Morphological Aspects of Human Blastocysts and the Impact of Vitrification Ebner T, Vanderzwalmen P, Shebl O, Mayer RB, Moser M Tews G J

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Aspects of Human Blastocysts and the Impact of Vitrification Ebner T, Vanderzwalmen P, Shebl O, Mayer RB, Moser M Tews G J Journal für Reproduktionsmedizin und Endokrinologie – Journal of Reproductive Medicine and Endocrinology – Andrologie • Embryologie & Biologie • Endokrinologie • Ethik & Recht • Genetik Gynäkologie • Kontrazeption • Psychosomatik • Reproduktionsmedizin • Urologie Morphological Aspects of Human Blastocysts and the Impact of Vitrification Ebner T, Vanderzwalmen P, Shebl O, Mayer RB, Moser M Tews G J. Reproduktionsmed. Endokrinol 2011; 8 (1), 13-20 www.kup.at/repromedizin Online-Datenbank mit Autoren- und Stichwortsuche Offizielles Organ: AGRBM, BRZ, DVR, DGA, DGGEF, DGRM, D·I·R, EFA, OEGRM, SRBM/DGE Indexed in EMBASE/Excerpta Medica/Scopus Krause & Pachernegg GmbH, Verlag für Medizin und Wirtschaft, A-3003 Gablitz FERRING-Symposium digitaler DVR 2021 Mission possible – personalisierte Medizin in der Reproduktionsmedizin Was kann die personalisierte Kinderwunschbehandlung in der Praxis leisten? Freuen Sie sich auf eine spannende Diskussion auf Basis aktueller Studiendaten. SAVE THE DATE 02.10.2021 Programm 12.30 – 13.20Uhr Chair: Prof. Dr. med. univ. Georg Griesinger, M.Sc. 12:30 Begrüßung Prof. Dr. med. univ. Georg Griesinger, M.Sc. & Dr. Thomas Leiers 12:35 Sind Sie bereit für die nächste Generation rFSH? Im Gespräch Prof. Dr. med. univ. Georg Griesinger, Dr. med. David S. Sauer, Dr. med. Annette Bachmann 13:05 Die smarte Erfolgsformel: Value Based Healthcare Bianca Koens 13:15 Verleihung Frederik Paulsen Preis 2021 Wir freuen uns auf Sie! Blastocyst Morphology Morphological Aspects of Human Blastocysts and the Impact of Vitrification T. Ebner1, P. Vanderzwalmen2, O. Shebl1, R. B. Mayer1, M. Moser1, G. Tews1 The topic whether blastocyst culture and transfer is a promising tool in IVF laboratories has been discussed controversially. Discrepancies in outcome may be explained by the fact that formation of a blastocyst on day 5 does not automatically correspond to its viability. Adequate morphological scoring at blastocyst stage (quality of inner cell mass and trophectoderm, expansion, screening for anomalies) would definitely help to significantly reduce the number of blastocysts being replaced, which in turn would limit the number of multiple gestations. Such a strategy could automatically increase the number of blastocysts to be frozen for later replacement. Currently, vitrification challenges slow freezing as the cryopreservation method of choice, since it is faster, more cost-effective and yields at least comparable thawing results. With respect to this, four morphological parameters of vitrified/warmed blastocyts are reported (re-expansion, hatching, necrotic foci and cytoplasmic defects) which can successfully be used for selection purposes in frozen blastocyst transfer. To conclude, blastocyst culture, transfer and cryopreservation is certainly a valuable method in the hands of IVF practitioners and has gained acceptance by many programs throughout the world. Key words: blastocyst quality, hatching,inner cell mass, re-expansion, vitrification Morphologische Analyse der Blastozyste und Einfluss der Vitrifikation. Die Meinungen, ob eine Blastozystenkultur bzw. ein Blastozystentransfer vielversprechende Methoden der assistierten Reproduktion sind, gehen auseinander. Ein möglicher Grund für diese Diskrepanzen könnte die Tatsache sein, dass die Bildung einer Blastozyste am 5. Entwicklungstag nicht automatisch bedeutet, dass diese auch vital ist. Eine adäquate morphologische Beurteilung im Blastozystenstadium (Qualität von innerer Zellmasse und Trophektoderm, Expansion, Anomalien) würde sicherlich einer Reduktion der Zahl der zu transferierenden Blastozysten förderlich sein und so weiter zur Verringerung der Mehrlingsschwangerschaften beitragen können. Damit einhergehend würde die Anzahl der zu kryokonservierenden Embryonen natürlich steigen. Um eine exakte Prognose hinsichtlich einer zu erwartenden Implantation nach dem Tauen/Erwärmen erstellen zu können, bieten sich 4 morphologische Parameter zur Selektion ehemals kryokonservierter Blasto- zysten an: Re-Expansion, Hatching, das Vorhandensein nekrotischer Areale sowie zytoplasmatische Defekte. Zusammenfassend lässt sich behaupten, dass bei detaillierter morphologischer Analyse der Blastozyste deren Kultur, Transfer und Kryokonservierung sehr wohl eine Berechtigung auf dem Gebiet der künstlichen Befruchtung hat. J Reproduktionsmed Endokrinol 2011; 8 (1): 13–20. Schlüsselwörter: Blastozystenqualität, Hatching, innere Zellmasse, Re-Expansion, Vitrifikation Introduction delivery, is non-invasive morphological phectoderm (TE) responsible for the ac- selection at different developmental cumulation of fluid in the blastocyst cav- Compared to the natural cycle, the situa- stages [3, 4]. ity and specialised for implantation and tion in IVF is different because con- an inner cell mass (ICM) forming all trolled ovarian hyperstimulation may Theoretically, any prolongation of in three germ layers of the fetus. cause accidental maturation and ovula- vitro culture up to day 4 or day 5 will tion of germ cells of reduced develop- allow for a more accurate prediction of Morphology before Vitrifi- mental potential. In other words, the ac- developmental capacity. On day 4 (90– tual implantation potential may be over- 100 hours past insemination), blasto- cation estimated though oocyte morphology, meres should have formed numerous Continual improvement in culture media fertilization and cleavage rate may ap- tight intracellular junctions finally re- composition resulting in a higher number pear inconspicuous at first glance. On sulting in a compacting or even a moru- of available day 5 embryos had 2 major the other hand, even embryos of worst la-stage embryo. This marks the switch consequences for embryologists. On the quality may sometimes turn out to be from a cell cluster of individual blas- one hand, adequate cryopreservation viable, e.g. develop to healthy babies. tomeres to a relatively smooth mass with programs for blastocysts had to be estab- indistinguishable cell outlines capable of lished, and, on the other, there was a need However, taken into consideration that actively regulating its internal environ- for more detailed blastocyst scoring sys- usually routine laboratories neither have ment. On the fifth day of in vitro culture tems in order to filter out those blastocysts the equipment nor the resources to ana- (114–120 hours) preimplantation devel- which would implant preferentially. lyze embryo metabolism [1, 2] or cyto- opment should culminate in the forma- genetical constitution, the only approach tion of the blastocyst. Once fully devel- At the beginning of efficient blastocyst to reach the ultimate goal in assisted re- oped human blastocysts consist of two grading some twenty years ago particu- production, namely a healthy singleton different cell types: an outer layer of tro- lar attention was focused on develop- Received: July 15, 2010; accepted after revision: January 31, 2011 From the 1Landes- Frauen- und Kinderklinik, IVF-Unit, Linz, Austria, and the 2Centre Hospitalier Inter Regional Cavell (CHIREC), Brussels, Belgium and IVF Centers Prof. Zech, Bregenz, Austria Correspondence: Thomas Ebner, PhD, Landes- Frauen- und Kinderklinik, Kinderwunsch Zentrum Linz, A-4020 Linz, Krankenhausstraße 26–30; e-mail: [email protected] J Reproduktionsmed Endokrinol 2011; 8 (1) 13 For personal use only. Not to be reproduced without permission of Krause & Pachernegg GmbH. Blastocyst Morphology mental stage, e.g. blastocyst expansion Though it has been suggested [13] that the lineage that gives rise to the fetus [5, 6]. A more recent scoring system [7] indirect assessment of the total cell num- [22]. took additional morphological features ber (TCN) without destroying the blasto- into consideration, namely grade of ex- cyst is possible under good inverted Cell Lineages pansion and morphology of ICM and optics, the vast majority of studies on Hardy et al. [15] were one of the first to TE. According to the degree of expan- TCN were performed using stained cells realize certain interesting differences in sion the blastocysts were scored using of spare embryos of reduced quality (do- the growth rate of both cell lineages. In Roman numbers in ascending order nated to research), thus, probably not general, mitotic rate of the trophecto- ranging from grade I (blastocyst cavity representing the actual cell number of derm is approximately 1.5 times higher less than half of the volume of the em- healthy blastocysts. Early work on TCN than that of the ICM; however, com- bryo) to VI (completely hatched blasto- faced another drawback, namely the in- pared to some other mammals, the over- cyst). Beginning with full blastocyst ability of simple culture media (e.g. all proportion of the inner cell mass is stage (grade III) additional assessment Earle’s balanced salt solution, Ham’s relatively high, e.g. 34% of all cells on of ICM and TE was performed (based on F10, medium T6) to adequately support day 5, 51% on day 6 and 37% on day 7 cell number and cohesion) in order to human embryo development in vitro. [15]. The striking peak on day 6, with predict developmental competence. Apart from achieving lower blastocyst half of all cells in the blastocyst being formation rates [14] these authors some- part of the ICM, is explained by an in- Though the Dokras system [5, 6] was how underestimated mitotic potential of crease in ICM growth rate between days shown to be helpful in routine laboratory in vitro grown blastocysts. 5 and 6, a time when the number of TE work [8] the more detailed Gardner ap- cells
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • Lecture 19 Placentation and Maternal Recognition of Pregnancy
    Blastulation Gap Junctions Lecture 19 Inner Cell Mass Zona Pellucida Placentation and Maternal Recognition of Pregnancy Trophectoderm Na+ [Na+] Animal Science 434 John J. Parrish H2O Tight Junctions Hatching Conceptus Growth Cow • Day 15, 1-2 mm Occurs in cow, pig and sheep Bovine • Day 18-19, 10-20 cm »9 - 11 days Spherical Embryonic Equine, Ovine Area »7 - 8 days Porcine Tubular Elongating »6 days Trophoblast Filamentous Mare remains spherical! Development of Porcine Conceptuses Elongated Day 15 Porcine from Day 10 to 12 Conceptus 5 mm Spherical 10 mm Spherical Inner Cell Mass 15 mm Tubular 150 mm Filamentous Embryo 1 Uterine Location of Elongating Pig Intrauterine Migration Ruminant Blastocyst Day 5 Corpus Luteum Bovine and Ovine Pig Intrauterine Migration Pig Intrauterine Migration Day 7 Day 12 Embryos become fixed Transuterine migration is rare in cow and ewe! Trans-uterine Migration in the Mare Gastrulation Begins Day 10 Inner Cell Mass Trophectoderm Formation Endoderm of Germ Fixation can Fixation occur in either on day Layers horn! 15 - 16 Blastocoele Corpus Cavity Luteum 2 Gastrulation Gastrulation Endoderrm Endoderrm Yolk Sack Yolk Sack Gastrula Gastrula Ectoderm Ectoderm Mesoderm Ectoderm Trophectoderm Trophectoderm Extraembryonic Coelom Yolk Sack Endoderm Endoderm Trophectoderm (Chorion) Germ Layers Placenta Formation Embryonic Amniotic Folds Ectoderm Mesoderm Endoderm Ectoderm » CNS » Circulatory » Digestive » Sense organs » Skeletal » Liver » Mammary » Muscle » Lungs glands » Reproductive » Pancreas Extraembryonic »
    [Show full text]
  • Human Blastocyst Morphological Quality Is Significantly Improved In
    Human blastocyst morphological quality is significantly improved in embryos classified as fast on day 3 (R10 cells), bringing into question current embryological dogma Martha Luna, M.D.,a,b Alan B. Copperman, M.D.,a,b Marlena Duke, M.Sc.,a,b Diego Ezcurra, D.V.M.,c Benjamin Sandler, M.D.,a,b and Jason Barritt, Ph.D.a,b a Mount Sinai School of Medicine, Department of Obstetrics and Gynecology, Department of Reproductive Endocrinology and Infertility, and b Reproductive Medicine Associates of New York, New York, New York; and c EMD Serono, Rockland, Massachusetts Objective: To evaluate developmental potential of fast cleaving day 3 embryos. Design: Retrospective analysis. Setting: Academic reproductive center. Patient(s): Three thousand five hundred twenty-nine embryos. Intervention(s): Day 3 embryos were classified according to cell number: slow cleaving: %6 cells, intermediate cleaving: 7–9 cells, and fast cleaving: R10 cells, and further evaluated on day 5. The preimplantation genetic diagnosis (PGD) results of 43 fast cleaving embryos were correlated to blastocyst formation. Clinical outcomes of transfers involving only fast cleaving embryos (n ¼ 4) were evaluated. Main Outcome Measure(s): Blastocyst morphology correlated to day 3 blastomere number. Relationship between euploidy and blastocyst formation of fast cleaving embryos. Implantation, pregnancy (PR), and birth rates resulting from fast embryo transfers. Result(s): Blastocyst formation rate was significantly greater in the intermediate cleaving (72.7%) and fast cleav- ing (54.2%) groups when compared to the slow cleaving group (38%). Highest quality blastocysts were formed significantly more often in the fast cleaving group. Twenty fast cleaving embryos that underwent PGD, formed blastocysts, of which 45% (9/20) were diagnosed as euploid.
    [Show full text]
  • Cell Fate in the Early Mouse Embryo: Sorting out the Influence of Developmental History on Lineage Choice
    Reproductive BioMedicine Online (2011) 22, 521– 524 www.sciencedirect.com www.rbmonline.com COMMENTARY Cell fate in the early mouse embryo: sorting out the influence of developmental history on lineage choice Samantha A Morris Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; University of Cambridge, Department of Physiology, Development and Neurobiology, Downing Street, Cambridge CB2 3DY, UK E-mail address: [email protected]. Abstract In early mouse embryos the first cell-fate decision segregates two cell populations: the outer trophectoderm (TE) and inner cell mass (ICM). Cells are primarily directed to the ICM in two waves of asymmetric division at the 8–16-cell and 16–32-cell stage transition – the first and second waves, respectively. The ICM then diverges to become epiblast (EPI) which will generate the embryo/fetus and extra-embryonic primitive endoderm (PE). Two recent studies have aimed to address the developmental origins of these lineages. Morris et al. (2010) found that first-wave-internalized cells mainly generate EPI, whereas later internalized cells pro- vide PE. This trend was not reflected in an independent study (Yamanaka et al., 2010). From direct comparison of both datasets, it becomes clear that the key difference lies in the proportions of cells internalized in the two waves, impacting greatly upon fate. When the majority of ICM is derived from only the first wave, both EPI and PE must differentiate from the available cells and no pattern is observed. Frequently though, closer parity exists between cells dividing asymmetrically in the first and second waves, revealing the influence of developmental history upon fate.
    [Show full text]
  • Development of Chick Development of Chick
    Unit 15 Development of Chick UNIT 15 DEVELOPMENT OF CHICK StructureStructureStructure 15.1 Introduction Fully Formed Gastrula Objectives 15.6 Neurulation in Chick 15.2 Structure of Egg of Chick Mechanisms of Neural Plate 15.3 Fertilisation Formation 15.4 Cleavage and Blastulation Morphogenesis of Mesodermal Derivatives 15.5 Gastrulation 15.7 Folding of Embryo Role of Hypoblast 15.8 Development of Extra- Fate Map Embryonic Membranes The Gastrulation Process: Development of Amnion and Formation of Primitive Streak Chorion Completion of Endoderm Development of Allantois Regression of Primitive Streak 15.9 Hatching Epiboly of Ectoderm 15.10 Summary Characteristic Features of 15.11 Terminal Questions Avian Gastrulation 15.12 Answers Comparison with Amphibian Gastrulation 15.1 INTRODUCTION Different animals have evolved a variety of strategies of development. However, since all animals are related, the basic mechanism of early development has been conserved in the course of evolution, and so there are some important similarities in early embryonic development of all metazoan animals as you have already learnt in Block 3. This unit speaks about development of chick as an example of an amniote organism. Recall that amniotes are those vertebrates (reptiles, birds and mammals) that have a water sac or amnion surrounding the developing 163 Block 4 Developmental Biology of Vertebrates-II organism protecting it from the external environment. Chick has been one of the first model organisms to be studied in detail as it is easy to maintain and large enough to be manipulated surgically and genetically during all stages of development. You will study about strictly coordinated sequential changes that take place during the course of chick development viz.
    [Show full text]
  • Extracellular Vesicles Secreted During Blastulation Show Viability of Bovine Embryos
    158 6 REPRODUCTIONRESEARCH Extracellular vesicles secreted during blastulation show viability of bovine embryos Edwin A Mellisho, Mario A Briones, Alejandra E Velásquez, Joel Cabezas, Fidel O Castro and Lleretny Rodríguez-Álvarez Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepcion, Chillan, Chile Correspondence should be addressed to L Rodríguez-Álvarez; Email: [email protected] Abstract Extracellular vesicles (EVs) secreted by blastocysts may be clinically relevant, as indicator of embryo viability on in vitro fertilization. We tested if the characteristics of EVs secreted during blastulation are related to embryo viability. Morulae were individually cultured in SOF media depleted of EVs until day 7.5 post IVF. Viable embryos were determined by a system of extended in vitro culture of bovine embryos until day 11 (post-hatching development). Afterward, a retrospective classification of blastocyst and culture media was performed based on blastulation time (early blastulation (EB) or late blastulation (LB)) and post-hatching development at day 11 (viable (V) or non-viable embryo (NV)). A total of 254 blastocysts and their culture media were classified in four groups (V-EB, NV-EB, V-LB, NV-LB). Group V-EB had a larger blastocyst diameter (170.8 μm), higher proportion of good-quality blastocysts (77%) and larger mean size of population of EVs (122.9 nm), although the highest concentration of EVs (5.75 × 109 particles/mL) were in group NV-EB. Furthermore, small RNA sequencing detected two biotypes, miRNA (86–91%) and snoRNA (9–14%), with a total of 182 and 32 respectively. In differential expression analysis of miRNAs between V versus NV blastocysts, there were 12 miRNAs upregulated and 15 miRNAs downregulated.
    [Show full text]
  • Cleavage: Types and Patterns Fertilization …………..Cleavage
    Cleavage: Types and Patterns Fertilization …………..Cleavage • The transition from fertilization to cleavage is caused by the activation of mitosis promoting factor (MPF). Cleavage • Cleavage, a series of mitotic divisions whereby the enormous volume of egg cytoplasm is divided into numerous smaller, nucleated cells. • These cleavage-stage cells are called blastomeres. • In most species the rate of cell division and the placement of the blastomeres with respect to one another is completely under the control of the proteins and mRNAs stored in the oocyte by the mother. • During cleavage, however, cytoplasmic volume does not increase. Rather, the enormous volume of zygote cytoplasm is divided into increasingly smaller cells. • One consequence of this rapid cell division is that the ratio of cytoplasmic to nuclear volume gets increasingly smaller as cleavage progresses. • This decrease in the cytoplasmic to nuclear volume ratio is crucial in timing the activation of certain genes. • For example, in the frog Xenopus laevis, transcription of new messages is not activated until after 12 divisions. At that time, the rate of cleavage decreases, the blastomeres become motile, and nuclear genes begin to be transcribed. This stage is called the mid- blastula transition. • Thus, cleavage begins soon after fertilization and ends shortly after the stage when the embryo achieves a new balance between nucleus and cytoplasm. Cleavage Embryonic development Cleavage 2 • Division of first cell to many within ball of same volume (morula) is followed by hollowing
    [Show full text]
  • Tbn, a Novel Gene Essential for the ICM 5451
    Development 127, 5449-5461 (2000) 5449 Printed in Great Britain © The Company of Biologists Limited 2000 DEV2556 Taube nuss is a novel gene essential for the survival of pluripotent cells of early mouse embryos Anne K. Voss*,‡,§, Tim Thomas*,‡, Petros Petrou, Konstantinos Anastassiadis1, Hans Schöler2 and Peter Gruss Max-Planck-Institute of Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg 11, 37077 Goettingen, Germany 1European Molecular Biology Laboratory, Gene Expression, Meyerhofstr. 1, 69117 Heidelberg, Germany 2University of Pennsylvania, New Bolton Center, Center for Animal Transgenesis and Germ Cell Research, 382 W. Street Rd, Kennett Square, PA 19348, USA *These contributed equally to this work ‡Present address: Development and Neurobiology, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3050, Australia §Author for correspondence (e-mail: [email protected]) Accepted 19 September; published on WWW 14 November 2000 SUMMARY The cells of the inner cell mass constitute the pluripotent the zonae pellucidae, implanted and induced decidual cell population of the early embryo. They have the potential reactions, but failed to develop beyond E4.0. At this time to form all of the tissues of the embryo proper and the trophoblast cells were viable, but inner cell masses were some extra-embryonic tissues. They can be considered a not detectable. At E3.75, massive TUNEL-positive DNA transient stem cell population for the whole of the embryo, degradation and chromatin condensation were visible and stem cells maintaining the same capacity can be within the inner cell masses, whereas the cell membranes isolated from these cells. We have isolated, characterised where intact.
    [Show full text]
  • Development Development
    DEVELOPMENT DEVELOPMENT • Prenatal –Before birth • Postnatal development- After birth • PRENATAL DEVELOPMENT – 1. Embryonic development – Up to 8 weeks after fertilization. Devided into 23 arbitrarory stages called as Carnegie Stages Pre implantation development Post implantation development 2.Foetal development 8 weeks onwards after fertilization Cleavage ( post fertilization) • process of subdivision of ovum into smaller cells called cleavage. • process of repeated mitotic divisions of zygote occur with in zonapellucida, • these cells are known as blastomeres, • first cleavage division occur around 24 hrs after fertilization, • during 8 cell stage compaction of cells occur within the cells flatten & increase their intercellular contact , • Cleavage proceed to 16 celled stage --- MORULA, • All cells of approximately same size, • At 16 cells stage cells polarity is determuned to form outer trophoectoderm & inner cell mass, • inner cell mass give rise to embryo in future, while outer cell mass is destined to form the fetal membranes including placenta • the inner cell mass also called embryoblast , • cells of trophoblast help to provide nutrition to embryo, blastocyst • some fluid now passes into morula from uterine cavity , & partially separate the cells of inner cell mass from trophoblast. • as quantity of fluid increases the morula acquires shape of a cyst,the cells of trophoblast flattens out & inner cell mass gets attach to one side only, • the morula now is called blastocyst ,cavity is called blastocoele. • site where blastocyst is attach to inner cell mass is calld embryonic or animal pole , while opposite site is aembryonic pole. Zona pellucida( function) • trophoblast has property of being able to stick to uterine ( or other) epithelium & its cells have capacity to eat up other cells( property of invading) • thus as embryo is travelling down the uterine tube & uppermost part of uterine cavity , it is prevented from sticking to epithelium by a zona pellucida.
    [Show full text]
  • Embryo Makes Contact with the Endometrial Lining of the Uterus
    Week 1 • Week 1 - Early zygote • Stage 1 starts at the beginning of • Week 1 Carnegie stage – 1,2,3,4, fertilization • Fertilization • Stage 2 begins with the division • of the zygote into two cells and Zygote ends with the appearance of the • Morula blastocystic cavity • Blastocyst • Stage 3 begins when the blastocystic cavity first appears in the morula and ends when the zona (capsula) pellucida is shed as the embryo makes contact with the endometrial lining of the uterus. • Stage 4 is reserved for the attaching blastocyst to the endometrial lining Week 2 • Week 2 Implantation • Stage 5 Two distinct layers • Week 2 Carnegie stage -5,6 are evident in the • Trophoblast - outer cell trophoblast; 1) a thicker layer outer layer without cell boundaries, called the • Embryoblast - inner cell syncytiotrophoblast and 2) mass a thinner inner layer with • Implantation cell boundaries called the • Bilaminar embryo cytotrophoblast. • Stage 6 the first appearance of chorionic villi. Week 3 • • Stage 7 the presomite • Week 3 - Embryonic disc period and well defined • Week 3 - Carnegie stage – embryonic disc appearance 7,8, &9 of the notochordal process and the gastrulation • Gastrulation (primitive) node. • Notochord formation • Trilaminar embryo • Mesoderm • Somitogenesis • Neurogenesis Week 4 • The heart begins • Week 4 - Carnegie stage -10,11,12 &13 • Heart • Placodes • Pharyngeal arches • Week 5 • Week 7 - Head and limb • Carnegie stages stage 14 development stage 15 • Carnegie stages stage 18 • stage 19 • Week 6 - Early face • Week 8 deevelopment • Last embryonic stage • Carnegie stages Carnegie stage – 20 21 22 • Week 6 - Carnegie stage 16 &23 & 17 • Last week of embryonic development.
    [Show full text]
  • Early Embryonic Development Till Gastrulation (Humans)
    Gargi College Subject: Comparative Anatomy and Developmental Biology Class: Life Sciences 2 SEM Teacher: Dr Swati Bajaj Date: 17/3/2020 Time: 2:00 pm to 3:00 pm EARLY EMBRYONIC DEVELOPMENT TILL GASTRULATION (HUMANS) CLEAVAGE: Cleavage in mammalian eggs are among the slowest in the animal kingdom, taking place some 12-24 hours apart. The first cleavage occurs along the journey of the embryo from oviduct toward the uterus. Several features distinguish mammalian cleavage: 1. Rotational cleavage: the first cleavage is normal meridional division; however, in the second cleavage, one of the two blastomeres divides meridionally and the other divides equatorially. 2. Mammalian blastomeres do not all divide at the same time. Thus the embryo frequently contains odd numbers of cells. 3. The mammalian genome is activated during early cleavage and zygotically transcribed proteins are necessary for cleavage and development. (In humans, the zygotic genes are activated around 8 cell stage) 4. Compaction: Until the eight-cell stage, they form a loosely arranged clump. Following the third cleavage, cell adhesion proteins such as E-cadherin become expressed, and the blastomeres huddle together and form a compact ball of cells. Blatocyst: The descendents of the large group of external cells of Morula become trophoblast (trophoblast produce no embryonic structure but rather form tissues of chorion, extraembryonic membrane and portion of placenta) whereas the small group internal cells give rise to Inner Cell mass (ICM), (which will give rise to embryo proper). During the process of cavitation, the trophoblast cells secrete fluid into the Morula to create blastocoel. As the blastocoel expands, the inner cell mass become positioned on one side of the ring of trophoblast cells, resulting in the distinctive mammalian blastocyst.
    [Show full text]
  • Formation of Germ Layers (Second & Third Week of Development)
    8.12.2014 Formation of Germ Layers (Second & Third week of Development) Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow Day 8 • Blastocyst is partially embedded in the endometrial stroma. • Trophoblast differentiates into 2 layers: (i) Cytotrophoblast (ii) Syncytiotrophoblast • Cytotrophoblast shows mitotic division. Day 8 • Cells of inner cell mass (embryoblast) also differentiate into 2 layers: (i) Hypoblast layer (ii) Epiblast layer • Formation of amniotic cavity and embryonic disc. Day 9 • The blastocyst is more deeply embedded in the endometrium. • The penetration defect in the surface epithelium is closed by a fibrin coagulum. Day 9 • Large no. of vacuoles appear in syncytiotrophoblast which fuse to form lacunae which contains embryotroph. Day 9 • Hypoblast forms the roof of the exocoelomic cavity (primary yolk sac). • Heuser’s (exocoelomic membrane) • Extraembryonic mesoderm Day 11 & 12 • Formation of lacunar networks • Extraembryonic coelom (chorionic cavity) • Extraembryonic somatic mesoderm • Extraembryonic splanchnic mesoderm • Chorion Day 13 • Implantation bleeding • Villous structure of trophoblast. • Formation of Primary villi • Secondary (definitive) yolk sac • Chorionic plate (extraembronic mesoderm with cytotrophoblast) Third week of Development • Gastrulation (formation of all 3 germ layers) • Formation of primitive streak • Formation of notochord • Differentiation of 3 germ layers from Bilaminar to Trilaminar germ disc Formation of Primitive Streak (PS) • First sign of gastrulation • On 15th day • Primitive node • Primitive pit • Formation of mesenchyme on 16th day • Formation of embryonic endoderm • Intraembryonic mesoderm • Ectoderm • Epiblast is the source of all 3 germ layers Fate of Primitive Streak • Continues to form mesodermal cells upto early part of 4th week • Normally, the PS degenerates & diminishes in size.
    [Show full text]