Localization of Native Mms13 to the Magnetosome Chain Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physiological Characteristics of Magnetospirillum Gryphiswaldense
www.nature.com/scientificreports OPEN Physiological characteristics of Magnetospirillum gryphiswaldense MSR-1 that control cell growth Received: 18 October 2016 Accepted: 21 April 2017 under high-iron and low-oxygen Published: xx xx xxxx conditions Qing Wang1,5, Xu Wang1,5, Weijia Zhang2,5, Xianyu Li3, Yuan Zhou1, Dan Li1, Yinjia Wang4, Jiesheng Tian1,5, Wei Jiang1,5, Ziding Zhang 1, Youliang Peng1, Lei Wang4, Ying Li1,5 & Jilun Li1,5 Magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 is dependent on iron and oxygen levels. We used transcriptome to evaluate transcriptional profiles of magnetic and non-magnetic MSR-1 cells cultured under high-iron and low-iron conditions. A total of 80 differentially expressed genes (DEGs) were identified, including 53 upregulated and 27 downregulated under high-iron condition. These DEGs belonged to the functional categories of biological regulation, oxidation-reduction process, and ion binding and transport, and were involved in sulfur metabolism and cysteine/methionine metabolism. Comparison with our previous results from transcriptome data under oxygen-controlled conditions indicated that transcription of mam or mms was not regulated by oxygen or iron signals. 17 common DEGs in iron- and oxygen-transcriptomes were involved in energy production, iron transport, and iron metabolism. Some unknown-function DEGs participate in iron transport and metabolism, and some are potential biomarkers for identification ofMagnetospirillum strains. IrrA and IrrB regulate iron transport in response to low-oxygen and high-iron signals, respectively. Six transcription factors were predicted to regulate DEGs. Fur and Crp particularly co-regulate DEGs in response to changes in iron or oxygen levels, in a proposed joint regulatory network of DEGs. -
Magnetotactic Bacteria and Their Application in Medicine
Chem cal ist si ry y & h P B f i o o Dasdag and Bektas. J Phys Chem Biophys 2014, 4:2 p l h a Journal of Physical Chemistry & y n s r DOI: 10.4172/2161-0398.1000141 i u c o s J ISSN: 2161-0398 Biophysics ResearchReview Article Article OpenOpen Access Access Magnetotactic Bacteria and their Application in Medicine Suleyman Dasdag1* and Hava Bektas2 1Department of Biophysics, Medical School of Dicle University, Diyarbakir, Turkey 2Department of Biophysics, Medical School of Yuzuncu Yil University, Van / Turkey Abstract It is a known fact how the magnetic field of the Earth is very important for life. Relation between living systems and the earth magnetic field has been investigated for many years. Birds and their migration routes are the first one of the things that comes to mind when we state living things. The Earth’s magnetic field is still accepted to be the main factor for birds and other flying living beings to complete their travels correctly. The changes in migration routes, which are observed from time to time, are sometimes said to be due to the changes in the magnetic field. However, no light has been shed to this matter yet. The Earth’s magnetic field has not been sufficiently studied, and its role on small living models such as bacteria has not been adequately discussed. One of the best examples in this field is relation between the Earth’s magnetic field and “magnetotactic bacteria (MTB)”, which were discovered by Salvatore Bellini in 1963. Currently, it is claimed that magnetotactic bacteria have a widespread use in microbiology, mineralogy, limnology, physics, biophysics, chemistry, biochemistry, geology, crystallography, and astrobiology. -
Life with Compass: Diversity and Biogeography of Magnetotactic Bacteria
bs_bs_banner Environmental Microbiology (2014) 16(9), 2646–2658 doi:10.1111/1462-2920.12313 Minireview Life with compass: diversity and biogeography of magnetotactic bacteria Wei Lin,1,2 Dennis A. Bazylinski,3 Tian Xiao,2,4 the present-day biogeography of MTB, and the ruling Long-Fei Wu2,5 and Yongxin Pan1,2* parameters of their spatial distribution, will eventu- 1Biogeomagnetism Group, Paleomagnetism and ally help us predict MTB community shifts with envi- Geochronology Laboratory, Key Laboratory of the ronmental changes and assess their roles in global Earth’s Deep Interior, Institute of Geology and iron cycling. Geophysics, Chinese Academy of Sciences, Beijing 100029, China. 2France-China Bio-Mineralization and Nano-Structures Introduction Laboratory, Chinese Academy of Sciences, Beijing Iron is the fourth most common element in the Earth’s 100029, China. crust and a crucial nutrient for almost all known organ- 3 School of Life Sciences, University of Nevada at Las isms. The cycling of iron is one of the key processes in the Vegas, Las Vegas, NV, USA. Earth’s biogeochemical cycles. A number of organisms 4 Key Laboratory of Marine Ecology & Environmental synthesize iron minerals and play essential roles in global Sciences, Institute of Oceanology, Chinese Academy of iron cycling (Westbroek and de Jong, 1983; Winklhofer, Sciences, Qingdao, China. 2010). One of the most interesting examples of these 5 Laboratoire de Chimie Bactérienne, Aix-Marseille types of organisms are the magnetotactic bacteria (MTB), Université, CNRS, Marseille Cedex, France. a polyphyletic group of prokaryotes that are ubiquitous in aquatic and sedimentary environments (Bazylinski Summary and Frankel, 2004; Bazylinski et al., 2013). -
Pinpointing the Origin of Mitochondria Zhang Wang Hanchuan, Hubei
Pinpointing the origin of mitochondria Zhang Wang Hanchuan, Hubei, China B.S., Wuhan University, 2009 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Biology University of Virginia August, 2014 ii Abstract The explosive growth of genomic data presents both opportunities and challenges for the study of evolutionary biology, ecology and diversity. Genome-scale phylogenetic analysis (known as phylogenomics) has demonstrated its power in resolving the evolutionary tree of life and deciphering various fascinating questions regarding the origin and evolution of earth’s contemporary organisms. One of the most fundamental events in the earth’s history of life regards the origin of mitochondria. Overwhelming evidence supports the endosymbiotic theory that mitochondria originated once from a free-living α-proteobacterium that was engulfed by its host probably 2 billion years ago. However, its exact position in the tree of life remains highly debated. In particular, systematic errors including sparse taxonomic sampling, high evolutionary rate and sequence composition bias have long plagued the mitochondrial phylogenetics. This dissertation employs an integrated phylogenomic approach toward pinpointing the origin of mitochondria. By strategically sequencing 18 phylogenetically novel α-proteobacterial genomes, using a set of “well-behaved” phylogenetic markers with lower evolutionary rates and less composition bias, and applying more realistic phylogenetic models that better account for the systematic errors, the presented phylogenomic study for the first time placed the mitochondria unequivocally within the Rickettsiales order of α- proteobacteria, as a sister clade to the Rickettsiaceae and Anaplasmataceae families, all subtended by the Holosporaceae family. -
Résurrection Du Passé À L'aide De Modèles Hétérogènes D'évolution Des Séquences Protéiques
Résurrection du passé à l’aide de modèles hétérogènes d’évolution des séquences protéiques Mathieu Groussin To cite this version: Mathieu Groussin. Résurrection du passé à l’aide de modèles hétérogènes d’évolution des séquences protéiques. Biologie moléculaire. Université Claude Bernard - Lyon I, 2013. Français. NNT : 2013LYO10201. tel-01160535 HAL Id: tel-01160535 https://tel.archives-ouvertes.fr/tel-01160535 Submitted on 5 Jun 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No 201-2013 Année 2013 These` de l’universitedelyon´ Présentée devant L’UNIVERSITÉ CLAUDE BERNARD LYON 1 pour l’obtention du Diplomeˆ de doctorat (arrêté du 7 août 2006) soutenue publiquement le 8 novembre 2013 par Mathieu Groussin Résurrection du passé à l’aide de modèles hétérogènes d’évolution des séquences protéiques. Directeur de thèse : Manolo Gouy Jury : Céline Brochier-Armanet Examinateur - Président Laurent Duret Examinateur Nicolas Galtier Rapporteur Olivier Gascuel Rapporteur Manolo Gouy Directeur de thèse Dominique Madern Examinateur Hervé Philippe Examinateur 2 UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M. François-Noël GILLY Vice-président du Conseil d’Administration M. le Professeur Hamda BEN HADID Vice-président du Conseil des Etudes et de la Vie Universitaire M. -
Investigation of the Magnetosome Biomineralization in Magnetotactic Bacteria Using Graphene Liquid Cell – Transmission Electron Microscopy
Nanoscale Investigation of the Magnetosome Biomineralization in Magnetotactic Bacteria using Graphene Liquid Cell – Transmission Electron Microscopy Journal: Nanoscale Manuscript ID NR-ART-10-2018-008647.R1 Article Type: Paper Date Submitted by the 27-Nov-2018 Author: Complete List of Authors: Firlar, Emre; University of Illinois at Chicago, Department of Bioengineering; University of Illinois at Chicago, Department of Mechanical and Industrial Engineering Ouy, Meagan; University of Illinois at Chicago, Department of Bioengineering Bogdanowicz, Agata; University of Illinois at Chicago, Department of Bioengineering Covnot, Leigha; University of Illinois at Chicago, Department of Bioengineering Song, Boao; University of Illinois at Chicago, Mechanical Engineering Department Nadkarni, Yash; University of Illinois at Chicago, Department of Bioengineering Shahbazian-Yassar, Reza; University of Illinois at Chicago, Mechanical and Industrial Engineering; University of Illinois at Chicago Shokuhfar, Tolou; University of Illinois at Chicago, Department of Bioengineering; Michigan Technological University, Department of Mechanical Engineering Page 1 of 8 Please doNanoscale not adjust margins Journal Name ARTICLE Investigation of the Magnetosome Biomineralization in Magnetotactic Bacteria using Graphene Liquid Cell – Transmission Electron Microscopy Received 00th January 20xx, Accepted 00th January 20xx Emre Firlara,b*, Meagan Ouya, Agata Bogdanowicza, Leigha Covnota, Boao Songb, Yash Nadkarnia, DOI: 10.1039/x0xx00000x Reza Shahbazian-Yassarb*, -
A Reverse TCA Cycle 2-Oxoacid:Ferredoxin Oxidoreductase That Makes C-C Bonds from CO2
A Reverse TCA Cycle 2-Oxoacid:Ferredoxin Oxidoreductase that Makes C-C Bonds from CO2 The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chen, Percival Yang-Ting et al. “A Reverse TCA Cycle 2- Oxoacid:Ferredoxin Oxidoreductase that Makes C-C Bonds from CO2.” Joule 3 (2018): 595-611 © 2018 The Author(s) As Published 10.1016/J.JOULE.2018.12.006 Publisher Elsevier BV Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125243 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Joule. Author Manuscript Author manuscript; Manuscript Author available in PMC 2020 February 20. Published in final edited form as: Joule. 2019 February 20; 3(2): 595–611. doi:10.1016/j.joule.2018.12.006. A reverse TCA cycle 2-oxoacid:ferredoxin oxidoreductase that makes C-C bonds from CO2 Percival Yang-Ting Chen1,†, Bin Li2,†, Catherine L. Drennan1,3,4,5,*, and Sean J. Elliott2,6,* 1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 2Department of Chemistry, Boston University, Boston, MA 02215 3Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 4Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 5Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, Canada 6Lead contact. Summary 2-oxoglutarate:ferredoxin oxidoreductase (OGOR) is a thiamine pyrophosphate (TPP) and [4Fe-4S] cluster-dependent enzyme from the reductive tricarboxylic acid (rTCA) cycle that fixes CO2 to succinyl-CoA, forming 2-oxoglutarate and CoA. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Magnetic Properties of Uncultivated Magnetotactic Bacteria and Their Contribution to a Stratified Estuary Iron Cycle
ARTICLE Received 6 Feb 2014 | Accepted 25 Jul 2014 | Published 1 Sep 2014 DOI: 10.1038/ncomms5797 Magnetic properties of uncultivated magnetotactic bacteria and their contribution to a stratified estuary iron cycle A.P. Chen1, V.M. Berounsky2, M.K. Chan3, M.G. Blackford4, C. Cady5,w, B.M. Moskowitz6, P. Kraal7, E.A. Lima8, R.E. Kopp9, G.R. Lumpkin4, B.P. Weiss8, P. Hesse1 & N.G.F. Vella10 Of the two nanocrystal (magnetosome) compositions biosynthesized by magnetotactic bacteria (MTB), the magnetic properties of magnetite magnetosomes have been extensively studied using widely available cultures, while those of greigite magnetosomes remain poorly known. Here we have collected uncultivated magnetite- and greigite-producing MTB to determine their magnetic coercivity distribution and ferromagnetic resonance (FMR) spectra and to assess the MTB-associated iron flux. We find that compared with magnetite-producing MTB cultures, FMR spectra of uncultivated MTB are characterized by a wider empirical parameter range, thus complicating the use of FMR for fossilized magnetosome (magnetofossil) detection. Furthermore, in stark contrast to putative Neogene greigite magnetofossil records, the coercivity distributions for greigite-producing MTB are fundamentally left-skewed with a lower median. Lastly, a comparison between the MTB-associated iron flux in the investigated estuary and the pyritic-Fe flux in the Black Sea suggests MTB play an important, but heretofore overlooked role in euxinic marine system iron cycle. 1 Department of Environment and Geography, Macquarie University, North Ryde, New South Wales 2109, Australia. 2 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882, USA. 3 School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA. -
A Perspective on Underlying Crystal Growth Mechanisms in Biomineralization: Solution Mediated Growth Versus Nanosphere Particle Accretion
CrystEngComm A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion Journal: CrystEngComm Manuscript ID: CE-HIG-07-2014-001474.R1 Article Type: Highlight Date Submitted by the Author: 01-Dec-2014 Complete List of Authors: Gal, Assaf; Weizmann Institute of Science, Structural Biology Weiner, Steve; Weizmann Institute of Science, Structural Biology Addadi, Lia; Weizmann Institute of Science, Structural Biology Page 1 of 23 CrystEngComm A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion Assaf Gal, Steve Weiner, and Lia Addadi Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel 76100 Abstract Many organisms form crystals from transient amorphous precursor phases. In the cases where the precursor phases were imaged, they consist of nanosphere particles. Interestingly, some mature biogenic crystals also have nanosphere particle morphology, but some are characterized by crystallographic faces that are smooth at the nanometer level. There are also biogenic crystals that have both crystallographic faces and nanosphere particle morphology. This highlight presents a working hypothesis, stating that some biomineralization processes involve growth by nanosphere particle accretion, where amorphous nanoparticles are incorporated as such into growing crystals and preserve their morphology upon crystallization. This process produces biogenic crystals with a nanosphere particle morphology. Other biomineralization processes proceed by ion-by-ion growth, and some cases of biological crystal growth involve both processes. We also identify several biomineralization processes which do not seem to fit this working hypothesis. It is our hope that this highlight will inspire studies that will shed more light on the underlying crystallization mechanisms in biology. -
Magnetospirillum Gryphiswaldense
Mechanism and regulation of magnetosomal iron uptake and biomineralization in Magnetospirillum gryphiswaldense Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von René Uebe aus Stralsund München 19.12.2011 II Gutachter: 1. Prof. Dr. Dirk Schüler 2. Prof. Dr. Heinrich Jung Tag der mündlichen Prüfung: 02.05.12 III IV Publications and manuscripts originating from this thesis CHAPTER 2 Uebe, R., Voigt, B., Schweder, T., Albrecht, D., Katzmann, E., Lang, C., Böttger, L., Matzanke, B. and Schüler, D. (2010). Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J. Bacteriol. 192: 4192-4204. CHAPTER 3 Uebe, R., Junge, K., Henn, V., Poxleitner, G., Katzmann, E., Plitzko, J. M., Zarivach, R., Kasama, T., Wanner, G., Pósfai, M., Böttger, L., Matzanke, B. and Schüler, D. (2011). The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol. 82: 818-835. CHAPTER 4 Uebe, R., Henn, V. and Schüler, D. (2012). The MagA protein of magnetospirilla is not involved in bacterial magnetite biomineralization. J. Bacteriol. 194: 1018-1023 V VI INDEX INDEX PUBLICATIONS AND MANUSCRIPTS ORIGINATING FROM THIS THESIS......................V INDEX.................................................................................................................................................VII ABBREVIATIONS -
Properties of Magnetosome Suspension Under the in Uence Of
Vol. 127 (2015) ACTA PHYSICA POLONICA A No. 2 Proceedings of the European Conference Physics of Magnetism, Pozna« 2014 Properties of Magnetosome Suspension under the Inuence of Magnetic Field A. Józefczaka;*, M. Mol£anb, Z. Rozynekc;d, T. Hornowskia, A. Skumiela, M. Timkob, J. Tóthováe, P. Kop£anskýb and B. Leszczy«skia;f aInstitute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Pozna«, Poland bInstitute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Ko²ice, Slovakia cInstitute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland dDepartment of Physics, NTNU, Høgskoleringen 5, NO-7491 Trondheim, Norway eDepartment of Physics, Technical University of Ko²ice, Park Komenského 2, 042 00 Ko²ice, Slovakia f NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Pozna«, Poland The magnetotactic bacteria synthesize chains of nanosized magnetic particles that function as a compass nee- dle to navigate in the direction of the earth's magnetic eld. Magnetosomes are bacterial magnetic nanoparticles containing iron mineral crystals of magnetite or greigite, enveloped by a natural biological membrane. The objec- tive of the work is to study the inuence of magnetic eld on rheology and acoustic properties of magnetosome suspension. Experimental results show a clear eect of the external magnetic eld on the acoustic parameters such as velocity and attenuation of ultrasonic wave, and the viscosity of the suspension, arising from the biogenic magnetic particles aggregation. DOI: 10.12693/APhysPolA.127.629 PACS: 75.50.Mm, 43.35.Bf 1. Introduction Magnetosome suspension properties change under the inuence of the magnetic eld, similar to that of magnetic uid.