PROGRESS REPORT Period: 2010-2013

Total Page:16

File Type:pdf, Size:1020Kb

PROGRESS REPORT Period: 2010-2013 CAMPUS MONCLOA CAMPUS OF INTERNATIONAL EXCELLENCE Universities Complutense and Technical University Madrid PROGRESS REPORT Period: 2010-2013 www.campusmoncloa.es Project Data: MONCLOA CAMPUS: THE POWER OF DIVERSITY (Ref.: CEI09-0019) Type of CIE: Global X Acronym: CEI Moncloa Campus Coordinating University: Universidad Complutense de Madrid Partner / Promotor Universities: COMPLUTENSE UNIVERSITY OF MADRID (UCM) and TECHNICAL UNIVERSITY OF MADRID (UPM) Other CIE institutional promotors: Agencia Estatal de Meteorología (AEMET) Ayuntamiento de Madrid Central Lechera Asturiana (CAPSA) Centre for Energy, Environment and Technology Research (CIEMAT) Madrid Autonomous Community Spanish National Research Council (CSIC) Fundación Juan José López Ibor Fundación madri+d para el Conocimiento Fundación para la Investigación Biomédica del Hospital Gregorio Marañón (FIBHGM) Hospital Universitario 12 de Octubre (H12O) Global Forecasters, S.L. Hospital Clínico San Carlos (HCSC) Indra Instituto de Salud Carlos III (ISCIII) Instituto del Patrimonio Cultural de España (IPCE) Instituto Geológico y Minero de España (IGME) Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Instituto Tecnológico PET Parque Científico de Madrid (PCM) Patrimonio Nacional (PN) University of Colorado Denver 2 Progress Report: Nº 3 (2013) Period: 2010-June 2013 Coordinators from Partner /Promotor Institutions: J. Francisco Tirado Fernández, Vice-Chancellor for Research, UCM Roberto Prieto López, Vice-Chancellor for Research, UPM Tel: 91 394 71 90 E-mail: [email protected] Project web page: http://www.campusmoncloa.es/ CEI CAMPUS MONCLOA Table of contents 1. Brief Summarry for Publication __________________________________________ 5 2. Qualitative and Quantitative Description _________________________________ 10 INTRODUCTION _________________________________________________________ 11 Table I. Description of project actions ___________________________________________ 15 3. Governance of the project ____________________________________________ 191 4. Tables showing Results, Indicators and Future Milestone ___________________ 195 Table II. Main Results _______________________________________________________ 196 Table III. Progress indicators __________________________________________________ 198 Table IV. Future Milestones __________________________________________________ 201 Table V. Use of Resources* ___________________________________________________ 202 4 1. Brief Summary for Publication CEI Campus Moncloa: La energía de la Diversidad Informe de seguimiento 3ª anualidad The Moncloa International Campus of Excellence (CEI Moncloa Campus) is home to the greatest concentration of talent in our country. It represents a major merger between two of Spain's most important universities with the aim of combining their complementary strengths to forge an international point of scientific reference. The CEI Moncloa Campus runs an integral, unified, sustainable and socially responsible campus, and acts as a catalyst for the cultural life of the city of Madrid. The CEI Moncloa Campus is located in the city of Madrid, although it includes other campuses such as Somosaguas, and the CEI in Montegancedo. The scientific strategy of the CEI Moncloa Campus is arranged in a system of six clusters representing different areas of specialisation; this is the critical mass for knowledge generation where there is the greatest overlap between the component actors in our campus. These knowledge areas are: global change and new energies; materials for the future; agri-food and health; innovative medicine; cultural heritage and sustainable mobility. Program for International Talent Recruitment (PICATA) This represents a commitment to the future by recruiting the most talented young people for research. It offers pre- and post-doctoral contracts in conditions that are similar to the leading international programs. These projects are co-directed by professors from both universities, which confers an added value to the results. 6 The content of this research explores areas with a wide-reaching impact, including Parkinson's disease, tuberculosis, food safety and ready-made products, graphenes, the development of two- dimensional magnetic materials, anti-tumour therapy and renewable energies. There is a procedure currently under way in this field to obtain a patent for construction and renewable energies, and one of our promising newcomers is currently involved in the project. In 2012 –thanks to this program– the CEI Moncloa Campus had 33 graduates working towards their doctoral thesis, and 22 recent doctoral graduates divided among the six clusters. Science infrastructures The CEI Moncloa Campus provides its researchers with internationally competitive and attractive tools and facilities. Through the Moncloa Campus's Call for Research Grants (CAIMON), nearly 4 million euros has been dedicated to acquiring equipment and infrastructures to assist the research works carried out by our scientists. Some of the most important resources are described below: Singular Technical Science Facility for Advanced Electron Microscopy. This facility has a microscope with an aberration corrector on the condenser lens and cold cathode that makes it unique in Spain. It provides direct images with atomic resolution of the structure of a material, and represents a major leap forward in the development of new materials, particularly in the area of nanomaterials. The facility collaborates with leading institutions such as Oxford, Paris VI, Stockholm, Tsukuba and Oak Ridge National Laboratory. Cognitive and Computational Neuroscience Laboratory. This is a unique facility in which a further magnetoencephalography (MEG) apparatus has been added to its electroencephalography equipment (EEG), in what is cutting-edge technology in the field of neuroscience. This equipment creates models which help to understand neurological diseases such as Alzheimer's. Advanced Scientific Instrumentation Laboratory (LICA). This laboratory includes instruments with a significant impact on astronomy such as MEGARA, the first instrument capable of observing gas emissions between galaxies. Living-Lab. This is an infrastructure for 3-D visualisation and multimodal interaction capable of recreating the evolution of the real world in a virtual environment. It has multiple applications in the fields of health (surgical training, cognitive therapies), defence (flight simulator), and architecture (accessibility assessment). Veterinary Healthcare Surveillance Centre (VISAVET). This centre studies disease- causing microorganisms with an impact on animal production and public health, and verifies that the products we consume are healthy. Its laboratories and animal CEI Campus Moncloa: La energía de la Diversidad Informe de seguimiento 3ª anualidad facilities are unique in Madrid, and it has a MALDI TOF/TOF mass spectrometry platform that is the only one of its kind currently installed in Spain. Agri-food corridor. Its infrastructures are unique in Madrid. This facility makes this environment one of the leading European axes of R+D+i in sustainable agricultural production, food safety, and animal health and wellbeing. Academic program The International Postgraduate School (EIP) is the inter-university structure at the CEI Moncloa Campus that is responsible for the academic organisation of the activities that lead to the award of university Masters' degrees, its own degrees and lifelong learning. It also arranges extraordinary courses, events, meetings and a range of potential educational activities for the future. The following academic qualifications are offered: University Masters Degree in Disaster Management, the first to be taught by the CEI Moncloa Campus and the only one of its kind in Spain. It will feature teaching staff from both universities and various teachers from outside the university involved with companies working in the prevention and resolution of disasters. Official Masters Degree in Animal Health and Production. The area for academic collaboration includes the following International School of Infectious Communicable Animal Diseases (EIEAC) provides technical and scientific training aimed at combating and eradicating infectious diseases in animals. It includes the reference laboratories for the OIE, UE and FAO for African swine fever. In this line of work a collaboration agreement has been signed with the Center for Animal Disease Modeling and Surveillance at the University of California, Davis. Events. Cei[innova] course. Organised with the aim of highlighting the R+D+i capacities, solutions and services of the CEI Moncloa Campus, it also included companies and experts from a range of institutions who shared their current view of the challenges and technological requirements involved in their area of activity. Materials Week. Materials week featured a wide range of activities designed to highlight our social presence and the synergies between teaching staff, researchers, students and companies working or collaborating in the materials sector. The events took various formats 8 (lectures, debates, presentation of research lines, demonstrations, courses, visits, etc) aimed primarily at students at different stages of their academic career, companies, researchers and teachers at the CEI Moncloa Campus who have some type of relationship with the realm of materials. Summer courses. The CEI Moncloa Campus also contributes additional value in the sphere of education with courses such as the one
Recommended publications
  • Asociados a Agallas De Aylacini Y Diplolepidini (Hym., Cynipidae) En España
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Boln. Asoc. esp. En!., 26 (1-2): 2002: 11-37 ISSN: 0210-8984 Calcidoideos (Hym., Chalcidoidea) asociados a agallas de Aylacini y Diplolepidini (Hym., Cynipidae) en España José Luis Nieves-Aldrey & R.R. Askew RESUMEN Se actualiza el conocimiento en España de las especies de calcídidos parasitoides (Hym., Chalcidoidea) asociadas a cinípidos de las tribus Aylacini y Diplolepidini (Hym., Cynipidae) que forman agallas en plantas herbáceas y arbustos de diferentes fa- milias botánicas, excepto Fagaceae. Se listan 56 especies de seis familias de calcídi- dos: 15 Eurytomidae, 13 Torymidae, 7 Ormyridae, 10 Pteromalidae, 6 Eupelmidae y 5 Eulophidae. De todas ellas se recogen las citas publicadas y, para muchas de ellas, se amplía su conocimiento aportando nuevos datos de distribución y biología. Cinco es- pecies se citan por primera vez de la península ibérica: Euryfoma aspila, E. infracta, E. rufipes, E. timaspidis y Toiymus cingulatus. Se discute la composición de la comu- nidad parasitoide asociada a agallas de especies de Aylacini y Diplolepidini en España comparándola con la de Cynipini sobre Quercus. Se aporta un apéndice final con la re- lación de agallas hospedadoras estudiadas incluyendo la lista de Chalcidoidea citados en cada una. Palabras clave: Chalcidoidea, Cynipidae, Aylacini, Diplolepidini, agallas, parasi- toides, comunidad, España, nuevas citas. ABSTRACT Chalcid wasps (Hym., Chalcidoidea) associated with galls of Aylacini and Diplolepidini (Hym., Cynipidae) in Spain Knowledge in Spain of the parasitoid chalcid wasp species (Hym., Chalcidoidea) associated with gall-inducing cynipids on herbaceous plants and bushes excluding Fa- gaceae (tribes "Aylacini" and Diplolepidini), in Spain is updated.
    [Show full text]
  • Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected]
    Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected] Michael S. Engel University of Kansas, Lawrence David A. Grimaldi American Museum of Natural History Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Liu, Zhiwei; Engel, Michael S.; and Grimaldi, David A., "Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea)" (2007). Faculty Research & Creative Activity. 197. http://thekeep.eiu.edu/bio_fac/197 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3583, 48 pp., 27 figures, 4 tables September 6, 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) ZHIWEI LIU,1 MICHAEL S. ENGEL,2 AND DAVID A. GRIMALDI3 CONTENTS Abstract . ........................................................... 1 Introduction . ....................................................... 2 Systematic Paleontology . ............................................... 3 Superfamily Cynipoidea Latreille . ....................................... 3
    [Show full text]
  • A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
    TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques.
    [Show full text]
  • Community Level Consequences of Adaptive Management Through Climate Matching: Oak Galls As a Model System
    Community level consequences of adaptive management through Climate Matching: oak galls as a model system Frazer H. Sinclair Submitted for the degree of Doctor of Philosophy University of Edinburgh 2011 1 Declaration This thesis is submitted to the University of Edinburgh in accordance with the requirements for the degree of Doctor of Philosophy in the College of Science and Engineering. Aspects of the presented work were made possible by collaboration and data sharing with individuals and institutions, details of which are presented below. Chapter 2. The French National Institute for Agricultural Research (INRA) provided various phenotypic and genotypic data from oak provenance trials that are under their management. All presented analyses of these data are my own. Chapter 3. INRA allowed access to their established oak provenance trial at the forest of Petite Charnie in Sarthe, Northwest France. Insect surveys at the trial were conducted by me, and by volunteers under my supervision. All presented analyses of these data are my own. Chapter 4. Insect specimens were collected by me from the oak provenance trial at Petite Charnie with the permission of INRA. Approximately 1/3 of DNA extractions and PCR reactions were conducted by Konrad Lohse, Julja Ernst, and Juan Carlos Ruiz Guajardo. All presented analyses are my own. Chapter 5. Insect specimens were sourced from the Stone laboratory collections at the University of Edinburgh. Unpublished DNA sequence data from 6 parasitoid individuals were provided by Konrad Lohse. All presented analysis of this data is my own. Unless otherwise stated, the remaining work and content of this thesis are entirely my own.
    [Show full text]
  • Fauna Europaea: Hymenoptera – Apocrita (Excl
    Biodiversity Data Journal 3: e4186 doi: 10.3897/BDJ.3.e4186 Data Paper Fauna Europaea: Hymenoptera – Apocrita (excl. Ichneumonoidea) Mircea-Dan Mitroiu‡§, John Noyes , Aleksandar Cetkovic|, Guido Nonveiller†,¶, Alexander Radchenko#, Andrew Polaszek§, Fredrick Ronquist¤, Mattias Forshage«, Guido Pagliano», Josef Gusenleitner˄, Mario Boni Bartalucci˅, Massimo Olmi ¦, Lucian Fusuˀ, Michael Madl ˁ, Norman F Johnson₵, Petr Janstaℓ, Raymond Wahis₰, Villu Soon ₱, Paolo Rosa₳, Till Osten †,₴, Yvan Barbier₣, Yde de Jong ₮,₦ ‡ Alexandru Ioan Cuza University, Faculty of Biology, Iasi, Romania § Natural History Museum, London, United Kingdom | University of Belgrade, Faculty of Biology, Belgrade, Serbia ¶ Nusiceva 2a, Belgrade (Zemun), Serbia # Schmalhausen Institute of Zoology, Kiev, Ukraine ¤ Uppsala University, Evolutionary Biology Centre, Uppsala, Sweden « Swedish Museum of Natural History, Stockholm, Sweden » Museo Regionale di Scienze Naturi, Torino, Italy ˄ Private, Linz, Austria ˅ Museo de “La Specola”, Firenze, Italy ¦ Università degli Studi della Tuscia, Viterbo, Italy ˀ Alexandru Ioan Cuza University of Iasi, Faculty of Biology, Iasi, Romania ˁ Naturhistorisches Museum Wien, Wien, Austria ₵ Museum of Biological Diversity, Columbus, OH, United States of America ℓ Charles University, Faculty of Sciences, Prague, Czech Republic ₰ Gembloux Agro bio tech, Université de Liège, Gembloux, Belgium ₱ University of Tartu, Institute of Ecology and Earth Sciences, Tartu, Estonia ₳ Via Belvedere 8d, Bernareggio, Italy ₴ Private, Murr, Germany ₣ Université
    [Show full text]
  • ARRAKIS: Atlas of Resonance Rings As Known in The
    Astronomy & Astrophysics manuscript no. arrakis˙v12 c ESO 2018 September 28, 2018 ARRAKIS: atlas of resonance rings as known in the S4G⋆,⋆⋆ S. Comer´on1,2,3, H. Salo1, E. Laurikainen1,2, J. H. Knapen4,5, R. J. Buta6, M. Herrera-Endoqui1, J. Laine1, B. W. Holwerda7, K. Sheth8, M. W. Regan9, J. L. Hinz10, J. C. Mu˜noz-Mateos11, A. Gil de Paz12, K. Men´endez-Delmestre13 , M. Seibert14, T. Mizusawa8,15, T. Kim8,11,14,16, S. Erroz-Ferrer4,5, D. A. Gadotti10, E. Athanassoula17, A. Bosma17, and L.C.Ho14,18 1 University of Oulu, Astronomy Division, Department of Physics, P.O. Box 3000, FIN-90014, Finland e-mail: [email protected] 2 Finnish Centre of Astronomy with ESO (FINCA), University of Turku, V¨ais¨al¨antie 20, FI-21500, Piikki¨o, Finland 3 Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Republic of Korea 4 Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 5 Departamento de Astrof´ısica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain 6 Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 7 European Space Agency, ESTEC, Keplerlaan 1, 2200 AG, Noorwijk, the Netherlands 8 National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903, USA 9 Space Telescope Science Institute, 3700 San Antonio Drive, Baltimore, MD 21218, USA 10 European Southern Observatory, Casilla 19001, Santiago 19, Chile 11 MMTO, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 12 Departamento de Astrof´ısica,
    [Show full text]
  • A New Species of the Genus Trichagalma Mayr from China (Hym.: Cynipidae)
    Orsis26,2012 91-101 CORE Metadata, citation and similar papers at core.ac.uk Provided by Revistes Catalanes amb Accés Obert AnewspeciesofthegenusTrichagalmaMayr fromChina(Hym.:Cynipidae) JuliPujade-Villar UniversitatdeBarcelona.DepartamentdeBiologiaAnimal [email protected] JingshunWang BeijingForestryUniversity.KeyLaboratoryforSilviculture andConservationofMinistryofEducation Beijing100083,P.R.China [email protected] AnyangInstituteofTechnology.Anyang455000.P.R.China ManuscriptreceivedinOctober2011 Abstract Anewspeciesofoakgallwasp,Trichagalma glabrosaPujade-Villarisdescribedfrom EasternChina(provinceofHenan),knowntoinducegallsonQuercus variabilisBlume. Onlyasexualfemalesareknown.Dataonthediagnosis,distributionandbiologyofthe newspeciesaregiven.ThisnewspeciespresentscharactersrelatedtoTrichagalma,Pseu- doneuroterusandCerroneuroterus,andtheiraffiliationwithTrichagalmaiscommented. Keywords: Cynipidae;oakgallwasp;Trichagalma;newspecies;China. Resum.Una nova espècie del gènere Trichagalma Mayr de Xina (Hym.: Cynipidae) Esdescriudesdel’estdelaXina(provínciadeHenan),unanovaespèciecinípidderoure, Trichagalma glabrosaPujade-VillarlaqualindueixgalesaQuercus variabilisBlume. Noméslesfemellesasexualssónconegudes.S’esmentenelscaràctersdignòstics,ladistri- bucióibiologia.AquestanovaespèciepresentacaràctersrelacionatsambTrichagalma, PseudoneuroterusiCerroneuroterus,perlaqualcosaescomentalasevaafiliacióamb Trichagalma. Paraules clau: Cynipidae;gala;Trichagalma;novaespècie;Xina. 92 Orsis26,2012 J.Pujade-Villar;J.Wang Introduction TheCynipinaearedividedintotwomaintrophicgroups:thegallinducers(Ayla-
    [Show full text]
  • Evolution of the Insects
    CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999).
    [Show full text]
  • Ecological Niche Modelling of Species of the Rose Gall Wasp Diplolepis (Hymenoptera: Cynipidae) on the Iberian Peninsula
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 118: 31–45, 2021 http://www.eje.cz doi: 10.14411/eje.2021.004 ORIGINAL ARTICLE Ecological niche modelling of species of the rose gall wasp Diplolepis (Hymenoptera: Cynipidae) on the Iberian Peninsula SARA SARDÓN-GUTIÉRREZ 1, DIEGO GIL-TAPETADO 1, 2, JOSÉ F. GÓMEZ 1 and JOSÉ L. NIEVES-ALDREY 2 1 Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; e-mails: [email protected]; [email protected]; [email protected] 2 Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain; e-mail: [email protected] Key words. Hymenoptera, Cynipidae, Diplolepis, species distribution modelling, gall-inducing wasps, Spain, Rosaceae, habitat complementarity Abstract. Diplolepis (Hymenoptera: Cynipidae) are gall wasps that induce conspicuous galls on Rosa spp. (Rosaceae). These species are distributed globally and in Europe some are especially common and are founder organisms of biological communi- ties composed of different insects. However, the ecological niches of these species have not been studied in detail. We modelled the potential distributions of these species using the locations of the galls of the four most abundant species of Diplolepis on the Iberian Peninsula (Diplolepis mayri, Diplolepis rosae, Diplolepis eglanteriae and Diplolepis nervosa, the galls of latter two are in- distinguishable) using four different algorithms and identifi ed the resulting consensus for the species. We compared the potential distributions of these species, considering their spatial complementarity and the distributions of their host plants. We found that D.
    [Show full text]
  • Integral Field Spectroscopy of the Nearby Spiral Galaxy NGC 5668
    Mem. S.A.It. Suppl. Vol. 14, 271 Memorie della c SAIt 2010 Supplementi Integral Field Spectroscopy of the nearby spiral galaxy NGC 5668 R.A. Marino1, A. Gil de Paz1, A. Castillo-Morales1, J.C. Munoz-Mateos˜ 1, and S.F. Sanchez´ 2 1 Departamento de Astrof´ısica y CC. de la Atmosfera,´ Universidad Complutense de Madrid, Madrid 28040, Spain 2 Centro Astronomico´ H´ıspano Aleman,´ Calar Alto, CSIC-MPG, C/Jesus´ Durban´ Remon´ 2-2, E-04004 Almeria, Spain Abstract. We analyze the full bi-dimensional spectral cube of the nearby spiral galaxy NGC 5668, which was obtained as a mosaic of 6 pointings, covering a total area of 2 × 3 arcmin2, obtained with the PPAK Integral Field Unit at the Calar Alto (CAHA) obser- vatory 3.5 m telescope. From these data we derive maps of the attenuation of the ionized gas (from the Hα / Hβ Balmer decrement), electron density (from the [SII]6717Å/ [SII]6731Å ratio), and chemical abundances, of both oxygen (using either the Te based method when possible or strong line methods such as the R23), and nitrogen. In addition to these maps, we also extract the spectra of individual HII regions by adding the flux over several PPAK fibers to increase the signal-to-noise ratio of the spectra and reduce the uncertainties in the properties derived. Along with the study of the ionized gas we also embark in the analysis of the absorption-line spectrum dominating the bulge and inter-arm regions. The spectra of these regions are compared with the predictions of evolutionary synthesis models for evolved stellar populations.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]