Latissimus Dorsi-Rib Pedicle Flap for Mandibular Reconstruction As a Salvage Procedure for Failed Free Fibula Flap

Total Page:16

File Type:pdf, Size:1020Kb

Latissimus Dorsi-Rib Pedicle Flap for Mandibular Reconstruction As a Salvage Procedure for Failed Free Fibula Flap CLINICAL STUDY Latissimus Dorsi-Rib Pedicle Flap for Mandibular Reconstruction as a Salvage Procedure for Failed Free Fibula Flap Hung-Chi Chen, MD, FACS,* Nefer Fallico, MD,† Pedro Ciudad, MD,* and Emilio Trignano, MD, PhD*‡ The present paper describes the use of latissimus dorsi + rib Background: Mandibular reconstruction is usually performed by (LD + rib)5–7 flap for mandibular reconstruction in a patient who un- using free vascular flaps. However, there are instances in which it derwent an unsuccessful reconstruction with free fibula flaps and who must be carried out with pedicle flaps. Insofar, the main option refused a PM + rib pedicle reconstruction with the contralateral fibula recommended is the pectoralis major (PM) + rib pedicle flap. while he accepted to undergo a pedicle rib reconstruction. Methods: A 45-year-old patient affected by a primitive mandibular tumor presented after an unsuccessful reconstruction with free fib- CLINICAL REPORT ula flaps. He refused a PM + rib pedicle reconstruction, while he ac- A 45-year-old male patient affected by a primitive mandibu- cepted to undergo a latissimus dorsi (LD) + rib flap reconstruction. lar tumor (ameloblastoma of the left mandibular branch) was admit- Results: The postoperative course was uneventful. Also, the range ted to our department after the failure of both left and right free fibula of movements of the upper limb involved in the operation showed reconstruction performed in a different hospital. Due to his general no significant changes after surgery. conditions, the option of reconstructing the mandible by means of a free flap was rejected. The patient was advised a pedicle flap recon- Conclusions: The LD + rib flap proved to be a useful alternative struction with the PM + rib flap, which he refused. Our medical team procedure for mandibular reconstruction after cancer ablation in suggested then to perform a latissimus dorsi + rib pedicle flap recon- patients who are not candidates for vascularized bone-containing struction. The patient was briefed about this procedure and finally free flaps and refuse the PM + rib flap reconstruction. gave consent to it. Preoperative antibiotics were administered. An elliptical-shaped skin island was designed along the me- Key Words: Latissimus dorsi-rib pedicle flap, mandibular dial border of the latissimus dorsi muscle. The inferior border of the reconstruction, salvage procedure, free fibula flap, pectoralis flap was identified and the dissection was carried out following an major-rib pedicle flap inferior-to-superior direction until the 11th rib was reached. The (J Craniofac Surg 2014;25: 961–963) only rib that serves our purpose was the 11th as the length of the pedicle suffices to fully cover the mandible. The desired segment andibular reconstruction is a well-known and widely written of the rib was then osteotomized first laterally and then medially, Mtopic. Flaps such as the free fibula, free iliac crest, and free leaving 3–4 cm of rib at each side so as not to cause respiratory rib are among the most commonly performed techniques for man- problems. The perforating vessel that goes from the rib to the LD mus- dibular reconstruction.1–3 However, there are instances in which, cle was identified without dissection to provide a periosteal blood sup- due to the failure of free flaps or patients’ general conditions, the re- ply to the 11th rib. Once the rib was elevated, the remaining portion of construction of the mandible after the removal of tumors in the oral the flap was harvested along with its vascular pedicle as far as the ax- cavity must be carried out by employing pedicle flaps. Insofar, the illary artery (Fig. 1). The circumflex scapular artery was ligated. In main option recommended and described in literature is the this way, the pedicle can reach up to 11 cm in length, compared to the pectoralis major + rib (PM + rib) pedicle flap.4 The PM + rib flap thoracodorsal artery in normal condition that can only reach 4–5cm. rapidly and easily allows the covering of mandibular defects. How- The flap is tunneled under the humeral insertion of the pectoralis ma- ever, the donor site needs to be closed with skin grafts leading to a jor muscle. After placing 2 drainage tubes, the donor site was closed poor aesthetic appearance of the anterior chest wall. by direct suture. To avoid seroma formation in the donor site, the lat- eral part of the fascia was sutured with Vicryl 2/0. During the operation, a 3 3 cm graft was performed be- From the *Department of Plastic and Reconstructive Surgery, China Medical cause of insufficient tissue in the neck area (Fig. 2). Polyurethane University Hospital, Taichung, Taiwan; †Department of Plastic and dressings with ibuprofen (Biatain-Ibu) were used in the manage- Reconstructive Surgery, “Sapienza” University of Rome, Rome, Italy; ment of the skin graft recipient site; this expedient helps reducing and ‡ Department of Plastic and Reconstructive Surgery, University of 8 Sassari, Sassari, Italy. pain and keeping the wound clean. The patient was discharged Received December 22, 2013. 9 days later without complications, and 6 weeks afterwards, he began Accepted for publication January 7, 2014. radiation therapy (Fig. 3). The range of movements (ROM) of the up- Address correspondence and reprint requests to Nefer Fallico, MD, per limb involved in the operation was carefully measured before and Department of Plastic and Reconstructive Surgery, “Sapienza” after 6 weeks from the operation. The ROM of the left arm showed no University of Rome, Via Val Savio 3, 00141, Rome, Italy; significant changes before and after the operation (Fig. 4). E-mail: [email protected] The authors report no conflicts of interest. Copyright © 2014 by Mutaz B. Habal, MD DISCUSSION ISSN: 1049-2275 Segmental continuity defects of the mandible are effectively re- DOI: 10.1097/SCS.0000000000000744 constructed using different vascularized bone flaps. The use of such The Journal of Craniofacial Surgery • Volume 25, Number 3, May 2014 961 Copyright © 2014 Mutaz B. Habal, MD. Unauthorized reproduction of this article is prohibited. Chen et al The Journal of Craniofacial Surgery • Volume 25, Number 3, May 2014 FIGURE 3. Front (A) and lateral (B) view of patient 1 month after the operation. The latissimus–serratus–rib free flap is an effective proce- dure; however, it presents an excessive bulk and its cortical bone FIGURE 1. Intraoperative view of the latissimus dorsi muscle with the does not tolerate the insertion of dental implants. As a consequence, 11th rib attached after the harvest. this flap is only used in patients who are not candidates for more commonly used vascularized bone-containing free flaps.11 Unlike flaps allows reconstruction of both irradiated and non-irradiated the description given by Blackwell and colleagues,11 the periosteal fields. The most commonly used flaps in mandibular reconstruction blood supply is given by the subscapular artery, which is longer, 1 2 9 are the fibula flap, the iliac crest flap, the radial forearm flap, and allowing to perform a pedicled reconstruction. Moreover, the choice 3,10 latissimus–serratus–rib free flap. not to harvest the SA muscle allows the flap to be less bulky and, as The free fibula flap is considered the most appropriate choice for a consequence, to obtain a first intention skin closure. Also, the dis- mandibular reconstruction. However, sometimes it is not available be- section is easier requiring a shorter operative time and avoiding the cause it has been previously used or because of severe vascular disease. risk of winging scapula. The iliac crest flap has been extensively used in mandibular The free flaps based on the circumflex scapular artery reconstruction, but it includes an unreliable and relatively immobile containing the lateral border of the scapula require a long duration skin paddle, and a high incidence of postoperative donor site pain as of surgery because of impossible simultaneous flap harvest and tu- well as hernia formation. Among its other downsides, we can men- mor resection in case of oral cancer (simultaneous 2-team surgery). tion that it just provides a limited quantity of bone and muscle and In cases where it is not possible to perform any of the afore- 10 its pedicle is short. mentioned free flaps,12 the main reconstructive option described in The radial forearm flap allows a good lining of the oral mucosa, literature is the pectoralis major + rib pedicle flap.4 Despite the ease but it provides a limited quantity of bone tissue and, in time, it is very of technique, it requires large skin grafts to close the donor site, 10 likely to undergo spontaneous fractures of the radius after flap harvest. which results in a poor aesthetic appearance of the anterior chest wall. Moreover, the furthest rib that can be used is the seventh rib, which causes respiratory discomfort and more pain to the patient. FIGURE 2. Patient at the end of operation. Visible sutures with a meshed graft on the neck region. FIGURE 4. The longitudinal scar unhidden by the arm. 962 © 2014 Mutaz B. Habal, MD Copyright © 2014 Mutaz B. Habal, MD. Unauthorized reproduction of this article is prohibited. The Journal of Craniofacial Surgery • Volume 25, Number 3, May 2014 LD-Rib Pedicle Flap After Failed Free Flaps An alternative technique could be the bone graft from the fibula, 2. Miyamoto S, Sakuraba M, Nagamatsu S, et al. Current role of the iliac iliac crest, or rib, but it has been demonstrated that nonvascularized crest flap in mandibular reconstruction. Microsurgery 2011;31: bone grafts undergo a faster atrophic process.13 The LD + rib ped- 616–619 icle flap instead allows a direct closure of the donor site, with a ver- 3. Harashina T, Nakajima H, Imai T. Reconstruction of mandibular defects tically oriented scar that is usually well hidden.
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • Part 1 the Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3
    ECA1 7/18/06 6:30 PM Page 1 Part 1 The Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3 Surface anatomy and surface markings The experienced clinician spends much of his working life relating the surface anatomy of his patients to their deep structures (Fig. 1; see also Figs. 11 and 22). The following bony prominences can usually be palpated in the living subject (corresponding vertebral levels are given in brackets): •◊◊superior angle of the scapula (T2); •◊◊upper border of the manubrium sterni, the suprasternal notch (T2/3); •◊◊spine of the scapula (T3); •◊◊sternal angle (of Louis) — the transverse ridge at the manubrio-sternal junction (T4/5); •◊◊inferior angle of scapula (T8); •◊◊xiphisternal joint (T9); •◊◊lowest part of costal margin—10th rib (the subcostal line passes through L3). Note from Fig. 1 that the manubrium corresponds to the 3rd and 4th thoracic vertebrae and overlies the aortic arch, and that the sternum corre- sponds to the 5th to 8th vertebrae and neatly overlies the heart. Since the 1st and 12th ribs are difficult to feel, the ribs should be enu- merated from the 2nd costal cartilage, which articulates with the sternum at the angle of Louis. The spinous processes of all the thoracic vertebrae can be palpated in the midline posteriorly, but it should be remembered that the first spinous process that can be felt is that of C7 (the vertebra prominens). The position of the nipple varies considerably in the female, but in the male it usually lies in the 4th intercostal space about 4in (10cm) from the midline.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Skeletal System? Skeletal System Chapters 6 & 7 Skeletal System = Bones, Joints, Cartilages, Ligaments
    Warm-Up Activity • Fill in the names of the bones in the skeleton diagram. Warm-Up 1. What are the 4 types of bones? Give an example of each. 2. Give 3 ways you can tell a female skeleton from a male skeleton. 3. What hormones are involved in the skeletal system? Skeletal System Chapters 6 & 7 Skeletal System = bones, joints, cartilages, ligaments • Axial skeleton: long axis (skull, vertebral column, rib cage) • Appendicular skeleton: limbs and girdles Appendicular Axial Skeleton Skeleton • Cranium (skull) • Clavicle (collarbone) • Mandible (jaw) • Scapula (shoulder blade) • Vertebral column (spine) • Coxal (pelvic girdle) ▫ Cervical vertebrae • Humerus (arm) ▫ Thoracic vertebrae • Radius, ulna (forearm) ▫ Lumbar vertebrae • Carpals (wrist) • Metacarpals (hand) ▫ Sacrum • Phalanges (fingers, toes) ▫ Coccyx • Femur (thigh) • Sternum (breastbone) • Tibia, fibula (leg) • Ribs • Tarsal, metatarsals (foot) • Calcaneus (heel) • Patella (knee) Functions of the Bones • Support body and cradle soft organs • Protect vital organs • Movement: muscles move bones • Storage of minerals (calcium, phosphorus) & growth factors • Blood cell formation in bone marrow • Triglyceride (fat) storage Classification of Bones 1. Long bones ▫ Longer than they are wide (eg. femur, metacarpels) 2. Short bones ▫ Cube-shaped bones (eg. wrist and ankle) ▫ Sesamoid bones (within tendons – eg. patella) 3. Flat bones ▫ Thin, flat, slightly curved (eg. sternum, skull) 4. Irregular bones ▫ Complicated shapes (eg. vertebrae, hips) Figure 6.2 • Adult = 206 bones • Types of bone
    [Show full text]
  • The Influence of the Rib Cage on the Static and Dynamic Stability
    www.nature.com/scientificreports OPEN The infuence of the rib cage on the static and dynamic stability responses of the scoliotic spine Shaowei Jia1,2, Liying Lin3, Hufei Yang2, Jie Fan2, Shunxin Zhang2 & Li Han3* The thoracic cage plays an important role in maintaining the stability of the thoracolumbar spine. In this study, the infuence of a rib cage on static and dynamic responses in normal and scoliotic spines was investigated. Four spinal fnite element (FE) models (T1–S), representing a normal spine with rib cage (N1), normal spine without rib cage (N2), a scoliotic spine with rib cage (S1) and a scoliotic spine without rib cage (S2), were established based on computed tomography (CT) images, and static, modal, and steady-state analyses were conducted. In S2, the Von Mises stress (VMS) was clearly decreased compared to S1 for four bending loadings. N2 and N1 showed a similar VMS to each other, and there was a signifcant increase in axial compression in N2 and S2 compared to N1 and S1, respectively. The U magnitude values of N2 and S2 were higher than in N1 and S1 for fve loadings, respectively. The resonant frequencies of N2 and S2 were lower than those in N1 and S1, respectively. In steady-state analysis, maximum amplitudes of vibration for N2 and S2 were signifcantly larger than N1 and S1, respectively. This study has revealed that the rib cage improves spinal stability in vibrating environments and contributes to stability in scoliotic spines under static and dynamic loadings. Scoliosis, a three-dimensional deformity, prevents healthy development.
    [Show full text]
  • The Feasibility of Rib Grafts in Long Span Mandibular Defects Reconstruction: a Long Term Follow Up
    Journal of Cranio-Maxillo-Facial Surgery 47 (2019) 15e22 Contents lists available at ScienceDirect Journal of Cranio-Maxillo-Facial Surgery journal homepage: www.jcmfs.com The feasibility of rib grafts in long span mandibular defects reconstruction: A long term follow up * Ahmed M.A. Habib , Shady A. Hassan Department of Maxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Egypt article info abstract Article history: Aims: To evaluate the efficiency of reconstruction of long span mandibular defects using split rib bundle Paper received 10 June 2018 bone graft. Accepted 2 November 2018 Materials and methods: Six hundred patients with long span mandibular defects (more than 6 cm long), Available online 10 November 2018 following resection of aggressive mandibular tumours, were reconstructed with split rib bundle bone graft technique. Immediate reconstruction was performed in all patients. A reconstruction plate was used to Keywords: support the graft. Two ribs were harvested from the right side of the chest, split into four halves and used to Reconstruction restore the continuity of the mandible. The inclusion criterion was post-surgical mandibular bony defects Mandible fi Split rib without soft tissue de ciency. Defects with a history of previous or need of future irradiation were excluded. Results: The appearance of the patients was accepted in 550 patients. Functional reconstruction was done in 320 patients by osseointegrated dental implants (after 15 months), and removable prosthesis in 150 patients. Infection was minor in 31 patients, moderate in 47 patients and severe in 42 patients. Partial loss of graft, up to 25%, due to moderate infection was reported.
    [Show full text]
  • Variations in Dimensions and Shape of Thoracic Cage with Aging: an Anatomical Review
    REVIEW ARTICLE Anatomy Journal of Africa, 2014; 3 (2): 346 – 355 VARIATIONS IN DIMENSIONS AND SHAPE OF THORACIC CAGE WITH AGING: AN ANATOMICAL REVIEW ALLWYN JOSHUA, LATHIKA SHETTY, VIDYASHAMBHAVA PARE Correspondence author: S.Allwyn Joshua, Department of Anatomy, KVG Medical College, Sullia- 574327 DK, Karnataka,India. Email: [email protected]. Phone number; 09986380713. Fax number – 08257233408 ABSTRACT The thoracic cage variations in dimensions and proportions are influenced by age, sex and race. The objective of the present review was to describe the age related changes occurring in thoracic wall and its influence on the pattern of respiration in infants, adult and elderly. We had systematically reviewed, compared and analysed many original and review articles related to aging changes in chest wall images and with the aid of radiological findings recorded in a span of four years. We have concluded that alterations in the geometric dimensions of thoracic wall, change in the pattern and mechanism of respiration are influenced not only due to change in the inclination of the rib, curvature of the vertebral column even the position of the sternum plays a pivotal role. Awareness of basic anatomical changes in thoracic wall and respiratory physiology with aging would help clinicians in better understanding, interpretation and to differentiate between normal aging and chest wall deformation. Key words: Thoracic wall; Respiration; Ribs; Sternum; vertebral column INTRODUCTION The thoracic skeleton is an osteocartilaginous cage movement to the volume displacement of the frame around the principal organs of respiration lungs was evaluated by (Agostoni et al,m 1965; and circulation. It is narrow above and broad Grimby et al., 1968; Loring, 1982) for various below, flattened antero-posteriorly and longer human body postures.
    [Show full text]
  • Retail Cuts of Beef BEEF Retail Cut Name Specie Primal Name Cookery Primal
    Revised June 14 Nebraska 4-H Meat Retail Cut Identification Codes Retail Cuts of Beef BEEF Retail Cut Name Specie Primal Name Cookery Primal Brisket Beef Brisket, Corned, Bnls B B 89 M Beef Brisket, Flat Half, Bnls B B 15 M Beef Brisket, Whole, Bnls B B 10 M Chuck Beef Chuck Arm Pot-Roast B C 03 M Beef Chuck Arm Pot-Roast, Bnls B C 04 M Beef Chuck Blade Roast B C 06 M Beef Chuck 7-Bone Pot-Roast B C 26 M Beef Chuck Eye Roast, Bnls B C 13 D/M Beef Chuck Eye Steak, Bnls B C 45 D Beef Chuck Mock Tender Roast B C 20 M Beef Chuck Mock Tender Steak B C 48 M Beef Chuck Petite Tender B C 21 D Beef Chuck Shoulder Pot Roast (Bnls) B C 29 D/M Beef Chuck Top Blade Steak (Flat Iron) B C 58 D Rib Beef Rib Roast B H 22 D Beef Rib Eye Steak, Lip-on B H 50 D Beef Rib Eye Roast, Bnls B H 13 D Beef Rib Eye Steak, Bnls B H 45 D Plate Beef Plate Short Ribs B G 28 M Beef Plate Skirt Steak, Bnls B G 54 D/M Loin Beef Loin Top Loin Steak B F 59 D Beef Loin Top Loin Steak, Bnls B F 60 D Beef Loin T-bone Steak B F 55 D Beef Loin Porterhouse Steak B F 49 D Beef Loin Tenderloin Steak B F 56 D Beef Loin Tenderloin Roast B F 34 D Beef Loin Top Sirloin Steak, Bnls B F 62 D Beef Loin Top Sirloin Cap Steak, Bnls B F 64 D Beef Loin Top Sirloin Steak, Bnls Cap Off B F 63 D Beef Loin Tri-Tip Roast B F 40 D Flank Beef Flank Steak B D 47 D/M Round Beef Round Steak B I 51 M Beef Round Steak, Bnls B I 52 M BEEF Retail Cut Name Specie Primal Name Cookery Primal Beef Bottom Round Rump Roast B I 09 D/M Beef Round Top Round Steak B I 61 D Beef Round Top Round Roast B I 39 D Beef
    [Show full text]
  • Respiratory Function of the Rib Cage Muscles
    Copyright @ERS Journals Ltd 1993 Eur Respir J, 1993, 6, 722-728 European Respiratory Journal Printed In UK • all rights reserved ISSN 0903 • 1936 REVIEW Respiratory function of the rib cage muscles J.N. Han, G. Gayan-Ramirez, A. Dekhuijzen, M. Decramer Respiratory function of the rib cage muscles. J.N. Han, G. Gayan-Ramirez, R. Respiratory Muscle Research Unit, Labo­ Dekhuijzen, M. Decramer. ©ERS Journals Ltd 1993. ratory of Pneumology, Respiratory ABSTRACT: Elevation of the ribs and expansion of the rib cage result from the Division, Katholieke Universiteit Leuven, co-ordinated action of the rib cage muscles. We wished to review the action and Belgium. interaction of the rib cage muscles during ventilation. Correspondence: M. Decramer The parasternal intercostal muscles appear to play a predominant role during Respiratory Division quiet breathing, both in humans and in anaesthetized dogs. In humans, the para­ University Hospital sternal intercostals act in concert with the scalene muscles to expand the upper rib Weligerveld 1 cage, and/or to prevent it from being drawn inward by the action of the diaphragm. B-3212 Pellenberg The external intercostal muscles are considered to be active mainly during inspira­ Leuven tion, and the internal intercostal muscles during expiration. Belgium The respiratory activity of the external intercostals is minimal during quiet breathing both in man and in dogs, but increases with increasing ventilation. In­ Keywords: Chest wall mechanics contractile properties spiratory activity in the external intercostals can be enhanced in anaesthetized ani­ rib cage muscles mals and humans by inspiratory mechanical loading and by col stimulation, rib displacement suggesting that the external intercostals may constitute a reserve system, that may be recruited when the desired expansion of the rib cage is increased.
    [Show full text]
  • General Production
    Carcass Identification General Production Systems Operator Cattle Pusher The following positions are classified in the General Production job Cheeker Chiseler description for the Cargill Beef Chuck Cap Dropper facility in Schuyler, Nebraska. Chuck Cap Trimmer Chuck Cut Down Chuck Dropper 1st Hangoff Chuck Dropper To Saw 2nd Hangoff Chuck Flat Stager 3 4 Exchange Chuck Flat Trimmer Abomasum Boxer Chuck Hanger Abomasum Flusher Chuck Short Rib Trimmer Abomasum Trim Wash Chuck Skinner Operator Abomasum With Knife Chuck Trimmer Aorta Trimmer Clear Necks Armpit & Shanks Trimmer Clip Tails/Captive Shackle Back Strap Trimmer Clod Trimmer Bagger Loose Meats Cod Bag & Tail Trimmer Belly Ripper Cod Bag & Trail Trimmer Blade Meat Product Checker Combo Dumper Blade Meat Trimmer Combo Maker Blade Mt 81 Defect Trimmer Bone Hearts Defect Trimmer Whizard Box Product Knife Box Reject Line Double Cut Hock Cutter Box Room Down Puller Opeartor/Flush Boxers Heads Brisket Dropper Down Puller Operator/Flush Brisket Stager Heads Brisket Trimmer Ear & Eyelid Remover Bung Bag & Tie Ear Tag Bagger Bung Dropper Export Product Technician Button Bones/Whizard Faceplate Trimmer Knife-strips Feather Bone Popper Carcass Id Apply Tag Finger Meat Bagger Finger Meat Trimmer/Sizer Hotbox Unloader Flank Steak Trimmer Hs Hock Cutter Flap Meat Trim Inedible Ruffle Fat Flesher Inside Neck Trim Whizard Flume Opeator Knife Front Feet Hock Cutter Inside Skirt Trimmer Gn Flat Trim Inventory Control Grade Label Bag Person Kidney Popper Grade Stamper Knuckle Puller Ground Beef Boxer
    [Show full text]
  • Thoracic Outlet Syndrome Caused by Pseudoarticulation of a Cervical Rib with the Scalene Tubercle of the First
    VASCULAR IMAGES Thoracic outlet syndrome caused by pseudoarticulation of a cervical rib with the scalene tubercle of the first rib Anita Balakrishnan, MRCS, PhD,a Philip Coates, FRCR,b and Christopher A. Parry, FRCS,a Plymouth, United Kingdom A healthy 20-year-old man presented with a bony lump above the left clavicle associated with upper limb pain, numbness, and tingling. Examination in the surrender position elicited left hand weakness and pain with loss of the radial pulse. The patient had paresthesia of the ulnar border of the left hand but no interossei wasting. A lateral neck radiograph identified an unusual bony contour anteriorly at C7/T1 suggesting a cervical rib (A). Duplex ultrasound scan showed widely patent left axillary and subclavian arteries with the arm adducted but severe compression of the subclavian artery on abducting the arm to 90°. A subsequent computed tomography angiogram confirmed bilateral cervical ribs; the left artic- ulating with an extended left transverse process of the seventh cervical vertebra, extending inferiorly to fuse with the first rib (B and C/Cover). The left subclavian artery passed immediately superior to this bony extension whereas the left vertebral artery lay immediately anterior to the origin of the cervical rib at C7. The right cervical rib was much smaller and not in proximity to the vessels. Intraoperatively, the left cervical rib was found to extend from the C7 transverse process to form a true joint with a hypertrophied scalene tubercle on the first rib; both the cervical rib and hypertrophied scalene tubercle were excised via the supraclavicular incision (D).
    [Show full text]