A New Model for Human Blastocyst Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Blastocyst Morphological Quality Is Significantly Improved In
Human blastocyst morphological quality is significantly improved in embryos classified as fast on day 3 (R10 cells), bringing into question current embryological dogma Martha Luna, M.D.,a,b Alan B. Copperman, M.D.,a,b Marlena Duke, M.Sc.,a,b Diego Ezcurra, D.V.M.,c Benjamin Sandler, M.D.,a,b and Jason Barritt, Ph.D.a,b a Mount Sinai School of Medicine, Department of Obstetrics and Gynecology, Department of Reproductive Endocrinology and Infertility, and b Reproductive Medicine Associates of New York, New York, New York; and c EMD Serono, Rockland, Massachusetts Objective: To evaluate developmental potential of fast cleaving day 3 embryos. Design: Retrospective analysis. Setting: Academic reproductive center. Patient(s): Three thousand five hundred twenty-nine embryos. Intervention(s): Day 3 embryos were classified according to cell number: slow cleaving: %6 cells, intermediate cleaving: 7–9 cells, and fast cleaving: R10 cells, and further evaluated on day 5. The preimplantation genetic diagnosis (PGD) results of 43 fast cleaving embryos were correlated to blastocyst formation. Clinical outcomes of transfers involving only fast cleaving embryos (n ¼ 4) were evaluated. Main Outcome Measure(s): Blastocyst morphology correlated to day 3 blastomere number. Relationship between euploidy and blastocyst formation of fast cleaving embryos. Implantation, pregnancy (PR), and birth rates resulting from fast embryo transfers. Result(s): Blastocyst formation rate was significantly greater in the intermediate cleaving (72.7%) and fast cleav- ing (54.2%) groups when compared to the slow cleaving group (38%). Highest quality blastocysts were formed significantly more often in the fast cleaving group. Twenty fast cleaving embryos that underwent PGD, formed blastocysts, of which 45% (9/20) were diagnosed as euploid. -
Dedifferentiation, Transdifferentiation, and Reprogramming: Future Directions in Regenerative Medicine
82 Dedifferentiation, Transdifferentiation, and Reprogramming: Future Directions in Regenerative Medicine Cristina Eguizabal, PhD1 Nuria Montserrat, PhD1 Anna Veiga, PhD1,2 Juan Carlos Izpisua Belmonte, PhD1,3 1 Center for Regenerative Medicine in Barcelona Address for correspondence and reprint requests Juan Carlos Izpisua 2 Reproductive Medicine Service, Institut Universitari Dexeus, Belmonte, PhD, Gene Expression Laboratory, The Salk Institute for Barcelona, Spain Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 93027 3 Gene Expression Laboratory, The Salk Institute for Biological Studies, (e-mail: [email protected]). La Jolla, California Semin Reprod Med 2013;31:82–94 Abstract The main goal of regenerative medicine is to replace damaged tissue. To do this it is Keywords necessary to understand in detail the whole regeneration process including differenti- ► regenerative ated cells that can be converted into progenitor cells (dedifferentiation), cells that can medicine switch into another cell type (transdifferentiation), and somatic cells that can be ► stem cells induced to become pluripotent cells (reprogramming). By studying the regenerative ► dedifferentiation processes in both nonmammal and mammal models, natural or artificial processes ► transdifferentiation could underscore the molecular and cellular mechanisms behind these phenomena and ► reprogramming be used to create future regenerative strategies for humans. To understand any regenerative system, it is crucial to find the potency and differentiate and how they can revert to pluri- cellular origins of renewed tissues. Using techniques like potency (reprogramming) or switch lineages (dedifferentia- genetic lineage tracing and single-cell transplantation helps tion and transdifferentiation). to identify the route of regenerative sources. These tools were We synthesize the studies of different model systems to developed first in nonmammal models (flies, amphibians, and highlight recent insights that are integrating the field. -
Cell Reprogramming: Expectations and Challenges for Chemistry in Stem Cell Biology and Regenerative Medicine
Cell Death and Differentiation (2010) 17, 1230–1237 & 2010 Macmillan Publishers Limited All rights reserved 1350-9047/10 $32.00 www.nature.com/cdd Review Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine L Anastasia*,1,2, G Pelissero2, B Venerando1,2 and G Tettamanti2 The possibility of reprogramming adult somatic cells into pluripotent stem cells (iPSCs) has generated a renewed interest into stem cell research and promises to overcome several key issues, including the ethical concerns of using human embryonic stem cells and the difficulty of obtaining large numbers of adult stem cells (Belmonte et al., Nat Rev Genet, 2009). This approach is also not free from challenges like the mechanism of the reprogramming process, which has yet to be elucidated, and the warranties for safety of generated pluripotent cells, especially in view of their possible therapeutic use. Very recently, several new reprogramming methods have surfaced, which seem to be more appropriate than genetic reprogramming. Particularly, chemically induced pluripotent cells (CiPSs), obtained with recombinant proteins or small synthetic molecules, may represent a valid approach, simpler and possibly safer than the other ones. Cell Death and Differentiation (2010) 17, 1230–1237; doi:10.1038/cdd.2010.14; published online 19 February 2010 Stem cells and cell reprogramming have generated an vitro to large numbers, in contrast to adult stem cells, that enormous interest in the past 2 years, since the generation normally possess very low self-renewal in vitro, and (3) iPSCs of induced pluripotent stem cells (iPSCs) from mouse can be patient customized, because they can be generated embryonic fibroblasts was first reported by Yamanaka and from an easily accessible source, that is fibroblasts, obtain- coworkers in 2006.1,2 In fact, it was shown that the forced able from any individual (Figure 1). -
Embryo Makes Contact with the Endometrial Lining of the Uterus
Week 1 • Week 1 - Early zygote • Stage 1 starts at the beginning of • Week 1 Carnegie stage – 1,2,3,4, fertilization • Fertilization • Stage 2 begins with the division • of the zygote into two cells and Zygote ends with the appearance of the • Morula blastocystic cavity • Blastocyst • Stage 3 begins when the blastocystic cavity first appears in the morula and ends when the zona (capsula) pellucida is shed as the embryo makes contact with the endometrial lining of the uterus. • Stage 4 is reserved for the attaching blastocyst to the endometrial lining Week 2 • Week 2 Implantation • Stage 5 Two distinct layers • Week 2 Carnegie stage -5,6 are evident in the • Trophoblast - outer cell trophoblast; 1) a thicker layer outer layer without cell boundaries, called the • Embryoblast - inner cell syncytiotrophoblast and 2) mass a thinner inner layer with • Implantation cell boundaries called the • Bilaminar embryo cytotrophoblast. • Stage 6 the first appearance of chorionic villi. Week 3 • • Stage 7 the presomite • Week 3 - Embryonic disc period and well defined • Week 3 - Carnegie stage – embryonic disc appearance 7,8, &9 of the notochordal process and the gastrulation • Gastrulation (primitive) node. • Notochord formation • Trilaminar embryo • Mesoderm • Somitogenesis • Neurogenesis Week 4 • The heart begins • Week 4 - Carnegie stage -10,11,12 &13 • Heart • Placodes • Pharyngeal arches • Week 5 • Week 7 - Head and limb • Carnegie stages stage 14 development stage 15 • Carnegie stages stage 18 • stage 19 • Week 6 - Early face • Week 8 deevelopment • Last embryonic stage • Carnegie stages Carnegie stage – 20 21 22 • Week 6 - Carnegie stage 16 &23 & 17 • Last week of embryonic development. -
Early Embryonic Development Till Gastrulation (Humans)
Gargi College Subject: Comparative Anatomy and Developmental Biology Class: Life Sciences 2 SEM Teacher: Dr Swati Bajaj Date: 17/3/2020 Time: 2:00 pm to 3:00 pm EARLY EMBRYONIC DEVELOPMENT TILL GASTRULATION (HUMANS) CLEAVAGE: Cleavage in mammalian eggs are among the slowest in the animal kingdom, taking place some 12-24 hours apart. The first cleavage occurs along the journey of the embryo from oviduct toward the uterus. Several features distinguish mammalian cleavage: 1. Rotational cleavage: the first cleavage is normal meridional division; however, in the second cleavage, one of the two blastomeres divides meridionally and the other divides equatorially. 2. Mammalian blastomeres do not all divide at the same time. Thus the embryo frequently contains odd numbers of cells. 3. The mammalian genome is activated during early cleavage and zygotically transcribed proteins are necessary for cleavage and development. (In humans, the zygotic genes are activated around 8 cell stage) 4. Compaction: Until the eight-cell stage, they form a loosely arranged clump. Following the third cleavage, cell adhesion proteins such as E-cadherin become expressed, and the blastomeres huddle together and form a compact ball of cells. Blatocyst: The descendents of the large group of external cells of Morula become trophoblast (trophoblast produce no embryonic structure but rather form tissues of chorion, extraembryonic membrane and portion of placenta) whereas the small group internal cells give rise to Inner Cell mass (ICM), (which will give rise to embryo proper). During the process of cavitation, the trophoblast cells secrete fluid into the Morula to create blastocoel. As the blastocoel expands, the inner cell mass become positioned on one side of the ring of trophoblast cells, resulting in the distinctive mammalian blastocyst. -
Rational Optimization of Reprogramming Culture Conditions for the Generation of Induced Pluripotent Stem Cells with Ultra-High Efficiency and Fast Kinetics
npg Rational medium optimization for efficient reprogramming Cell Research (2011) 21: 884-894. 884 © 2011 IBCB, SIBS, CAS All rights reserved 1001-0602/11 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics Jiekai Chen1, *, Jing Liu1, *, You Chen1, Jiaqi Yang1, Jing Chen1, He Liu1, Xiangjie Zhao1, Kunlun Mo1, Hong Song1, Lin Guo1, Shilong Chu1, Deping Wang1, Ke Ding1, Duanqing Pei1 1Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine at Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China The ectopic expression of several transcription factors can restore embryonic cell fate to cultured somatic cells and generate induced pluripotent stem cells (iPSCs), revealing a previously unknown pathway to pluripotency. However, this technology is currently limited by low efficiency, slow kinetics and multi-factorial requirement. Here we show that reprogramming can be improved and dramatically accelerated by optimizing culture conditions. First, we developed an optimized defined medium, iCD1, which allows Oct4/Sox2/Klf4 (OSK)-mediated reprogramming to achieve ultra-high efficiency (~10% at day 8). We also found that this optimized condition renders both Sox2 and Klf4 dispensable, although the elimination of these two factors leads to lower efficiency and slower kinetics. Our studies define a shortened route, both in timing and factor requirement, toward pluripotency. This new paradigm not only provides a rationale to further improve iPSC generation but also simplifies the conceptual understanding of reprogramming by defined factors. -
Experimental and Computational Approaches to Direct Cell Reprogramming: Recent Advancement and Future Challenges
cells Review Experimental and Computational Approaches to Direct Cell Reprogramming: Recent Advancement and Future Challenges Rihab Gam *, Minkyung Sung and Arun Prasad Pandurangan MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; [email protected] (M.S.); [email protected] (A.P.P.) * Correspondence: [email protected]; Tel.: +44-1223-267820 Received: 6 September 2019; Accepted: 1 October 2019; Published: 2 October 2019 Abstract: The process of direct cell reprogramming, also named transdifferentiation, permits for the conversion of one mature cell type directly into another, without returning to a dedifferentiated state. This makes direct reprogramming a promising approach for the development of several cellular and tissue engineering therapies. To achieve the change in the cell identity, direct reprogramming requires an arsenal of tools that combine experimental and computational techniques. In the recent years, several methods of transdifferentiation have been developed. In this review, we will introduce the concept of direct cell reprogramming and its background, and cover the recent developments in the experimental and computational prediction techniques with their applications. We also discuss the challenges of translating this technology to clinical setting, accompanied with potential solutions. Keywords: transdifferentiation; direct reprogramming; computational biology; regenerative medicine; cell therapy 1. Introduction The epigenetic landscape model proposed by Conrad Waddington in 1957 provided a framework to explain cellular differentiation through epigenetic changes rather than genetic inheritance [1]. In this model, a pluripotent cell takes a complex path defined by ridges and valleys on the developmental landscape to reach a final fully-differentiated and specialized cell (Figure1). -
Cultured Human Pre-Gastrulation Embryos
Protocol for a developmental landscape of 3D- cultured human pre-gastrulation embryos Lifeng Xiang Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology Yu Yin Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology Tianqing Li ( [email protected] ) Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology Method Article Keywords: Human pre-gastrulation embryo, three-dimensional (3D) culture, primitive streak anlage, immunouorescence imaging, single cell RNA-seq Posted Date: December 12th, 2019 DOI: https://doi.org/10.21203/rs.2.16169/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/9 Abstract Human embryogenesis is not well understood. Knowledge detailing human pre-gastrulation embryonic development including spatial self-organization and cell type ontogeny remains limited by available two- dimensional technological platforms. Here, we present a three-dimensional (3D) blastocyst-culture system, which enables human blastocyst development through primitive streak anlage (PSA). By the 3D- platform combined with immunouorescence imaging and single-cell RNA-Seq, we reveal a developmental landscape of human pre-gastrulation embryos. Our protocol allows recording and analysis of embryo developmental landmarks and mechanisms from human blastocysts to pre- gastrulation stage (day 14 post- fertilization). Introduction Early human embryogenesis, such as architecture formation and cell type specication, is obscure owing to technical challenge and unavailable materials. Recent in vitro implantation platforms using a two- dimensional (2D) culture approach have revealed some developmental landmarks of in vivo early human embryos1,2. -
Fresh Blastocyst Embryo Transfer Is Superior to Morula Embryo Transfer in Young Patients Undergoing in Vitro Fertilization
Open Access Austin Journal of Reproductive Medicine & Infertility Research Article Fresh Blastocyst Embryo Transfer is Superior to Morula Embryo Transfer in Young Patients Undergoing in Vitro Fertilization Malik S1, Balassiano E1, Hobeika E1, Knochenhauer ES1,2 and Traub ML1,2* Abstract 1 Department of Obstetrics and Gynecology, Staten Island Objective: To determine if blastocyst embryo transfer yields better University Hospital, USA, 475 Seaview Avenue, Staten pregnancy outcomes compared to morula embryo transfer for fresh and frozen Island, NY, USA cycles and in donor oocyte recipients. 2Island Reproductive Services, USA, 1110 South Avenue, Suite 305, Staten Island, NY, USA Study Design: Retrospective cohort of patients undergoing in vitro fertilization at a single center. Fresh, frozen, and donor egg recipient cycles *Corresponding author: Traub ML, Department of between January 1, 2008 and December 31, 2012 were studied. Patients were Obstetrics and Gynecology, Staten Island University excluded if they were considered poor prognosis and underwent day 3 embryo Hospital, Island Reproductive Services, USA transfers. Received: April 16, 2015; Accepted: June 29, 2015; Results: In patients under age 35 undergoing fresh IVF cycle, implantation Published: June 30, 2015 rates (52% v 29%, p<0.01), clinical pregnancy rates (63% v 38%, p=0.001), and live birth rates (54% v 33%, p<0.01) were all higher after blastocyst embryo transfer. No differences were seen in other SART age groups during fresh IVF. For patients undergoing FET and in donor oocyte recipients, no differences in any pregnancy outcome were between blastocyst and morula embryo transfer. Conclusions: Blastocyst embryo transfer was found to improve pregnancy outcomes in young patients undergoing fresh IVF. -
Human Development Summary
Human Development Laboratory Activity Gametogenesis Male The sperm develop within the highly coiled seminiferous tubules of the testes. When the sperm are fully mature they are extremely small, being little more than a bag of genetic material with a tail. The head of the sperm oell contains the nucleus and little else. The tail consists of a flagellum which allows the sperm to swim through the female reproductive tract to the egg. Female The egg is one of the largest cells in the body. As the egg ripens in the ovary it accumulates yolk which will serve as food for the young embryo until the placenta and umbilical cord are fully functional. Egg development is acomplished with the help of special nurse cells called follicle cells. When the egg is fully formed it bursts from the ovary in a process called ovulation. Ovulation is governed by complex nervous and hormonaI controls. After the egg is released from the ovary it enters the oviduct. Embryonic Development Fertilization Fertilization takes place in the fallopian tubes or oviducts. Although thousands of sperm cells may complete the trip to the egg only one will penetrate the cells outermost membrane and fertilize it. From this point on the egg is referred to as a zygote. Cleavage Divisions Almost as soon as the egg is fertilized it begins to divide. First into two cells, then 4, then 8 and so on. These divisions produce a solid clump of 32-64 cells called the morula. Blastocyst The morula continues its trip down the oviduct to the uterus. -
Improve Induced Pluripotent Stem Cell Generation by Manipulating Epigenetic Statuses
IMPROVE INDUCED PLURIPOTENT STEM CELL GENERATION BY MANIPULATING EPIGENETIC STATUSES Gaoyang Liang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry and Biophysics. Chapel Hill 2012 Approved by Yi Zhang, Ph.D. William Marzluff, Ph.D. Larysa Pevny, Ph.D. Lishan Su, Ph.D. Yue Xiong, Ph.D. ©2012 Gaoyang Liang ALL RIGHTS RESERVED ii ABSTRACT GAOYANG LIANG: Improve induced pluripotent stem cell generation by manipulating epigenetic statuses (Under the direction of Dr. Yi Zhang) Reprogramming of somatic cells to a pluripotent state can be achieved by introduction of defined transcription factors. The derived induced pluripotent stem (iPS) cells have molecular profiles and developmental potentials similar to embryonic stem (ES) cells. However, this reprogramming process is inefficient and its underlying mechanisms are poorly understood. To improve the efficiency of iPS cell generation and shed light on its mechanisms, I aimed to identify epigenetic modulations that can enhance iPS cell generation. By studying chemicals modulating epigenetic status and ES-cell enriched epigenetic factors, I demonstrate that butyrate, a histone deacetylase (HDAC) inhibitor, and Kdm2b, a histone demethylase specific for H3 lysine 36 dimethylation (H3K36me2) are capable of facilitating iPS cell generation. Butyrate not only enhances the efficiency of iPS cell generation, but also suppresses the formation of partially reprogrammed cells and transformed cells. The enhancing effect of butyrate on reprogramming appears to depend on c-Myc and occurs early in reprogramming. Genome-wide microarray analysis shows that a set of ES cell-enriched genes are upregulated upon butyrate treatment. -
Epigenetic Reprogramming by TET Enzymes Impacts Co-Transcriptional R-Loops 2 3 João C
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441414; this version posted April 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Epigenetic reprogramming by TET enzymes impacts co-transcriptional R-loops 2 3 João C. Sabino1, Madalena R. de Almeida1, Patricia L. Abreu1, Ana M. Ferreira1, Marco M. 4 Domingues1, Nuno C. Santos1, Claus M. Azzalin1, Ana R. Grosso1†, Sérgio F. de Almeida1* 5 6 Affiliations: 1Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da 7 Universidade de Lisboa, Lisboa, Portugal. 8 *Correspondence to: [email protected] 9 †Current address: UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de 10 Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal 11 12 13 Abstract 14 DNA oxidation by ten-eleven translocation (TET) family enzymes is essential for epigenetic 15 reprogramming. The conversion of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine 16 (5hmC) initiates developmental and cell-type-specific transcriptional programs through 17 mechanisms that include changes in the chromatin structure. Here, we show that the 18 presence of 5hmC in the transcribed DNA promotes the annealing of the nascent RNA to its 19 template DNA strand, leading to the formation of an R-loop. The genome-wide distribution 20 of 5hmC and R-loops show a positive correlation in mouse and human embryonic stem cells 21 and overlap in half of all active genes.