The Perplexing Pinyon Jay

Total Page:16

File Type:pdf, Size:1020Kb

The Perplexing Pinyon Jay University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Behavior and Biological Sciences Papers in the Biological Sciences 1998 The Ecology and Evolution of Spatial Memory in Corvids of the Southwestern USA: The Perplexing Pinyon Jay Russell P. Balda Northern Arizona University,, [email protected] Alan Kamil University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscibehavior Part of the Behavior and Ethology Commons Balda, Russell P. and Kamil, Alan, "The Ecology and Evolution of Spatial Memory in Corvids of the Southwestern USA: The Perplexing Pinyon Jay" (1998). Papers in Behavior and Biological Sciences. 17. https://digitalcommons.unl.edu/bioscibehavior/17 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Behavior and Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published (as Chapter 2) in Animal Cognition in Nature: The Convergence of Psychology and Biology in Laboratory and Field, edited by Russell P. Balda, Irene M. Pepperberg, and Alan C. Kamil, San Diego (Academic Press, 1998), pp. 29–64. Copyright © 1998 by Academic Press. Used by permission. The Ecology and Evolution of Spatial Memory in Corvids of the Southwestern USA: The Perplexing Pinyon Jay Russell P. Balda 1 and Alan C. Kamil 2 1 Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011 2 School of Biological Sciences and Department of Psychology, University of Nebraska– Lincoln, Lincoln, NE 68588, USA The ecological stage 29 The actors 32 The evolutionary play 38 The evolutionary play: the neural substrate responsible for spatial memory 56 The evolutionary play: the final act 58 Afterword 59 Acknowledgements 60 References 60 The ecological stage It is a cold, crisp morning in mid-September at about 1800 m in the pinyon-ju- niper woodland in north-central Arizona, on the lower slopes of the San Fran- cisco Peaks. Most Pinyon Pine (Pinus edulis) trees bear some green cones and a few bear hundreds, if not thousands. The “locals” refer to this situation as a “bumper crop′, and the Native Americans will be busy harvesting the pine seeds for food and profit. The cones have spineless scales still tightly closed over large, wingless, highly nutritious seeds. Pitch glistens off the cones as the early morning sunlight strikes. Soft “kaws” and “ka-ka-kas” can be heard in the distance. Suddenly the Pinyon Pine trees explode with hundreds of me- dium-sized light blue birds hopping and flying about, attacking pine cones, some by pecking at the green cones attached to the branch, some by attempt- ing to break cones free of their twigs. Loud “kaws,” “kraws” and all variations on the crow call are heard continuously. A flock of 150 Pinyon Jays (Gymno- rhinus cyanocephalus) has just descended on the area to begin their day-long 29 30 BALDA & KAmiL IN ANIMAL COGNITION IN NATURE (1998) seed harvesting. The birds seem very peaceful and seldom engage in agonis- tic behaviors while intently harvesting seeds. Within minutes it sounds like the drumming of a hundred woodpeckers as birds hammer at the closed cone scales while standing or hanging on the cones. Birds that have successfully re- moved cones carry them to forked branches where they wedge the cone se- curely into the fork. Birds now hack the cone scales to smithereens in their attempt to get at the prized Pinyon Pine seeds. A small pile of empty cones gradually accumulates under these forks. Are these forks tools in the same sense that man uses an anvil? Ripening seeds are extracted with a stout, sharp bill that is curiously feather-free at its base. Through all this frenzy, birds are careful not to smear sticky pitch on to their bills. The feather-free area of the bill certainly aids in this attempt. As harvesting continues, torn cone scales fall like rain drops from the pine trees. Every bird in the flock, males and fe- males, young and old, seem intent on harvesting its share of seeds (Marzluff and Balda, 1992). This commotion has attracted the attention of other birds. A few rather large gray, black and white birds join in the exploitation of seeds from cones. These birds have massive, sharp-pointed bills with which they can tear open a green pine cone in a matter of minutes. After some time the throats of these birds be- gin to bulge with seeds, and the birds leave the flock of Pinyon Jays and fly high up onto the nearby San Francisco Peaks with long, strong wings that may carry them up to 22 km from the harvest area. Loud sharp drawn-out “kaas” often signal their departure. Most often these birds are seen singly or in small groups of 2-5. The Clark’s Nutcrackers (Nucifraga columbiana) have departed with their share of the bounty. Another bird attracted to the hustle and bustle of cone opening is a slender, quiet, light-blue bird with a short, rather weak bill, the Western Scrub Jay (Aph- elocoma californica). This bird’s demeanor is just the opposite of the nutcracker and Pinyon Jay, which are both bold and noisy. The Scrub Jay sits inconspicu- ously hidden in thick vegetation, waiting and watching. When an individual of one of the other species has broken or removed all the cone scales from the cone it has been working on diligently, our silent stalker screams loudly and flies di- rectly at the unsuspecting forager. Invariably, the foraging bird is frightened, drops the cone and flies off. The Scrub Jay retrieves the partly opened cone and proceeds to pry out the partly exposed seeds. This is the only way this species, with its relatively weak bill, can share in the bounty until the cone scales ma- ture and open naturally (Vander Wall and Balda, 1981). After placing 3-5 seeds in its mouth and bill, the Scrub Jay flies a short distance behind some vegeta- tion, to sit quietly on a branch before descending to bury its seeds secretly in subterranean caches. In areas where Pinyon-Juniper woodland and Ponderosa (Pinus ponderosa) Pine forest interdigitate to form an ecotone, Steller’s Jays (Cyanocitta stelleri) also participate in this seed harvest. This jay has a partially distensible esophagus in ECOLOGY AND EVOLUTION OF SPATIAL MEMORY IN PINYON JAY 31 which it can carry up to 18 seeds. It is not a strong flier, does not have a partic- ularly strong bill, and only carries seeds 2-3 km into the Ponderosa Pine forest (Vander Wall and Balda, 1981). As the pine seed harvest progresses this morning, casual observation reveals that the throat region of the Pinyon Jay is beginning to swell as well. Soon, a few birds with throats bulging, and then many, appear at the tips of high trees where they perch silently. Shortly thereafter, a rhythmic series of “kaws” spreads as a loud din throughout the flock and the remaining birds leave the ground and fly up to perches in the low trees. The flock then departs in uni- son for one of their traditional caching areas that this flock uses every year. Birds usually fly just above tree level on their way to the caching area where the harvested seeds will be stored in subterranean caches. These traditional areas, which may number 8-10 for a flock, will often be some kilometers from the har- vest area (Marzluff and Balda, 1992). After the flock departs, the area becomes deadly silent. We have just witnessed a flock of Pinyon Jays and three flocking associates (Balda et al., 1972) harvesting Pinyon Pine seeds from green cones. This autum- nal foraging frenzy by nutcrackers and Pinyon Jays in the southwestern USA will continue from sunrise to sunset every day as long as fresh cones are avail- able and the ground is free of snow. In some areas the species composition will differ but the process is the same. For example, 130 km south of the location de- scribed above, no Pinyon Jays exist, but Mexican Jays (Aphelocoma ultrimarina) harvest pine seeds there. In areas to the north, Black-billed Magpies (Pica pica) are involved in the seed harvest (Balda, personal observation). The exploitation of pine seeds by species of the family Corvidae is a com- mon occurrence in the western USA. These pine seeds are all nutritious, but the seed of the Pinyon Pine is especially so, containing up to 18% protein and 60% fat (Bodkin and Shires, 1948; Blair et al., 1995). This is powerful fuel to sus- tain these birds through the long, cold, unproductive winter. The behavior of nutcrackers and Pinyon Jays is immediately altered at the sight of these cones or seeds as they abruptly stop all other behaviors and begin harvesting. These birds spend vast amounts of time and energy harvesting, transporting, and caching these seeds. This dramatic change in behavior is a clue that these pine seeds are of special biological significance, at least to some of these corvids. Even when these seeds are placed in conspicuous traps, some Pinyon Jays will allow themselves to be captured 3-4 times in a single day in their attempt to col- lect these seeds (Marzluff and Balda, 1992). Once, when a trap was set in the snow and pine seeds placed inside the trap, directly on the snow, Clark’s Nut- crackers tunneled under the trap in an apparent attempt to get the pine seed without entering the trap (Balda, personal observation). Eurasian Nutcrackers (Nucifraga caryocatactes) that had dispersed thousands of kilometers into Ger- many owing to lack of pine seeds in Siberia immediately began harvesting, eat- ing and caching seeds when presented to them (Conrads and Balda, 1979).
Recommended publications
  • 04. Ecological Relationships Lesson #3: CLARK THE
    Ecological Relationships Lesson #3: CLARK THE NUTCRACKER SOverviewTORY: This introduces the art of creating a species account. The account identifies the important qualities of a species through a scientific drawing. This then leads to exploration of the interrelationship of the Clark’s Nutcracker (a type of woodpecker) and the whitebark pine. Learner Outcomes Getting Ready Youth will: Materials: Youth need journals and writing utensils; staff need 1. Know how to complete a species account colored pencils, poker chips, and handouts. identifying the important species Preparation: For the “Made for Each Other” activity, set up the characteristics through a scientific whitebark pine food sources in 4 piles of poker chips and spread drawing. them out in the center of the area. The three cache sites should 2. Know the life history of the Clark’s not be more than seven feet apart and should be on the outside Nutcracker. circle of the food source. Assign cache sites to each group. Use 3. Understand mutualism in the ecological different objects to mark the cache sites. context of Yellowstone National Park. Location: A large area (25 x 25 yards) would be preferable for 4. Know how to define whitebark pine the “Made for Each Other” activity. An ideal location would ecosystem functions. have whitebark pines and/or Clark’s Nutcracker activity. Background The following material is not required to instruct this lesson. Adapted from Yellowstone Resources and Issues Handbook: 2013. Forest Insect Pest The conifer trees of Yellowstone face many threats, however the most damaging one is the native pine bark beetle. It is indicated that this species has been around for centuries.
    [Show full text]
  • There's No Place Like Home
    United States Department of Agriculture There’s No Place Like Home: D E E Forest Service P R A R U TM U LT ENT OF AGRIC Pacific Northwest Region Clark’s Nutcracker Home Ranges and 2011 Whitebark Pine Regeneration FOR CLARK’S nutcrackers, “home” is a year-round hub. What do we mean by “space use” and “home range”? Although nutcrackers show tenacious fidelity to home ranges in winter, spring, and summer, they spend every “Space use” describes how animals use a landscape. The term autumn traveling around to harvest seeds. Nearly all seeds is most commonly used to discuss home range characteristics are transported back home for storage, a process that has and the selection of resources (habitats, food items, roost sites) vast implications for forest regeneration. within home ranges. In our study, we used the term “home range” to describe the BACKGROUND area used by a resident nutcracker for all year-round activities We investigated habitat use, caching behavior, and except seed harvest. This is because areas used for seed harvest migratory patterns in Clark’s nutcrackers in the Pacific in autumn were ever-changing and temporary—birds showed Northwest using radio telemetry. Over 4 years (2006– no fidelity to forests used for seed harvest, but rather used these 2009), we captured 54 adult nutcrackers at 10 sites in the forests only as long as seeds were present on trees. Cascade and Olympic Mountains in Washington State. What do we know about nutcracker space use? We fitted nutcrackers with a back-pack style harness. The battery life on the radio tags was 450 days, and Vander Wall and Balda (1977) and Tomback (1978) were the we tracked nutcrackers year-round, on foot (to obtain first to report that nutcrackers harvest large-seeded pines in behavior observations) and via aircraft (to obtain point autumn and often range over large areas and multiple elevation locations).
    [Show full text]
  • Behavioral Profiles
    Terra Explorer Volume 1 The Terra Explorer series is copyrighted © 2009 by William James Davis. All rights reserved. Copyrights of individual stories in- cluded in the last section of the book, “Adventures in the field,” belong to their respective authors. (see following page for more details) William James Davis, Ph.D. Copyright © 2009 by Wm. James Davis ISBN 978-0-9822654-0-6 0-9822654-0-9 Also available as an eBook. To order, visit: http://www.TerraNat.com The Terra Explorer series is copyrighted © 2009 by William James Davis. All rights reserved. Copyrights of individual stories included in the last section of the book, “Adventures in the field,” belong to their respective authors. No part of this book may be used or reproduced in any manner whatsoever without written permission from the publisher and respective authors, except in the case of brief quotations embedded in critical articles and reviews. Contact the publisher to request permis- sion by visiting www.terranat.com. Photos on the front and back covers (Black Skimmer and Cuban Anole, respec- tively) by Karen Anthonisen Finch. For Linda Jeanne Mealey, who inspired my dreams to explore the natural world. Also by William James Davis Australian Birds: A guide and resource for interpreting behavior TableTable of of contents contents Introduction Evolution of a concept The challenge Book’s organization and video projects Participating in the Terra Explorer Project Behavioral profiles 8 Common Loon 11 American White Pelican 14 Anhinga 17 Cattle Egret 20 Mallard 23 Bald Eagle 26
    [Show full text]
  • Implications of Climate Change for Food-Caching Species
    Demographic and Environmental Drivers of Canada Jay Population Dynamics in Algonquin Provincial Park, ON by Alex Odenbach Sutton A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Alex O. Sutton, April 2020 ABSTRACT Demographic and Environmental Drivers of Canada Jay Population Dynamics in Algonquin Provincial Park, ON Alex Sutton Advisor: University of Guelph, 2020 Ryan Norris Knowledge of the demographic and environmental drivers of population growth throughout the annual cycle is essential to understand ongoing population change and forecast future population trends. Resident species have developed a suite of behavioural and physiological adaptations that allow them to persist in seasonal environments. Food-caching is one widespread behavioural mechanism that involves the deferred consumption of a food item and special handling to conserve it for future use. However, once a food item is stored, it can be exposed to environmental conditions that can either degrade or preserve its quality. In this thesis, I combine a novel framework that identifies relevant environmental conditions that could cause cached food to degrade over time with detailed long-term demographic data collected for a food-caching passerine, the Canada jay (Perisoreus canadensis), in Algonquin Provincial Park, ON. In my first chapter, I develop a framework proposing that the degree of a caching species’ susceptibility to climate change depends primarily on the duration of storage and the perishability of food stored. I then summarize information from the field of food science to identify relevant climatic variables that could cause cached food to degrade.
    [Show full text]
  • The Cognitive Animal Empirical and Theoretical Perspectives on Animal Cognition
    This PDF includes a chapter from the following book: The Cognitive Animal Empirical and Theoretical Perspectives on Animal Cognition © 2002 Massachusetts Institute of Technology License Terms: Made available under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License https://creativecommons.org/licenses/by-nc-nd/4.0/ OA Funding Provided By: The open access edition of this book was made possible by generous funding from Arcadia—a charitable fund of Lisbet Rausing and Peter Baldwin. The title-level DOI for this work is: doi:10.7551/mitpress/1885.001.0001 Downloaded from http://direct.mit.edu/books/edited-volume/chapter-pdf/677490/9780262268028_c001600.pdf by guest on 29 September 2021 17 Spatial and Social Cognition in Corvids: An Evolutionary Approach Russell P. Balda and Alan C. Kamil research plan using controlled laboratory ex- Research Questions periments and captive birds. Fortunately, nut- crackers are quite willing to cache and recover The central research questions that have guided seeds in laboratory settings and do so with a high our studies since 1981 combine issues and tech- degree of accuracy, both in a sandy floor indoors niques from both comparative psychology and (Balda 1980; Balda and Turek 1984) or out of avian ecology. Most of our questions originate doors (Vander Wall 1982), as well as in a room from the cognitive implications of extensive field with a raised floor containing sand-filled cups as studies on the natural history, ecology, and potential cache sites (Kamil and Balda 1985). behavior of seed-caching corvids. Because our The ability to study caching and cache recovery questions have evolved as our studies progressed, under controlled laboratory conditions allowed we have chosen to give a historical perspective us to test hypotheses on how the nutcrackers find outlining the progression of our ideas and ques- their caches.
    [Show full text]
  • Camp Chiricahua July 16–28, 2019
    CAMP CHIRICAHUA JULY 16–28, 2019 An adult Spotted Owl watched us as we admired it and its family in the Chiricahuas © Brian Gibbons LEADERS: BRIAN GIBBONS, WILLY HUTCHESON, & ZENA CASTEEL LIST COMPILED BY: BRIAN GIBBONS VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM By Brian Gibbons Gathering in the Sonoran Desert under the baking sun didn’t deter the campers from finding a few life birds in the parking lot at the Tucson Airport. Vermilion Flycatcher, Verdin, and a stunning male Broad-billed Hummingbird were some of the first birds tallied on Camp Chiricahua 2019 Session 2. This was more than thirty years after Willy and I had similar experiences at Camp Chiricahua as teenagers—our enthusiasm for birds and the natural world still vigorous and growing all these years later, as I hope yours will. The summer monsoon, which brings revitalizing rains to the deserts, mountains, and canyons of southeast Arizona, was tardy this year, but we would see it come to life later in our trip. Rufous-winged Sparrow at Arizona Sonora Desert Museum © Brian Gibbons On our first evening we were lucky that a shower passed and cooled down the city from a baking 104 to a tolerable 90 degrees for our outing to Sweetwater Wetlands, a reclaimed wastewater treatment area where birds abound. We found twittering Tropical Kingbirds and a few Abert’s Towhees in the bushes surrounding the ponds. Mexican Duck, Common Gallinule, and American Coot were some of the birds that we could find on the duckweed-choked ponds.
    [Show full text]
  • Clark's Nutcracker Factsheet 6: Population Trends
    United States Department of Agriculture D E E Forest Service A Monitoring Challenge: P R A R U TM U LT ENT OF AGRIC Pacific Northwest Region Clark’s Nutcracker Population Trends 2011 ARE CLARK’S nutcrackers declining? Many resource What’s the current status How reliable are the managers think so, yet long-term national surveys say no. of Clark’s nutcrackers? surveys? Problem is, these birds are so hard to monitor. How can we improve on methods to accurately detect changes in Clark’s Breeding Bird Surveys These annual bird counts nutcracker populations? (conducted nationwide have limitations for projecting each May since 1966) show population trends in Clark’s a significant range-wide nutcrackers for several BACKGROUND increase in numbers of reasons: We investigated habitat use, caching behavior, and Clark’s nutcrackers from 1966 • Most routes are along migratory patterns in Clark’s nutcrackers in the Pacific through 2007. Christmas Bird established roads to Northwest using radio telemetry. Over 4 years (2006– Counts (done in December facilitate access by 2009), we captured 54 adult nutcrackers at 10 sites in the across the country since 1900) volunteer surveyors; Cascade and Olympic Mountains in Washington State. show fairly strong population species occupying remote We fitted nutcrackers with a back-pack style harness. fluctuations, but no overall terrain, like Clark’s The battery life on the radio tags was 450 days, and trend (either increasing or nutcrackers, might be we tracked nutcrackers year-round, on foot (to obtain decreasing). Data from these poorly sampled. behavior observations) and via aircraft (to obtain point annual surveys (shown in the • Clark’s nutcrackers breed locations).
    [Show full text]
  • Reproductive Success and Nest-Site Selection in a Cooperative Breeder: Effect of Experience and a Direct Benefit of Helping
    TheAuk 116(2):355-363, 1999 REPRODUCTIVE SUCCESS AND NEST-SITE SELECTION IN A COOPERATIVE BREEDER: EFFECT OF EXPERIENCE AND A DIRECT BENEFIT OF HELPING B. J. HATCHWELL,• A. E RUSSELL,M. K. FOWLIE,AND D. J. Ross Departmentof Animal and Plant Sciences, University of Sheffield,Sheffield S10 2TN, UnitedKingdom ABSTRACT.--Wedetermined whether nest-site characteristics influence reproductive suc- cessand whetherexperience influences nest-site selection in a populationof cooperatively breedingLong-tailed Tits (Aegithaloscaudatus). Nest predationwas high; only 17%of breed- ing attemptsresulted in fledgedyoung. The heightof nestswas an importantdeterminant of success;low nestswere significantlymore successfulthan high nests.A breeder'sage, natal nestsite, and breedingexperience had no significanteffect on nest-siteselection. How- ever,failed breeders who helped at thesuccessful nests of conspecificsbuilt subsequentnests lowerthan nestsbuilt prior to their helpingexperience. Failed breeders who did not help showedno reductionin tlseheight of subsequentnests. Moreover, the subsequentrepro- ductivesuccess of failed breederswho helped was significantlyhigher than that of failed breederswho did not help.We concludethat helpersgain informationon nest-sitequality throughtheir helping experience and thus gain a directfitness benefit from their cooperative behavior.We suggest that experience as a helperoffers a morereliable cue to nest-sitequality thanbreeding experience because helpers are associatedwith nestsonly during the nestling phasewhen few nestsare depredated.In contrast,although successful breeders may expe- riencesuccess with a low nest,they are evenmore likely to haveexperienced the failureof low nestsbecause of the high rate of nestpredation. Received 26 December1997,accepted 28 July1998. A MAJORDETERMINANT of reproductivesuc- acteristics,then no consistentselection may ex- cessfor manyorganisms is the abilityof breed- ist for choiceof particularnest sites. However, ers to protecttheir offspringfrom predation.
    [Show full text]
  • Walker Marzluff 2017 Recreation Changes Lanscape Use of Corvids
    Recreation changes the use of a wild landscape by corvids Author(s): Lauren E. Walker and John M. Marzluff Source: The Condor, 117(2):262-283. Published By: Cooper Ornithological Society https://doi.org/10.1650/CONDOR-14-169.1 URL: http://www.bioone.org/doi/full/10.1650/CONDOR-14-169.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Volume 117, 2015, pp. 262–283 DOI: 10.1650/CONDOR-14-169.1 RESEARCH ARTICLE Recreation changes the use of a wild landscape by corvids Lauren E. Walker* and John M. Marzluff College of the Environment, School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA * Corresponding author: [email protected] Submitted October 24, 2014; Accepted February 13, 2015; Published May 6, 2015 ABSTRACT As urban areas have grown in population, use of nearby natural areas for outdoor recreation has also increased, potentially influencing bird distribution in landscapes managed for conservation.
    [Show full text]
  • A Fossil Scrub-Jay Supports a Recent Systematic Decision
    THE CONDOR A JOURNAL OF AVIAN BIOLOGY Volume 98 Number 4 November 1996 .L The Condor 98~575-680 * +A. 0 The Cooper Omithological Society 1996 g ’ b.1 ;,. ’ ’ “I\), / *rs‘ A FOSSIL SCRUB-JAY SUPPORTS A”kECENT ’ js.< SYSTEMATIC DECISION’ . :. ” , ., f .. STEVEN D. EMSLIE : +, “, ., ! ’ Department of Sciences,Western State College,Gunnison, CO 81231, ._ e-mail: [email protected] Abstract. Nine fossil premaxillae and mandibles of the Florida Scrub-Jay(Aphelocoma coerulescens)are reported from a late Pliocene sinkhole deposit at Inglis 1A, Citrus County, Florida. Vertebrate biochronologyplaces the site within the latestPliocene (2.0 to 1.6 million yearsago, Ma) and more specificallyat 2.0 l-l .87 Ma. The fossilsare similar in morphology to living Florida Scrub-Jaysin showing a relatively shorter and broader bill compared to western species,a presumed derived characterfor the Florida species.The recent elevation of the Florida Scrub-Jayto speciesrank is supported by these fossils by documenting the antiquity of the speciesand its distinct bill morphology in Florida. Key words: Florida; Scrub-Jay;fossil; late Pliocene. INTRODUCTION represent the earliest fossil occurrenceof the ge- nus Aphelocomaand provide additional support Recently, the Florida Scrub-Jay (Aphelocoma for the recognition ofA. coerulescensas a distinct, coerulescens) has been elevated to speciesrank endemic specieswith a long fossil history in Flor- with the Island Scrub-Jay(A. insularis) from Santa ida. This record also supports the hypothesis of Cruz Island, California, and the Western Scrub- Pitelka (195 1) that living speciesof Aphefocoma Jay (A. californica) in the western U. S. and Mex- arose in the Pliocene. ico (AOU 1995).
    [Show full text]
  • Individual Repeatability, Species Differences, and The
    Supplementary Materials: Individual repeatability, species differences, and the influence of socio-ecological factors on neophobia in 10 corvid species SUPPLEMENTARY MATERIALS 2 Figure S1 . Latency to touch familiar food in each round, across all conditions and species. Round 3 differs from round 1 and 2, while round 1 and 2 do not differ from each other. Points represent individuals, lines represent median. SUPPLEMENTARY MATERIALS 3 Figure S2 . Site effect on latency to touch familiar food in azure-winged magpie, carrion crow and pinyon jay. SUPPLEMENTARY MATERIALS 4 Table S1 Pairwise comparisons of latency data between species Estimate Standard error z p-value Blue jay - Azure-winged magpie 0.491 0.209 2.351 0.019 Carrion crow - Azure-winged magpie -0.496 0.177 -2.811 0.005 Clark’s nutcracker - Azure-winged magpie 0.518 0.203 2.558 0.011 Common raven - Azure-winged magpie -0.437 0.183 -2.392 0.017 Eurasian jay - Azure-winged magpie 0.284 0.166 1.710 0.087 ’Alal¯a- Azure-winged magpie 0.416 0.144 2.891 0.004 Large-billed crow - Azure-winged magpie 0.668 0.189 3.540 0.000 New Caledonian crow - Azure-winged magpie -0.316 0.209 -1.513 0.130 Pinyon jay - Azure-winged magpie 0.118 0.170 0.693 0.488 Carrion crow - Blue jay -0.988 0.199 -4.959 0.000 Clark’s nutcracker - Blue jay 0.027 0.223 0.122 0.903 Common raven - Blue jay -0.929 0.205 -4.537 0.000 Eurasian jay - Blue jay -0.207 0.190 -1.091 0.275 ’Alal¯a- Blue jay -0.076 0.171 -0.443 0.658 Large-billed crow - Blue jay 0.177 0.210 0.843 0.399 New Caledonian crow - Blue jay -0.808 0.228 -3.536
    [Show full text]
  • Nesting Ecology of the Great Horned Owl Bubo Virginianus in Central Western Utah
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1968-08-01 Nesting ecology of the great horned owl Bubo virginianus in central western Utah Dwight Glenn Smith Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Smith, Dwight Glenn, "Nesting ecology of the great horned owl Bubo virginianus in central western Utah" (1968). Theses and Dissertations. 7883. https://scholarsarchive.byu.edu/etd/7883 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. NESTING ECOLOGYOF THE GREATHORNED OWL BUBOVIRGINIANUS IN CENTRALWESTERN UTAH L A Thesis Presented to the Department of Zoology and Entomology Brigham Young University In Partial Fulfi I lment of the Requirements for the Degree Master of Science by Dwight G. Smith August 1968 This thesis by Dwight G. Smith is accepted in its present form by the Department of Zoology and Entomolo�y of Brigham Young University as satisfying the thesis require­ ment for the degree of Master of Science. Typed by Beth Anne Smith f i i ACKNOWLEDGMENTS Grateful acknowledgment is made for the valuable sug- gestions and help given by the chairman of my advisory com- mittee, Dr. Joseph R. Murphy, and other members of my com- mittee, Dr. C. Lynn Hayward and Dr. Joseph R. Murdock. Ap- preciation is extended to Dr. Herbert H. Frost for his editor- ial help in the preparation of the manuscript.
    [Show full text]