many other essential cellular functions. One of the unique characteristics of the mitochondria is that they have their own genome, which is only maternally transmitted via highly specific mech- anisms that occur during gametogenesis and embryogenesis. The mature oocyte has the highest mitochondrial DNA copy number of any cell. This high mitochondrial mass is directly correlated to the capacity of the oocyte to support the early stages of embryo development in many species. Indeed, the subtle energetic and metabolic modifications that are necessary for each of the key steps of early embryonic development rely heavily on the oocyte’s mitochondrial load and activity. For example, epigenetic reprogramming depends on the metabolic cofactors produced by the mitochon- drial metabolism, and the reactive oxygen species derived from the mitochondrial respiratory chain are essential for the regulation of cell signaling in the embryo. All these elements have also led scientists to consider the mitochondria as a potential biomarker of oocyte competence and embryo Citation: May-Panloup, P.; Boguenet, viability, as well as a key target for future potential therapies. However, more studies are needed to M.; El Hachem, H.; Bouet, P.-E.; confirm these findings. This review article summarizes the past two decades of research that have Reynier, P. Embryo and Its led to the current understanding of mitochondrial functions in reproduction Mitochondria. Antioxidants 2021, 10, 139. https://doi.org/10.3390/ Keywords: embryo; mitochondria; mitochondrial DNA antiox10020139 Received: 9 January 2021 Accepted: 18 January 2021 1. Introduction Published: 20 January 2021 The mitochondria are small organelles found in all eukaryotic cells and are thought Publisher’s Note: MDPI stays neutral to have evolved from the endosymbiosis between an ancestral eukaryotic cell and an α- with regard to jurisdictional claims in proteobacteria capable of metabolizing oxygen [1]. They are responsible for the production published maps and institutional affil- of more than 90% of the ATP necessary for cellular function via oxidative phosphorylation iations. (OXPHOS) (Figure1). OXPHOS uses five large multi-enzymatic complexes found in the cristae of the inner mitochondrial membrane: complexes I to IV that constitute the electron transport chain (ETC), and complex V (ATP synthase), which allows synthesizing ATP by phosphorylation using the energy generated by the translocation of protons across Copyright: © 2021 by the authors. the inner membrane. OXPHOS functioning produces most of the endogenous reactive Licensee MDPI, Basel, Switzerland. oxygen species (ROS), which are implicated in many cellular regulation pathways but This article is an open access article could become toxic when they accumulate. Besides their crucial role in energy production, distributed under the terms and mitochondria play an essential role in the biosynthesis of organic compounds, apoptosis, conditions of the Creative Commons calcium homeostasis, and thermogenesis, as well as cellular signal pathways and gene Attribution (CC BY) license (https:// expression [2–4]. creativecommons.org/licenses/by/ 4.0/). Antioxidants 2021, 10, 139. https://doi.org/10.3390/antiox10020139 https://www.mdpi.com/journal/antioxidants Antioxidants 2020, 9, x FOR PEER REVIEW 2 of 20 (DRP1), optic atrophy protein 1 (OPA1), and mitofusins 1 and 2 (MFN1 and MFN2)) found in the mitochondrial membrane. Because of this network, it is often difficult to determine the total number of mitochondria, and the mitochondrial mass is indirectly estimated by quantifying the mitochondrial DNA (mtDNA). Indeed, mitochondria have their own genome, a small (about 16 Kilobases) circular double-stranded DNA [6]. MtDNA contains mostly coding regions that encode 13 subunits of the complexes in- volved in the respiratory chain, 2 rRNAs, and 22 tRNAs. The other mitochondrial pro- teins, estimated to be around 1500, are coded by the nuclear genome and later imported into the mitochondria. The regulation of mitochondrial biogenesis is central to mitochondrial functions. It is engineered, in coordination with the general cell metabolism, by PGC1α (PPAR gamma coactivator 1) and NAD-dependent deacetylases of the sirtuin family. PGC1α is a tran- scription coregulator that controls the activity of transcription factors that activate nu- clear genes involved in β oxidation, antioxidant defense, and the citric acid cycle (Krebs cycle). It also promotes the expression of NRF 1 and 2 (nuclear respiratory factors 1 and 2), which are transcription factors for nuclear genes coding for proteins involved in mi- tochondrial import, in assembly, and complexes of the respiratory chain, as well as fac- tors involved in translation (tRNA and rRNA), transcription, and replication of the mtDNA, such as TFAM (mitochondrial transcription factor A) and POLG (polymerase Antioxidants 2021, 10, 139 gamma), thus allowing the coordination between the nuclear and mitochondrial2 ge- of 19 nomes [7,8]. FigureFigure 1. 1. TheThe mitochondria mitochondria play play a acentral central rol rolee in in energy energy production production by by ATP ATP synthesis synthesis via via oxidative oxidative phosphorylationphosphorylation (OXPHOS). (OXPHOS). OXPHOS OXPHOS uses uses four four large large multi multi-enzymatic-enzymatic complexes complexes (complexes (complexes I to I to IV)IV),, which which constitute constitute the the electron electron transport transport chain, chain, and and complex complex V V,, which synthe synthesizessizes ATP. OXPHOS •− ●− OXPHOSactivity generates activity gener the vastates majoritythe vast ofmajority reactive of oxygenreactive species oxygen (ROS) species (O 2(ROS)). (O2 ). 2. Mitochondria,Each somatic Gametogenesis cell contains hundreds, and mtDNA of mitochondria Transmission that form a dynamic network capable of movement, fusion, and fission, depending on the cellular energy require- For most organisms, maternal uniparental inheritance is the norm, as the mito- ments [5]. These mitochondrial dynamics are mediated by GTPases (dynamin-related chondrial genome is inherited exclusively from the oocyte (Figure 2) [9]. This is the con- protein 1 (DRP1), optic atrophy protein 1 (OPA1), and mitofusins 1 and 2 (MFN1 and sequence of two major events: first of all, paternal mtDNA is eliminated via several MFN2)) found in the mitochondrial membrane. Because of this network, it is often difficult mechanisms: a drastic decrease in the number of mitochondria during spermatogenesis to determine the total number of mitochondria, and the mitochondrial mass is indirectly and an active destruction of mitochondria and/or paternal mtDNA during early embry- estimated by quantifying the mitochondrial DNA (mtDNA). Indeed, mitochondria have ogenesis [10,11]. On the other hand, there is global amplification of the mitochondrial their own genome, a small (about 16 Kilobases) circular double-stranded DNA [6]. MtDNA pool during oogenesis, producing several hundred thousands of copies of mtDNA, contains mostly coding regions that encode 13 subunits of the complexes involved in the making the mature oocyte the cell with the highest number of mitochondria in the or- respiratory chain, 2 rRNAs, and 22 tRNAs. The other mitochondrial proteins, estimated to ganism,be around in all 1500, species are coded [12]. byIn the nuclearhuman genomeoocyte, andthe mean later imported number of into copies the mitochondria. of mtDNA has beenThe estimated regulation to ofbe mitochondrialaround 250,000 biogenesis [13]. is central to mitochondrial functions. It isStudies engineered, on mtDNA in coordination segregation with in anim theal general and human cell metabolism, pedigrees affected by PGC1 by αmtDNA(PPAR mutationsgamma coactivator have shown 1) andthat NAD-dependent, when point mutations deacetylases occur of, thethere sirtuin may family.be a high PGC1-levelα is switchinga transcription of mutants coregulator within thata single controls generation the activity [14–18 of]. transcription This concept factorshas led that to the activate bot- nuclear genes involved in β oxidation, antioxidant defense, and the citric acid cycle (Krebs cycle). It also promotes the expression of NRF 1 and 2 (nuclear respiratory factors 1 and 2), which are transcription factors for nuclear genes coding for proteins involved in mitochondrial import, in assembly, and complexes of the respiratory chain, as well as factors involved in translation (tRNA and rRNA), transcription, and replication of the mtDNA, such as TFAM (mitochondrial transcription factor A) and POLG (polymerase gamma), thus allowing the coordination between the nuclear
Recommended publications
  • Placement of Children with Relatives
    STATE STATUTES Current Through January 2018 WHAT’S INSIDE Placement of Children With Giving preference to relatives for out-of-home Relatives placements When a child is removed from the home and placed Approving relative in out-of-home care, relatives are the preferred placements resource because this placement type maintains the child’s connections with his or her family. In fact, in Placement of siblings order for states to receive federal payments for foster care and adoption assistance, federal law under title Adoption by relatives IV-E of the Social Security Act requires that they Summaries of state laws “consider giving preference to an adult relative over a nonrelated caregiver when determining a placement for a child, provided that the relative caregiver meets all relevant state child protection standards.”1 Title To find statute information for a IV-E further requires all states2 operating a title particular state, IV-E program to exercise due diligence to identify go to and provide notice to all grandparents, all parents of a sibling of the child, where such parent has legal https://www.childwelfare. gov/topics/systemwide/ custody of the sibling, and other adult relatives of the laws-policies/state/. child (including any other adult relatives suggested by the parents) that (1) the child has been or is being removed from the custody of his or her parents, (2) the options the relative has to participate in the care and placement of the child, and (3) the requirements to become a foster parent to the child.3 1 42 U.S.C.
    [Show full text]
  • Lecture 19 Placentation and Maternal Recognition of Pregnancy
    Blastulation Gap Junctions Lecture 19 Inner Cell Mass Zona Pellucida Placentation and Maternal Recognition of Pregnancy Trophectoderm Na+ [Na+] Animal Science 434 John J. Parrish H2O Tight Junctions Hatching Conceptus Growth Cow • Day 15, 1-2 mm Occurs in cow, pig and sheep Bovine • Day 18-19, 10-20 cm »9 - 11 days Spherical Embryonic Equine, Ovine Area »7 - 8 days Porcine Tubular Elongating »6 days Trophoblast Filamentous Mare remains spherical! Development of Porcine Conceptuses Elongated Day 15 Porcine from Day 10 to 12 Conceptus 5 mm Spherical 10 mm Spherical Inner Cell Mass 15 mm Tubular 150 mm Filamentous Embryo 1 Uterine Location of Elongating Pig Intrauterine Migration Ruminant Blastocyst Day 5 Corpus Luteum Bovine and Ovine Pig Intrauterine Migration Pig Intrauterine Migration Day 7 Day 12 Embryos become fixed Transuterine migration is rare in cow and ewe! Trans-uterine Migration in the Mare Gastrulation Begins Day 10 Inner Cell Mass Trophectoderm Formation Endoderm of Germ Fixation can Fixation occur in either on day Layers horn! 15 - 16 Blastocoele Corpus Cavity Luteum 2 Gastrulation Gastrulation Endoderrm Endoderrm Yolk Sack Yolk Sack Gastrula Gastrula Ectoderm Ectoderm Mesoderm Ectoderm Trophectoderm Trophectoderm Extraembryonic Coelom Yolk Sack Endoderm Endoderm Trophectoderm (Chorion) Germ Layers Placenta Formation Embryonic Amniotic Folds Ectoderm Mesoderm Endoderm Ectoderm » CNS » Circulatory » Digestive » Sense organs » Skeletal » Liver » Mammary » Muscle » Lungs glands » Reproductive » Pancreas Extraembryonic »
    [Show full text]
  • Human Blastocyst Morphological Quality Is Significantly Improved In
    Human blastocyst morphological quality is significantly improved in embryos classified as fast on day 3 (R10 cells), bringing into question current embryological dogma Martha Luna, M.D.,a,b Alan B. Copperman, M.D.,a,b Marlena Duke, M.Sc.,a,b Diego Ezcurra, D.V.M.,c Benjamin Sandler, M.D.,a,b and Jason Barritt, Ph.D.a,b a Mount Sinai School of Medicine, Department of Obstetrics and Gynecology, Department of Reproductive Endocrinology and Infertility, and b Reproductive Medicine Associates of New York, New York, New York; and c EMD Serono, Rockland, Massachusetts Objective: To evaluate developmental potential of fast cleaving day 3 embryos. Design: Retrospective analysis. Setting: Academic reproductive center. Patient(s): Three thousand five hundred twenty-nine embryos. Intervention(s): Day 3 embryos were classified according to cell number: slow cleaving: %6 cells, intermediate cleaving: 7–9 cells, and fast cleaving: R10 cells, and further evaluated on day 5. The preimplantation genetic diagnosis (PGD) results of 43 fast cleaving embryos were correlated to blastocyst formation. Clinical outcomes of transfers involving only fast cleaving embryos (n ¼ 4) were evaluated. Main Outcome Measure(s): Blastocyst morphology correlated to day 3 blastomere number. Relationship between euploidy and blastocyst formation of fast cleaving embryos. Implantation, pregnancy (PR), and birth rates resulting from fast embryo transfers. Result(s): Blastocyst formation rate was significantly greater in the intermediate cleaving (72.7%) and fast cleav- ing (54.2%) groups when compared to the slow cleaving group (38%). Highest quality blastocysts were formed significantly more often in the fast cleaving group. Twenty fast cleaving embryos that underwent PGD, formed blastocysts, of which 45% (9/20) were diagnosed as euploid.
    [Show full text]
  • Animal Form & Function
    Animals Animal Form & Function By far, most diversity of bauplane (body forms). And most variations within bauplane. Animals are Animated “ANIMAL” ≠ MAMMAL — Fascinating Behaviors Animal Cells • Eukaryotic • No cell wall No plastids No central vacuole • Multicellular: – extensive specialization & differentiation – unique cell-cell junctions Heyer 1 Animals Animals Blastulation & Gastrulation • Motile • Early embryonic development in animals 3 In most animals, cleavage results in the formation of a multicellular stage called a 1 The zygote of an animal • Highly differentiated blastula. The blastula of many animals is a undergoes a succession of mitotic tissues cell divisions called cleavage. hollow ball of cells. Blastocoel • Intercellular junctions Cleavage Cleavage – tissue-specific cadherins 6 The endoderm of the archenteron develops into Eight-cell stage Blastula Cross section Zygote • Extracellular protein the the animal’s of blastula fibers digestive tract. Blastocoel Endoderm – collagen 5 The blind pouch formed by gastrulation, called Ectoderm • Diploid life cycle the archenteron, opens to the outside Gastrula Gastrulation via the blastopore. Blastopore 4 Most animals also undergo gastrulation, a • Blastula/gastrula rearrangement of the embryo in which one end of the embryo folds inward, expands, and eventually fills the embryo blastocoel, producing layers of embryonic tissues: the Figure 32.2 ectoderm (outer layer) and the endoderm (inner layer). Primary embryonic germ layers Primary embryonic germ layers • Diploblastic: two germ
    [Show full text]
  • Ferns of the National Forests in Alaska
    Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p.
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Gender Inclusive Language Building Relationships
    Gender Inclusive Language Building relationships Gender-inclusive language signals that your service and space welcomes diversity. Greet everyone new without using gender markers. Once you know the words people use to describe their families and themselves, use their words in a respectful and professional manner. Did you have a nice time with June and their parents? Yes! Her moms took us to the park. Fun! I'm happy you had a nice time with June and her moms. Individuals Family Members Instead of Singular Plural Singular Plural assuming Person People Spouse Spouses Wife Individual Individuals Partner Partners Husband Someone Some people Significant other Significant others Girlfriend Group member Group Sweetheart Sweethearts Boyfriend Client Clients Date Dates Patient Patients Family Families Wife / Husband Applicant Applicants Family member Family members and kids Care provider Care providers Child Children Daughter Support worker Support workers Kid Kids Son Attendant Attendants Parent Parents Mother Team member Team Guardian Guardians Father Staff member Staff Care Giver Care Givers Employee Employees Grandparent Grandparents Grandmother Grandfather Grandchild Grandchildren Granddaughter Grandson Sibling Siblings Sister / Brother www.transcarebc.ca Nibling Niblings Niece / Nephew ii Pronouns (using they in the singular) If you are in a setting where your interactions with people are brief, you may not have time to get to know the person. Using the singular they in these situations can help to avoid pronoun mistakes. subject They They are waiting at the door. object Them The form is for them. possessive Their Their parents will pick them up at 3pm. adjective possessive Theirs They said the wheelchair is not theirs.
    [Show full text]
  • Vertebrate Embryonic Cleavage Pattern Determination
    Chapter 4 Vertebrate Embryonic Cleavage Pattern Determination Andrew Hasley, Shawn Chavez, Michael Danilchik, Martin Wühr, and Francisco Pelegri Abstract The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate develop- ment. This chapter describes the early cleavage stages for species representing ray- finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these pat- terns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orien- tation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early devel- opment, as well as cytoskeletal specializations specific to early blastomeres A. Hasley • F. Pelegri (*) Laboratory of Genetics, University of Wisconsin—Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI 53706, USA e-mail: [email protected] S. Chavez Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA M.
    [Show full text]
  • Placement Process Resource Guide
    Placement Process Resource Guide Updated September 2021 Table of Contents Table of Contents ..................................................................................................................................... i The Placement Process Overview ......................................................................................................... 1 Definition of Placement ........................................................................................................................ 1 Initial Placement .................................................................................................................................... 2 Short-Term Emergency Placements .................................................................................................... 2 Subsequent Placements ........................................................................................................................ 2 Placement Types and Definitions ......................................................................................................... 3 Own Home ............................................................................................................................................. 3 Substitute Care ....................................................................................................................................... 3 Regulated Foster Care........................................................................................................................... 4 Types of Regulated
    [Show full text]
  • Development of Chick Development of Chick
    Unit 15 Development of Chick UNIT 15 DEVELOPMENT OF CHICK StructureStructureStructure 15.1 Introduction Fully Formed Gastrula Objectives 15.6 Neurulation in Chick 15.2 Structure of Egg of Chick Mechanisms of Neural Plate 15.3 Fertilisation Formation 15.4 Cleavage and Blastulation Morphogenesis of Mesodermal Derivatives 15.5 Gastrulation 15.7 Folding of Embryo Role of Hypoblast 15.8 Development of Extra- Fate Map Embryonic Membranes The Gastrulation Process: Development of Amnion and Formation of Primitive Streak Chorion Completion of Endoderm Development of Allantois Regression of Primitive Streak 15.9 Hatching Epiboly of Ectoderm 15.10 Summary Characteristic Features of 15.11 Terminal Questions Avian Gastrulation 15.12 Answers Comparison with Amphibian Gastrulation 15.1 INTRODUCTION Different animals have evolved a variety of strategies of development. However, since all animals are related, the basic mechanism of early development has been conserved in the course of evolution, and so there are some important similarities in early embryonic development of all metazoan animals as you have already learnt in Block 3. This unit speaks about development of chick as an example of an amniote organism. Recall that amniotes are those vertebrates (reptiles, birds and mammals) that have a water sac or amnion surrounding the developing 163 Block 4 Developmental Biology of Vertebrates-II organism protecting it from the external environment. Chick has been one of the first model organisms to be studied in detail as it is easy to maintain and large enough to be manipulated surgically and genetically during all stages of development. You will study about strictly coordinated sequential changes that take place during the course of chick development viz.
    [Show full text]
  • Extracellular Vesicles Secreted During Blastulation Show Viability of Bovine Embryos
    158 6 REPRODUCTIONRESEARCH Extracellular vesicles secreted during blastulation show viability of bovine embryos Edwin A Mellisho, Mario A Briones, Alejandra E Velásquez, Joel Cabezas, Fidel O Castro and Lleretny Rodríguez-Álvarez Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepcion, Chillan, Chile Correspondence should be addressed to L Rodríguez-Álvarez; Email: [email protected] Abstract Extracellular vesicles (EVs) secreted by blastocysts may be clinically relevant, as indicator of embryo viability on in vitro fertilization. We tested if the characteristics of EVs secreted during blastulation are related to embryo viability. Morulae were individually cultured in SOF media depleted of EVs until day 7.5 post IVF. Viable embryos were determined by a system of extended in vitro culture of bovine embryos until day 11 (post-hatching development). Afterward, a retrospective classification of blastocyst and culture media was performed based on blastulation time (early blastulation (EB) or late blastulation (LB)) and post-hatching development at day 11 (viable (V) or non-viable embryo (NV)). A total of 254 blastocysts and their culture media were classified in four groups (V-EB, NV-EB, V-LB, NV-LB). Group V-EB had a larger blastocyst diameter (170.8 μm), higher proportion of good-quality blastocysts (77%) and larger mean size of population of EVs (122.9 nm), although the highest concentration of EVs (5.75 × 109 particles/mL) were in group NV-EB. Furthermore, small RNA sequencing detected two biotypes, miRNA (86–91%) and snoRNA (9–14%), with a total of 182 and 32 respectively. In differential expression analysis of miRNAs between V versus NV blastocysts, there were 12 miRNAs upregulated and 15 miRNAs downregulated.
    [Show full text]