G C A T T A C G G C A T genes Review Telomerase Regulation from Beginning to the End Deanna Elise MacNeil 1,2,†, Hélène Jeanne Bensoussan 1,2,† and Chantal Autexier 1,2,3,* 1 Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada;
[email protected]; (D.E.M.);
[email protected] (H.J.B.) 2 Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada 3 Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada * Correspondence: chantal.autexier @mcgill.ca; Tel.: +1-514-340-8222 (ext. 4651) † These authors contributed equally to this work. Academic Editor: Gabriele Saretzki Received: 6 July 2016; Accepted: 26 August 2016; Published: 14 September 2016 Abstract: The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology. Keywords: telomerase; telomere; H/ACA ribonucleoprotein; small nucleolar RNA; small Cajal body RNA; spliceosome; exosome 1. Introduction Eukaryotic organisms with linear chromosomes face the molecular dilemma of protecting chromosomal ends from being recognized as DNA breaks, while also preventing loss of genomic information through progressive chromosome shortening caused by the semi-conservative replication of DNA [1].