2017 Climate Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tropical Cyclone Report for Hurricane Ivan
Tropical Cyclone Report Hurricane Ivan 2-24 September 2004 Stacy R. Stewart National Hurricane Center 16 December 2004 Updated 27 May 2005 to revise damage estimate Updated 11 August 2011 to revise damage estimate Ivan was a classical, long-lived Cape Verde hurricane that reached Category 5 strength three times on the Saffir-Simpson Hurricane Scale (SSHS). It was also the strongest hurricane on record that far south east of the Lesser Antilles. Ivan caused considerable damage and loss of life as it passed through the Caribbean Sea. a. Synoptic History Ivan developed from a large tropical wave that moved off the west coast of Africa on 31 August. Although the wave was accompanied by a surface pressure system and an impressive upper-level outflow pattern, associated convection was limited and not well organized. However, by early on 1 September, convective banding began to develop around the low-level center and Dvorak satellite classifications were initiated later that day. Favorable upper-level outflow and low shear environment was conducive for the formation of vigorous deep convection to develop and persist near the center, and it is estimated that a tropical depression formed around 1800 UTC 2 September. Figure 1 depicts the “best track” of the tropical cyclone’s path. The wind and pressure histories are shown in Figs. 2a and 3a, respectively. Table 1 is a listing of the best track positions and intensities. Despite a relatively low latitude (9.7o N), development continued and it is estimated that the cyclone became Tropical Storm Ivan just 12 h later at 0600 UTC 3 September. -
HURRICANE KENNETH (EP132017) 18–23 August 2017
NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE KENNETH (EP132017) 18–23 August 2017 Robbie Berg National Hurricane Center 26 January 2018 NASA-NOAA SUOMI NPP ENHANCED INFRARED SATELLITE IMAGE OF HURRICANE KENNETH AT 1034 UTC 21 AUGUST 2017 WHILE AT PEAK INTENSITY Kenneth was a category 4 hurricane (on the Saffir-Simpson Hurricane Wind Scale) over the eastern North Pacific Ocean that did not affect land. Hurricane Kenneth 2 Hurricane Kenneth 18–23 AUGUST 2017 SYNOPTIC HISTORY Kenneth formed from the interaction of two tropical waves which moved off the west coast of Africa on 29 July and 2 August. The first wave moved across the Atlantic Ocean and northern South America at low latitudes and reached the eastern North Pacific Ocean on 8 August. At that point, the wave became more convectively active, but it moved only slowly westward for the next week due to its position south of Hurricane Franklin over the Bay of Campeche. In the meantime, the second tropical wave spawned Hurricane Gert over the western Atlantic, with the southern portion of the wave reaching the eastern North Pacific waters on 12 August. With the subtropical ridge rebuilding over the Gulf of Mexico, the second wave moved at a faster speed toward the west and reached the first tropical wave on 16 August (Fig. 1). The interaction of the two waves caused the development of a low by 1200 UTC 17 August about 530 n mi southwest of Manzanillo, Mexico. Convective banding became more organized and persistent through the day, and the low was designated as a tropical depression by 0600 UTC 18 August about 585 n mi south- southwest of the southern tip of the Baja California peninsula. -
4. the TROPICS—HJ Diamond and CJ Schreck, Eds
4. THE TROPICS—H. J. Diamond and C. J. Schreck, Eds. Pacific, South Indian, and Australian basins were a. Overview—H. J. Diamond and C. J. Schreck all particularly quiet, each having about half their The Tropics in 2017 were dominated by neutral median ACE. El Niño–Southern Oscillation (ENSO) condi- Three tropical cyclones (TCs) reached the Saffir– tions during most of the year, with the onset of Simpson scale category 5 intensity level—two in the La Niña conditions occurring during boreal autumn. North Atlantic and one in the western North Pacific Although the year began ENSO-neutral, it initially basins. This number was less than half of the eight featured cooler-than-average sea surface tempera- category 5 storms recorded in 2015 (Diamond and tures (SSTs) in the central and east-central equatorial Schreck 2016), and was one fewer than the four re- Pacific, along with lingering La Niña impacts in the corded in 2016 (Diamond and Schreck 2017). atmospheric circulation. These conditions followed The editors of this chapter would like to insert two the abrupt end of a weak and short-lived La Niña personal notes recognizing the passing of two giants during 2016, which lasted from the July–September in the field of tropical meteorology. season until late December. Charles J. Neumann passed away on 14 November Equatorial Pacific SST anomalies warmed con- 2017, at the age of 92. Upon graduation from MIT siderably during the first several months of 2017 in 1946, Charlie volunteered as a weather officer in and by late boreal spring and early summer, the the Navy’s first airborne typhoon reconnaissance anomalies were just shy of reaching El Niño thresh- unit in the Pacific. -
Baseline Assessment Study on Wastewater Management Belize
Caribbean Regional Fund for Wastewater Management Baseline Assessment Study on Wastewater Management Belize December 2013 Revised January 2015 Baseline Assessment Study for the GEF CReW Project: Belize December 2013 Prepared by Dr. Homero Silva Revised January 2015 CONTENTS List of Acronyms....................................................................................................................................................iii 1. Introduction ........................................................................................................................................................ 1 2. The National Context ....................................................................................................................................... 3 Description of the Country .................................................................................................................. 4 Geographic Characteristics ................................................................................................................. 6 Economy by Sectors ............................................................................................................................ 9 The Environment .............................................................................................................................. 13 Land Use, Land Use Changes and Forestry (LULUCF) ....................................................................... 20 Disasters .......................................................................................................................................... -
The Critical Role of Cloud–Infrared Radiation Feedback in Tropical Cyclone Development
The critical role of cloud–infrared radiation feedback in tropical cyclone development James H. Ruppert Jra,b,1, Allison A. Wingc, Xiaodong Tangd, and Erika L. Durane aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA 16802; bCenter for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, PA 16802; cDepartment of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306; dKey Laboratory of Mesoscale Severe Weather, Ministry of Education, and School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China; and eEarth System Science Center, University of Alabama in Huntsville/NASA Short-term Prediction Research and Transition (SPoRT) Center, Huntsville, AL 35805 Edited by Kerry A. Emanuel, Massachusetts Institute of Technology, Cambridge, MA, and approved September 21, 2020 (received for review June 29, 2020) The tall clouds that comprise tropical storms, hurricanes, and within an incipient storm locally increase the atmospheric trapping typhoons—or more generally, tropical cyclones (TCs)—are highly of infrared radiation, in turn locally warming the lower–middle effective at trapping the infrared radiation welling up from the sur- troposphere relative to the storm’s surroundings (35–39). This face. This cloud–infrared radiation feedback, referred to as the mechanism is a positive feedback to the incipient storm, as it “cloud greenhouse effect,” locally warms the lower–middle tropo- promotes its thermally direct transverse circulation (38, 39) sphere relative to a TC’s surroundings through all stages of its life (Fig. 1A). Herein, we examine the role of this feedback in the cycle. Here, we show that this effect is essential to promoting and context of TC development in nature. -
Mobile Weather & Marine Almanac 2018
2018 Mobile Weather and Marine Almanac 2017: A Year of Devastating Hurricanes Prepared by Assisted by Dr. Bill Williams Pete McCarty Coastal Weather Coastal Weather Research Center Research Center www.mobileweatheralmanac.com Christmas Town & Village Collectibles RobertMooreChristmasTown.com • 251-661-3608 4213 Halls Mill Road Mobile, Alabama Mon.-Sat. 10-5 Closed Sunday 2018 Mobile Weather and Marine Almanac© 28th Edition Dr. Bill Williams Pete McCarty TABLE OF CONTENTS Astronomical Events for 2018 ....................................................................... 2 Astronomical and Meteorological Calendar for 2018 .................................. 3 2017 Mobile Area Weather Highlights ........................................................ 15 2017 National Weather Highlights .............................................................. 16 2017 Hurricane Season ............................................................................... 17 2018 Hurricane Tracking Chart ................................................................... 18 2017 Hurricane Season in Review .............................................................. 20 Harvey and Irma - Structurally Different, but Major Impacts .................... 22 Tropical Storms and Hurricanes 1990-2017 .............................................. 24 World Weather Extremes ............................................................................ 26 Mobile Weather Extremes ........................................................................... 28 Alabama Deep Sea -
ANNUAL SUMMARY Atlantic Hurricane Season of 2005
MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record. -
Hurricane Eyewall Slope As Determined from Airborne Radar Reflectivity Data: Composites and Case Studies
368 WEATHER AND FORECASTING VOLUME 28 Hurricane Eyewall Slope as Determined from Airborne Radar Reflectivity Data: Composites and Case Studies ANDREW T. HAZELTON AND ROBERT E. HART Department of Earth, Ocean, and Atmospheric Science, The Florida State University, Tallahassee, Florida (Manuscript received 19 April 2012, in final form 6 December 2012) ABSTRACT Understanding and predicting the evolution of the tropical cyclone (TC) inner core continues to be a major research focus in tropical meteorology. Eyewall slope and its relationship to intensity and intensity change is one example that has been insufficiently studied. Accordingly, in this study, radar reflectivity data are used to quantify and analyze the azimuthal average and variance of eyewall slopes from 124 flight legs among 15 Atlantic TCs from 2004 to 2011. The slopes from each flight leg are averaged into 6-h increments around the best-track times to allow for a comparison of slope and best-track intensity. A statistically significant re- lationship is found between both the azimuthal mean slope and pressure and between slope and wind. In addition, several individual TCs show higher correlation between slope and intensity, and TCs with both relatively high and low correlations are examined in case studies. In addition, a correlation is found between slope and radar-based eye size at 2 km, but size shows little correlation with intensity. There is also a tendency for the eyewall to tilt downshear by an average of approximately 108. In addition, the upper eyewall slopes more sharply than the lower eyewall in about three-quarters of the cases. Analysis of case studies discusses the potential effects on eyewall slope of both inner-core and environmental processes, such as vertical shear, ocean heat content, and eyewall replacement cycles. -
Development of a Model for Prediction of Solar Radiation
ENGINEERENGINEER - - Vol. Vol. XLVIII, XLVIII No., No. 03, 03 pp., pp. [19-25], [page 2015range], 2015 ©© TheThe Institution Institution of of Engineers, Engineers, Sri SriLanka Lanka Development of a Model for Prediction of Solar Radiation W. D. A. S. Wijayapala and D. H. K. Kushal Abstract: Power generation from renewable energy sources such as wind, mini-hydro, solar etc is becoming increasingly popular due to environmental concerns. However, it is not possible to predict the energy generation of solar power plants in advance. Hence the power system operator has no information about the tomorrow‟s possible energy availability from these non-dispatchable power plants. The outcome of this study enables the system operator to predict the possible energy generation from solar power plants based on the weather forecasts and provide the system operator with predictions on energy generation and capacity of solar power plants connected to the grid. The predictions will enable to prepare the dispatch schedules accordingly. In this study, the effect of the geographical and meteorological parameters for predicting daily global solar radiation at Sooriyawewa, Hambantota in Sri Lanka is investigated. A multiple linear regression was applied to explain the relationship among solar radiation and identified meteorological and geographical parameters such as cloud cover, sunshine duration, precipitation, open air temperature, relative humidity, wind speed, gust speed and sine value of declination angle. Variables in these equations were used to estimate the global solar radiation. Values calculated/predicted from models were compared with the actual measurements to validate the model. Keywords : Solar Power, Solar Radiation, Prediction The most important usage of this model is that 1. -
Impact of Urbanization on Sunshine Duration from 1987 to 2016 in Hangzhou City, China
atmosphere Article Impact of Urbanization on Sunshine Duration from 1987 to 2016 in Hangzhou City, China Kai Jin 1,2,* , Peng Qin 1 , Chunxia Liu 1, Quanli Zong 1 and Shaoxia Wang 1,* 1 Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China; [email protected] (P.Q.); [email protected] (C.L.); [email protected] (Q.Z.) 2 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Water and Soil Conservation, Northwest A&F University, Yangling 712100, China * Correspondence: [email protected] (K.J.); [email protected] (S.W.); Tel.: +86-150-6682-4968 (K.J.); +86-136-1642-9118 (S.W.) Abstract: Worldwide solar dimming from the 1960s to the 1980s has been widely recognized, but the occurrence of solar brightening since the late 1980s is still under debate—particularly in China. This study aims to properly examine the biases of urbanization in the observed sunshine duration series from 1987 to 2016 and explore the related driving factors based on five meteorological stations around Hangzhou City, China. The results inferred a weak and insignificant decreasing trend in annual mean sunshine duration (−0.09 h/d decade−1) from 1987 to 2016 in the Hangzhou region, indicating a solar dimming tendency. However, large differences in sunshine duration changes between rural, suburban, and urban stations were observed on the annual, seasonal, and monthly scales, which can be attributed to the varied urbanization effects. Using rural stations as a baseline, we found evident urbanization effects on the annual mean sunshine duration series at urban and suburban stations—particularly in the period of 2002–2016. -
Variation in Surface Air Temperature of China During the 20Th Century
Journal of Atmospheric and Solar-Terrestrial Physics 73 (2011) 2331–2344 Contents lists available at ScienceDirect Journal of Atmospheric and Solar-Terrestrial Physics journal homepage: www.elsevier.com/locate/jastp Variation in surface air temperature of China during the 20th century Willie Soon a,n, Koushik Dutta b, David R. Legates c, Victor Velasco d, WeiJia Zhang e a Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA b Large Lakes Observatory, University of Minnesota-Duluth, Duluth, MN 55812, USA c College of Earth, Ocean, and Environment, University of Delaware, Newark, DE 19716, USA d Departamento de Investigaciones Solares y Planetarias, Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, C.P. 04510, Mexico e Department of Physics, Peking University, Beijing 100871, China article info abstract Article history: The 20th century surface air temperature (SAT) records of China from various sources are analyzed Received 21 March 2011 using data which include the recently released Twentieth Century Reanalysis Project dataset. Two key Received in revised form features of the Chinese records are confirmed: (1) significant 1920s and 1940s warming in the 20 July 2011 temperature records, and (2) evidence for a persistent multidecadal modulation of the Chinese surface Accepted 25 July 2011 temperature records in co-variations with both incoming solar radiation at the top of the atmosphere as Available online 3 August 2011 well as the modulated solar radiation reaching ground surface. New evidence is presented for this Keywords: Sun–climate link for the instrumental record from 1880 to 2002. Additionally, two non-local physical Total solar irradiance aspects of solar radiation-induced modulation of the Chinese SAT record are documented and Sunshine duration discussed. -
HURRICANE IRMA (AL112017) 30 August–12 September 2017
NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE IRMA (AL112017) 30 August–12 September 2017 John P. Cangialosi, Andrew S. Latto, and Robbie Berg National Hurricane Center 1 24 September 2021 VIIRS SATELLITE IMAGE OF HURRICANE IRMA WHEN IT WAS AT ITS PEAK INTENSITY AND MADE LANDFALL ON BARBUDA AT 0535 UTC 6 SEPTEMBER. Irma was a long-lived Cape Verde hurricane that reached category 5 intensity on the Saffir-Simpson Hurricane Wind Scale. The catastrophic hurricane made seven landfalls, four of which occurred as a category 5 hurricane across the northern Caribbean Islands. Irma made landfall as a category 4 hurricane in the Florida Keys and struck southwestern Florida at category 3 intensity. Irma caused widespread devastation across the affected areas and was one of the strongest and costliest hurricanes on record in the Atlantic basin. 1 Original report date 9 March 2018. Second version on 30 May 2018 updated casualty statistics for Florida, meteorological statistics for the Florida Keys, and corrected a typo. Third version on 30 June 2018 corrected the year of the last category 5 hurricane landfall in Cuba and corrected a typo in the Casualty and Damage Statistics section. This version corrects the maximum wind gust reported at St. Croix Airport (TISX). Hurricane Irma 2 Hurricane Irma 30 AUGUST–12 SEPTEMBER 2017 SYNOPTIC HISTORY Irma originated from a tropical wave that departed the west coast of Africa on 27 August. The wave was then producing a widespread area of deep convection, which became more concentrated near the northern portion of the wave axis on 28 and 29 August.