CURRENTCURRENT STATUSSTATUS ANDAND FUTUREFUTURE PLANPLAN OFOF FASTFAST REACTORREACTOR DEVELOPMENTDEVELOPMENT ININ INDIAINDIA

BaldevRajBaldevRaj DistinguishedScientist&Director

IndiraGandhiCentreforAtomicResearch

Oarai R&D Centre, Japan Atomic Energy Agency May 21, 2009 Motivation for More & Clean Energy -> Better quality of life

IncreaseinDemand Costeffectiveness

EnergyChallenges

ReducedEmissions Publicand Politicalacceptance

Energy defines the index of quality of life. But has to meet many challenges

22

THREE STAGE NUCLEAR POWER PROGRAM

95 89 90 84 86 84 90 85 79 85 (%80 ) -----> 75 82 72 80 75 69 75 70 Capacity Factor / 71 65 67 60 A vailability 60 55

50 1995-96 1996-97 1997-98 1998-99 1999-00 2000-0102-03 2001-02 20

Stage – IPHWRs Stage II Stage – IIIandBeyond FastBreederReactors FastBreederReactors BasedReactors • 15 Operating • 3 Underconstruction • 40MWthFBTR Operating • 30kWthKAMINI Operating • Severalothersplanned TechnologyObjectives realised • 300MWeAHWR Under • Constructionplanned RegulatoryExamination for700 MWe units • Gestationperiod • 500MWePFBR • POWERPOTENTIAL= being reduced underconstruction 155,000 GWe y ≅≅≅ • POWERPOTENTIAL • AvailabilityofADS 10,000MWe • POWERPOTENTIAL:Minimum canenableearly LWRs 530 GWe introductionofThorium • 2BWRsOperating • ParticipationinITER • 2VVERsunder towardsdevelopmentof construction fusiontechnology

Kalpakkam – UniqueNuclearSiteintheWorldhousingallThreeStages&Clo sedFuelCycleFacilities

IGCAR – MissionOrientedCentreforDevelopmentofScienceBasedTechno logyforFBR Indian energy resources and Nuclear Contribution ADVANTAGESOFFASTBREEDERREACTORSADVANTAGESOFFASTBREEDERREACTORS

EnergyPotential 1kgofcoal3kWh 1kgofoil4kWh 1kgU(natural)50,000kWh (ifreprocessed)3,500,000kWh

No.ofneutronsgeneratedfromfissionperneutron absorbedinthefissilematerial

Reactor Nat.U U235 U233 Pu239 (BTCE) Thermal 1.34 2.04 2.26 2.06

Fast <1 2.20 2.35 2.75

Ø Effectivelyutilizesthenaturaluranium(nearly80%) Ø Consumesthedepletedfueldischargedfromthermalreactors Ø Breedsmorefissilematerial(plutonium)thanconsumed

With a large number of thermal reactors operating and planned worldwide, the limited available natural uranium would be consumed very fast. On the other hand, with FBRs,energysupplycanbeensuredoverafewcenturies. AdvantagesofFBRAdvantagesofFBR –– contdcontd ……

FBRisimportantfromwastemanagementand environmentalconsiderations. Burnsactinidesandlonglivedradioactivefission products.GenerationofpreciousmetalssuchasCs,Pd etcwhichhavemanyimportantsocietalapplicationsand canbeextractedfromitswaste(wealthfromwaste).

Current trends in oil prices and available uranium resourcesbringFBRwithclosedfuelcycletofocus WORLDFASTREACTORSCENARIOWORLDFASTREACTORSCENARIO Theinterest inFBRhasbeenrenewedinternationally

• China, France, , Japan, Korea, Russia, and USA have interestinFRs • France, Japan, and USA have signed an MOU to cooperate under the Global Nuclear Energy (GNEP) Partnership to demonstratethefeasibility of the sodiumcooled fast reactor technologytoaccomplishsustainabilityrequirements • International collaborative programmes on innovative reactorssuchasGenerationIV&INPROarefocusingonFRs • 390reactoryearsoperatingexperienceincludingtestreactors

FBRprovidesevergrowingchallenges&opportunitiesin scienceandtechnology FBRPROGRAMMEININDIAFBRPROGRAMMEININDIA

Ø IndiastartedFBRprogrammewiththeconstructionofFBTR Ø FBTR is a 40 MWt (13.5 MWe) loop type reactor. The design is same as that of RapsodieFortissimo except for incorporation of SGandTG(agreementsignedwithCEA,Francein1969). Ø FBTRisinoperationsince1985. Ø 500 MWe Fast Breeder Reactor Project (PFBR) through Indigenousdesignandconstruction Ø Govt.grantedfinancialsanctionforconstructioninSep2003. Ø ConstructionofPFBRhasbeenundertakenbyBHAVINI. Ø PFBRwillbecommissionedby2010. Ø BeyondPFBR:4unitsof500MWe FBR(twinunitconcept)similar toPFBRwithimprovedeconomyandenhancedsafetyby2020. Ø Subsequentreactorswouldbe1000MWe unitswithmetallicfuel l

f

u n

o

f

o

s i s

t

r

s

a

a

e

r

e

c

e

y

c

p

u

0

o

s

2 inINDIA Backboneof regulatoryperception

r

o f

e l

d a r n

a s Credible C

fuelcycle e m

FastBreederTestReactor c FastBreederTestReactor

confidencein u r

h u

o s

e r y g D lo o & n R h , c E te A D d g e n s s o

1250MWt,500MWe,PoolType,UO2PuO2 a b w m e ie a c v s n e m s e e s n ri i R i o t c r g ti s S e r u • e e tu P n i d • y t In S s • In d n a

l na io at er p

C o l e , R u e f m U B e F X m e O ra d M g i o W w ith r ld w p C or D M ce & u w ce n R e y n 5 n ie d iv P r o .

r ie e se s ti 0 r n a , 8 e p u 3 3 p x c te id x e o x l e • e f e a 1 h f g v c p • i o in d ,

R y n t 0 lv a y • 3 vo g t n in • i st W APPROACHTOBIGLEAPINFBRPROGRAMME

p APPROACHTOBIGLEAPINFBRPROGRAMME • te

M

o •

o

0

4 L PFBR REACTORASSEMBLY

01 MAIN VESSEL

02 CORE SUPPORT STRUCTURE

03 CORE CATCHER

04 GRID PLATE

05 CORE

06 INNER VESSEL

07 ROOF SLAB

08 LARGE ROTATABLE PLUG

09 SMALL ROTATABLE PLUG

10 CONTROL PLUG

11 CSRDM / DSRDM

12 TRANSFER ARM

13 IHX

14 PRIMARY SODIUM PUMP

15 SAFETY VESSEL

16 REACTOR VAULT PFBR SECONDARYSODIUMMAINSYSTEM

Number of sodium loops : 2 Primary Pumps : 2 Nos. Secondary Pumps : 2 Nos. IHX : 4 Nos. SG Modules : 8 Nos. Turbo-Generator : 1 No. CHALLENGESINSCIENCEANDTECHNOLOGYOFFBR

Science Engineering Technology

• Metalsandtheirperformance • Designforcomponentsat • Manufactureoflarge underhightemperature, hightemp&longlife dimensionedweldedthin sodium,irradiation • Designofmechanisms shellstructuresmadeof environmentsoverthelong operatinginsodiumand austeniticstainlesssteel reactorlife argoncovergasspace petalswithclosetolerances • Developmentofnonmetallic • DesigntoaccommodateNa (~thickness)eg.Main& materialsoperatingathigh leak&Nawaterreactions safetyvessels,inner temperaturesandradiation • Seismicdesignof vessel,thermalbaffles,etc environments(specialhigh interconnectedbuildings, densityconcrete,elastomers, • Machiningoflarge componentsandthinshells ceramics,cables,etc) dimensionedandtall withfluidstructureinteraction slendercomponentswith • Sodiumchemistry,aerosol • ISI&repairofreactorinternals stringenttolerances(grid behaviour,sodiumfireand sodiumwaterreactions • Hightemp.fissionchamber plate,absorberroddrive andcomponenthandling • Specialsensorsforsodium systems) applications(detectionofwater leaksinsteamgenerator, • Fabricationoflargesize sodiumleaks,purity boxstructureswith measurements,leveldetectors) controlleddistortions • Thermalhydraulicsand • Hardfacingtechnology Structuralmechanics (turbulences,instabilities,gas • DevelopmentofInflatable entrainments,thermalstriping, sealsandlargesize stratifications,ratcheting,etc) bearings DESIGNOFCOREFORHIGHBURNUPDESIGNOFCOREFORHIGHBURNUP

DesignParametersforHighBurnup

• Increasingfissiongasplenum • Increasingthepelletdensity • Decreasingthesmeareddensity • Annularpelletconcept • Highperformancematerials(Highvoid swellingresistance,lowIrradiationcreepand improvedhightemperatureproperties POOLTHERMALHYDRAULICSPOOLTHERMALHYDRAULICS

IHX • Largetemperaturedifference(150K)existingin IHX

CP hotpoolleadstoriskofthermalstratification. CP • Stratificationcausessharpaxialgradientinthe adjoiningmetalwall. • Stratifiedlayersoscillatecausinghighcycle

fatigue Core Core • Mitigationofstratificationcallsfornovelthermal hydraulicdesignofhotpoolcomponent

• Duetolargepoolsurfaceareaandfree surfacevelocity,thereisriskofargon gasentrainmentwithinhot&coldpools. • Gasentrainmentcancausereactivity oscillationsincaseofbulkofargon bubbleenteringintothecore • GeneraldesignguidelinesistoMinimize theFreeSurfaceVelocitytoMitigateGas EntrainmentinHotPool THERMALSTRIPINGDESIGNTHERMALSTRIPINGDESIGN

Thermalstripinglimitsonstructuralwall

Thermalstripingvalues(CFD) SEISMICDESIGNSEISMICDESIGN

• Developmentofseismicdesigncriteria • Ensuringthereactorscramability • Analysisofnuclearislandconnectedbuildings • Investigationofpumpseizure (NICB)andalsoextractfloorresponsespectraat • Shaketabletestingforvalidationofanalysisand variouscomponentsupportlocations qualification • Seismicanalysisofreactorassemblytoderive • LongtermR&D:behaviourofbearing,nonlinearsloshing, seismicforces parametricinstabilityofthinshells,studyofcliffedge • Investigationofbucklingofthinshells effects,fluidstructureinteractionofperforatedstructures

NICBmodelforseismicanalysis FEMmodelofRA Bucklingmodesofthinvessels Droptimeofabsorberrods

ShaketabletestsonRAmodel Experiment TheoryTheory Experiment Theory ANALYSISOFSHOCK STRUCTUREINTERACTION:HIGHLIGHTS

MechanicalconsequencesofCoreDisruptiveAccident(CDA)

• Complicatedloadingscenariosonthevessel&top shieldhavebeenrealisticallysimulated • A series of ~65 tests have been conceived in a novelwayandsuccessfullycompletedat Terminal BallisticResearchLaboratory,Chandigarh overthe periodof4years • Sophisticated instrumentations were deployed to StructuralintegrityanalysisofPFBRRAunderCDA deriveextensivedataforinvestigations.

Demonstrationofstructuralintegritybytests ValidationofcomputercodeFUSTIN CHALLENGINGR&D:COMPONENTTESTING

 Seismictestingofreactor assembly  Simulationofcomplexthermal hydraulicsphenomenon  Prototypetestingofcomponents underactualenvironment(sodium &temperature)

Transfer Control & safety rod Diverse safety rod arm drive mechanism drive mechanism Components for sodium testing SODIUMFIREANDSODIUMLEAKCOLLECTIONTRAYS • Sodium leak in the sodium pipelines can causesodiumfirewhichisthecriticalissuein thesodiumcooledFBRdesign • Efficientleakdetectionsystems • Optimisation of sodium leak collection tray design towards minimising the effects of sodiumfire • Full Scale demonstration in SGTF (under operation) and Sodium Fire Test Facility (underconstruction)

DrainingofLeakedNaintoLCT

PerformanceTestingofLCT CFDsimulationofNadraining SteamGeneratorTestFacility NDE:CHALLENGESNDE:CHALLENGES

EddyCurrentImagingTechniqueforDetection Inspectionoffuelpinendplug ofVoidsinSodiumBondedMetallicFuelPins

ISI of bimetallic SPIDER ROBOT On Mockup Steam Generator Tube (SS & CS) weld Sheet

Inservice InspectionofMainVessel InServiceInspectionofstemgenerator Cover gas hydrogen meter Electrochemical in-sodium hydrogen meter SENSORSFORSODIUMAPPLICATION (DEVELOPEDATIGCAR)

Polymer electrolyte based Electrochemical in-sodium Eddy Current hydrogen sensor carbon meter Flow Meter Risk Oxygen Meter SpecialFeatures

Temp.range– uptp 450ºC

Resolution– from13ppb

Semiconductor oxide Sensitivity–ppbtopercentage based Compact hydrogen sensor Responsetime– from30s Sodium Ionisation Detector ELECTROCHEMICALHYDROGENMETER(ECHM)FORSODIUMCIRCUITS

Preamplifier

45 ECHM 38 housing 30 23 Metertesting 15 8 Calibration setup Calibration pot emf/mV 0 8 15 Sodium 0.1 0.2 0.3 0.4 loop 0.04 0.05 0.06 0.07 0.08 0.09 CH/ppm LaboratoryCalibration Display unit E=RT/2Fln (p (sample )/p (ref )) H 2H 2 1/2 pH2 (sodium) related [H] Na by Sievert’s Law (pH 2) = C H / k

PerformanceofECHMin FBTReastsodiumcircuit

ResponseofECHMin SteamGenerator TestFacility INTELLIGENTWELDING – ON LINEMONITORING&PROCESSCONTROL

DigitalWelding PowerSource

WeldingTorch IRCamera

BaseMetal WeldMetal

ThermalImagesofWeld ImageProcessing &Neurofuzzy basedControl System

• Viewsweldpoolfromarcside usinginfraredcamera – Providesadaptivecontrolfor weldbeadpenetration – Actsasseamtrackingdevice

• Thermalimageofweldpool&surroundingarea • Usedtocontrolweldingparameters&maintaincorrectweldbead penetration APPLICATIONOFRESULTSFROMBASICRESEARCHAPPLIEDTO HARDFACINGOFPFBRCOMPONENTS

800 Colmonoy 5 at 300 K Colmonoy 5 at 673 K 700 Colmonoy 5 at 823 K Stellite 6 at 300 K Stellite 6 at 673 K 600 Stellite 6 at 823 K

500

400

300

EstimatedVickershardness(HV,10kgf) 200 0 5 10 15 20 25 30 35 40 Timeofexposure(ageing)at823K(years) Predictedreductioninhardnesswithtime HardfacingofPFBRGridPlate NormalLoad:120N SlidingVelocity:0.25m/s • AgeingstudiesonNibasehardfacingalloys

NearInterface(0.150.2mm) Singlelayer confirmednosignificantdeteriorationinhardness Doublelayer

0.016 withhightemperatureexposure . •Hardnessmeasurement,microstructural 0.012

→ examinationandweartestsconfirmedsignificant Effectofdilution reductioninpropertiesbydilutionfrombasemetal. 0.008 onwearlossof Hence,aminimumdepositthicknessof2mmand thedeposit PlasmaTransferredArcprocesswere WeightLoss(g) 0.004 recommended .

0 •Hardfacingof6mdiametergridplatehasbeen 0 450 900 1350 1800 carriedoutwithoutcrackingby MechanizedPlasma Slidingdistance(m)→ TransferredArcProcess Hardfacing:ATechnologicalChallengeinReactorComponentFabrication POST – IRRADIATIONEXAMINATIONFACILITY(PIE) EstablishmentofLeakTightConcrete HotCells,LeadCells,Gloveboxes

Installationof RemoteHandlingand ViewingDevices  MSM,PowerManipulators,Incell Cranes HotcellFacility  Periscopes,ShieldingWindows,CCD RemoteExamination Facilities AlphaTightFuelTransferSystems InertGasVentilationSystem IncellEquipments&Gadgets  LaserBasedDismantlingMachine, Metrology,NonDestructiveTechniques, MetrologicalEquipment TensileTesting &LaserDismantling Machine  NeutronRadiography,Metallography, FissionGasextraction,Mechanical Testing , ElectronMicroscopy

Comprehensive Facilities Established for assessing the Irradiation Performance of FBTR Fuel RemoteMetallography FissionGasExtraction LIFEEXTENSIONOFFBTRFUELTHROUGHPIE

(U 0.3 ,Pu 0.7 )Cfuel+SS316Cladding&Wrapper  CompleteclosureofFuelCladgapwith increasingburnup

 LowFissiongasrelease(~15%) and Plenumpressure(~2MPa)inCarbidefuelpins 25GWd/t 50GWd/t  ProgressiveincreaseintheDimensions ofWrapper&Cladding

 SufficientStrength&DuctilityofCladding& Wrapper(at80dpa)

 NoFuelpin/WrapperFailureintheReactor 100GWd/t 155GWd/t StrengthChangesofSS316Cladding withdpa 11.5% (485C) FBTR fuel burnup enhanced through 3.5% ∆V/V% (430C) PIE and Thermo- Mechanical analysis from 25 GWd/t to 155

VoidSwellingofSS316Clad&Wrapper GWd/t DigitalInstrumentation&Control ReactorSimulatorforPFBR

• About15000processsignalsare • Designbasiseventsaremodeledtoprovide processedbydistributeddigitalcontrol comprehensivetrainingtoplantoperators system,developedinhousewithabout • IntegratedmodelingofI&Csystemsfor 50000linesofcode effectivesimulationofplantoperation • Digitaldesignanddevelopmenthas • DedicatedsimulatorforFuelHandling beenverified&testedw.r.t software& Systemsandoperation hardware • 3Danimatedhumanmachineinterface • PulseCodedSafetyLogicSystemhas systemhasbeendeveloped beendevelopedtoensurefailsafe • Realtimesimulatorforthefasttransient operationoftheplant events underdevelopment Components manufactured under technology development CONSTRUCTIONOFPFBR:STATUS

 Formtolerance specifiedfor vessels:<thk  Achieved:<½ thk  Insignificantweld

repair Mainvessel SG

Ø TechnologywithstrongR&Dbackup Ø Manufacturingtechnology developmentcompletedpriortostart ofproject Ø CapabilityofIndianindustriesto manufacturehightechnologynuclear componentsdemonstrated(main vessel,safetyvessel,steam generator,gridplate) PFBRwillbecommissionedbySept2010 REPROCESSINGOFFASTBREEDERRECTORHIGHBURNUPFUELS

CentrifugalExtractor

SinglePinChopper Modelling andSimulation

DesignofProcessFlowSheet

CORAL facility demonstrated the successful reprocessing of mixed carbide fuelswith high Pu with a burn up of 100,000 MWd/t forthefirsttimeintheworld OnlineMonitoring

16StageBank

CORALFacility MATURITY MAPPING

Repeatability Manufacture Scale up Design Performance Integration Production evaluation Implementation Analysis Modeling Experiment Technology Integration Review Code development Pilot plant Simulation Simulation Experiment Model Simulation & Equipment Data Modeling Software Analysis Continuum Process Design criteria Synthesis Hardware Criteria Micro

Science & Technology & Science mechanics Principles Data generation Sensor Philosophy Chemistry

Reactor Design Material I & C Safety Reprocessing Physics Domains

• JudiciousMixingofstepbystepandconcurrent • Interwoven • Multi&Interdisciplinary • Matrixmanagement Marching from Science to Technology A Case Study : PFBR Fuel Subassembly

Potential :10 8 kWh Withint.breeding:1.5.10 8 kWh Design Interfacing with Extracted:10 7 kWh Reactor Physics, Powerdensity:416W/cc Technology Limitedbystructuralmaterials Material Technology, • Clad2.6m&0.4mmthk Fuel cycle technology and • Tighttolerances Fine manufacturing technology SurfaceFinish • Wrapper 3.6mlong • Verticality 3mm • Annularpellet

Evolution StructuralMechanics • FuelpinIntegrity Safety • CoreMechanics • Noveldesignfeaturesanddesign • CoreSeismic provisions(RadialCoolantentry& • FlowInducedVibration multipleholes,BlockageAdaptor, • EndPlugWeld HelicalspacerWire)topreventflow blockages • ImpactAnalysis Science • Simulationofflowblockage& propagationandtheireffects • ReactorPhysics • MaterialCharacterization • Benchmarkexperiments ThermalHydraulics (Physical&Chemical) • Optimumflowzoning • FuelChemistry • Maximise foolant mixing (Thermodynamics&Kinetics) • Flowdistribution • Radiationdamage • Flowcharacterization • Modeling&Experimental • TemperatureMapping Verification • Hotspotanalysis • PostIrradiationExamination Totality of Fuel Design & Interfaces to Make the System Robust Design and Technological Challenges of Typical PFBR Components and Structures Grid Plate Steam Generator NICB

 Box type structure made of top  Tall component of about 25 m  Nuclear island consisting of and bottom plates connected by height and has more than 500 eight interconnected buildings intermediate shell and 1758 tubes, made of modified 9 Cr 1 resting on 6 m thick common sleevesallwithSS316LN Mosteel. base raft, is novel innovative  Hard facing with colmonoy  By adopting inbore welding, civil design concept introduced deposits which is its largest tubetotube sheet joint are firsttimeinanFBR industrialutilization carried out with stringent  Designed to achieve compact  Tight machining and assembly acceptance standards on layoutgivingdueconsiderations tolerances (<0.2 mm horizontality dimensionsandweldquality formaintenance,safety. and0.5mmverticality)  The maximum concavity  Adoption of many innovative  Assembly of a large number of achieved is practically zero and construction methodologies to parts(~14900) maximum weld thinning is less proceed civil construction and thanthepermissible<0.2mm mechanical component erection  Top and bottom plates are concurrently perforatedbyremoval of about 80  Welding technology has been % of the material and called for matured based on elaborate  Seismicdesignofnuclearisland innovativehandlingtechniques . technology development calls most challenging and exercisesandmanytrials. advancedanalysistechniques  Concretemass 3.8lakhs tonnes FastBreederReactorProject

Stateofart concepts Incorporationof Worldwide FBRexperiences

P latfo dem rmf ons or i trat nter iono natio f asp nal irati ons

Convergence Synergismwith Academic,R&D Consolidation& institutionsand Validation Industries Cost comparison of Fast Reactors CAPITALCOSTREDUCTIONMEANSFOR FUTUREFBRS

4x500 MWe FBR

 Twin Unit Concept with common fuel building and spent fuel storage  Reduction in main vessel diameter Cost Reduction due to Investment in R&D  In-Vessel purification system  Reduction in height of each components supported on top shield and entire reactor assembly by improved design of top shield  Use of cost optimised materials of construction  Enhanced burn-up to reduce fuel cycle cost 1000 MWe FBRs  Reduced construction time (7 y to 5 y) Metallic fuel  Enhanced design life 40 y to 60 y Ferritic steels for core  Enhanced capacity factor (75 to 85 %) UEC competitive to that of fossil power plants  UEC is comparable to that of fossil power plants VisionStatement:IGCAR&BHAVINI

Tobeagloballeaderindesign,constructionand operationofsodiumcooledfastbreederreactors andassociatedfuelcyclefacilities

250GWe (2052)

2.5GWe (2020)

0.5GWe (2010) E

A

D R

-

S e

m

e

C e c

h

C n

c

a

s

d

i

G –

u

n g

o

0 t

i

t U 0 n

i

r a

5 r

r o

t

e j

-

s a l

0 i a

m 0 g n

e

4 ye r e

R

y t r x Sum or E f ve ts e ec ts oj n Pr ude st IGCAR MoU with with MoU LINKAGES INSTITUTE RESEARCH ACADEMIA Colleges and and Colleges faculty andstudents faculty for PG and PhD - PhD and PG for Research support support Research

Research institutes Research

W

R

o

e

h

r

c f

k

r

r

a

s e

e h

s

s

h

o

e

e p

R

r

s

d

c e

o r

o u

s

r

n

s

o

e p s S GenericChallengestoAttract BrightMindstoNuclearEngineering • GasEntrainmentinLiquids • ImprovedSafetywithLiquidMetal • MaterialModelingwithMicromechanicsBasedApproach • ComplexThermalHydraulicsandTwoPhaseFlow • CFDandPowerPlantDynamics • SeismicIntegrityAssessment • AdvancedCivilDesignwithInterconnectedStructures • PredictionofAgeingandDamageMechanismsforLong andReliablePlantLifewithNDETechniques FuelCycle  Bulkseparationprocessesatextremelylowconcentrations  Singlemoleculespectroscopy  Microstructuretailoringtoachievenearzerocorrosionrate  DesignwithEnhancedConceptualisation andModelling  Modelling toenablelonglifesystems Development of FBR and RESEARCH associated Fuel Cycle INSTITUTE Technologies

•Construction and commissioning of FBR plant IGCAR •Construction and operation of fast reactor TODAY fuel reprocessing plant UNIVERSITY INDUSTRY •Development of enriched boron production facility •Widespread Mission Centre with interactions with University Status industry with co- responsibility with BHAVINI GlobalImbalances

Consumption Per Capita - 2007 : Tonnes Oil Equivalent

Scarce Soil Fertility

World needs to agree and implement (with time frame) adequate and robust processes for equity before it becomes root cause of destruction of this beautiful and unique planet.

n l s io a e t n t a o u r i t t ti o a b s n n la i l g l o in a c d n a a io g e t e l a h n M t r i e w t n i &

s e c r , d u g , n o )

g n a s i g t n o e i g n r c r i t t a n u i n r t a e t r a r v t o i c a u t t m ( n n n o

u a e m H v m

e

n

l

i

e

d

r

p

l

i

r

h

h

o

g s

i

r

W

h

e

f d

d

o n a

a e

y l

a g l

i

a o

d

l y b

RobustPFBR n o g

I o

s l o n

l

 h

h

o G g

c n u

e h

, o

t

r c

e

e

h

c a

t t

n

k g

g e

a

i FBTRlifeextensionfornext20years

e

n

e i c

r

s

g Realising FastReactorFuelCycleFacility

m

Highperformancefuelcycletechnologies b 

SignificantProgresstowardsrealisation of

Metalfueledreactor&associatedfuelcycle

n

c

i

c e



i

l 

s

l

f improvedeconomy(UECRs.2.00)andenhancedsafety Designanddevelopmentfor500MWe FBRs with



i

a

a t

B h n



c e

i

r

c

o

s f

h

t

d i

y

n

r

w

t

a

,

y

s

a

h

i g u

r c

d

r m

e

n

a e

I n

e

d

y

CHALLENGES,APPROACHESANDTARGETS s

CHALLENGES,APPROACHESANDTARGETS a

S

e c

d R

A

e

c

n

a

h

n E A developed civilization scenario