UAL-110 the Estonian Straits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Currents and Waves in the Northern Gulf of Riga
doi:10.5697/oc.54-3.421 Currents and waves OCEANOLOGIA, 54 (3), 2012. in the northern Gulf of pp. 421–447. C Copyright by Riga: measurement and Polish Academy of Sciences, * Institute of Oceanology, long-term hindcast 2012. KEYWORDS Hydrodynamic modelling Water exchange Wave hindcast Wind climate RDCP Baltic Sea Ulo¨ Suursaar⋆ Tiit Kullas Robert Aps Estonian Marine Institute, University of Tartu, M¨aealuse 14, EE–12618 Tallinn, Estonia; e-mail: [email protected] ⋆corresponding author Received 27 February 2012, revised 19 April 2012, accepted 30 April 2012. Abstract Based on measurements of waves and currents obtained for a period of 302 days with a bottom-mounted RDCP (Recording Doppler Current Profiler) at two differently exposed locations, a model for significant wave height was calibrated separately for those locations; in addition, the Gulf of Riga-V¨ainameri 2D model was validated, and the hydrodynamic conditions were studied. Using wind forcing data from the Kihnu meteorological station, a set of current, water exchange and wave hindcasts were obtained for the period 1966–2011. Current patterns in the Gulf and in the straits were wind-dependent with characteristic wind switch directions. The Matsi coast was prone to upwelling in persistent northerly wind conditions. During the * The study was supported by the Estonian target financed project 0104s08, the Estonian Science Foundation grant No 8980 and by the EstKliima project of the European Regional Fund programme No 3.2.0802.11-0043. The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/ 422 U.¨ Suursaar, T. Kullas, R. -
The Baltic Republics
FINNISH DEFENCE STUDIES THE BALTIC REPUBLICS A Strategic Survey Erkki Nordberg National Defence College Helsinki 1994 Finnish Defence Studies is published under the auspices of the National Defence College, and the contributions reflect the fields of research and teaching of the College. Finnish Defence Studies will occasionally feature documentation on Finnish Security Policy. Views expressed are those of the authors and do not necessarily imply endorsement by the National Defence College. Editor: Kalevi Ruhala Editorial Assistant: Matti Hongisto Editorial Board: Chairman Prof. Mikko Viitasalo, National Defence College Dr. Pauli Järvenpää, Ministry of Defence Col. Antti Numminen, General Headquarters Dr., Lt.Col. (ret.) Pekka Visuri, Finnish Institute of International Affairs Dr. Matti Vuorio, Scientific Committee for National Defence Published by NATIONAL DEFENCE COLLEGE P.O. Box 266 FIN - 00171 Helsinki FINLAND FINNISH DEFENCE STUDIES 6 THE BALTIC REPUBLICS A Strategic Survey Erkki Nordberg National Defence College Helsinki 1992 ISBN 951-25-0709-9 ISSN 0788-5571 © Copyright 1994: National Defence College All rights reserved Painatuskeskus Oy Pasilan pikapaino Helsinki 1994 Preface Until the end of the First World War, the Baltic region was understood as a geographical area comprising the coastal strip of the Baltic Sea from the Gulf of Danzig to the Gulf of Finland. In the years between the two World Wars the concept became more political in nature: after Estonia, Latvia and Lithuania obtained their independence in 1918 the region gradually became understood as the geographical entity made up of these three republics. Although the Baltic region is geographically fairly homogeneous, each of the newly restored republics possesses unique geographical and strategic features. -
List of Prime Ministers of Estonia
SNo Name Took office Left office Political party 1 Konstantin Päts 24-02 1918 26-11 1918 Rural League 2 Konstantin Päts 26-11 1918 08-05 1919 Rural League 3 Otto August Strandman 08-05 1919 18-11 1919 Estonian Labour Party 4 Jaan Tõnisson 18-11 1919 28-07 1920 Estonian People's Party 5 Ado Birk 28-07 1920 30-07 1920 Estonian People's Party 6 Jaan Tõnisson 30-07 1920 26-10 1920 Estonian People's Party 7 Ants Piip 26-10 1920 25-01 1921 Estonian Labour Party 8 Konstantin Päts 25-01 1921 21-11 1922 Farmers' Assemblies 9 Juhan Kukk 21-11 1922 02-08 1923 Estonian Labour Party 10 Konstantin Päts 02-08 1923 26-03 1924 Farmers' Assemblies 11 Friedrich Karl Akel 26-03 1924 16-12 1924 Christian People's Party 12 Jüri Jaakson 16-12 1924 15-12 1925 Estonian People's Party 13 Jaan Teemant 15-12 1925 23-07 1926 Farmers' Assemblies 14 Jaan Teemant 23-07 1926 04-03 1927 Farmers' Assemblies 15 Jaan Teemant 04-03 1927 09-12 1927 Farmers' Assemblies 16 Jaan Tõnisson 09-12 1927 04-121928 Estonian People's Party 17 August Rei 04-121928 09-07 1929 Estonian Socialist Workers' Party 18 Otto August Strandman 09-07 1929 12-02 1931 Estonian Labour Party 19 Konstantin Päts 12-02 1931 19-02 1932 Farmers' Assemblies 20 Jaan Teemant 19-02 1932 19-07 1932 Farmers' Assemblies 21 Karl August Einbund 19-07 1932 01-11 1932 Union of Settlers and Smallholders 22 Konstantin Päts 01-11 1932 18-05 1933 Union of Settlers and Smallholders 23 Jaan Tõnisson 18-05 1933 21-10 1933 National Centre Party 24 Konstantin Päts 21-10 1933 24-01 1934 Non-party 25 Konstantin Päts 24-01 1934 -
Cycling the Baltic States Saaremaa Virtsu ESTONIA Three Baltic Capitals, Curonian Spit & Saaremaa Island a Kuressaare USSIA R
GUIDED Lithuania – Latvia – Estonia Tallinn Cycling the Baltic States Saaremaa Virtsu ESTONIA Three Baltic capitals, Curonian Spit & Saaremaa Island a Kuressaare USSIA R Baltic Se Jūrmala Sigulda Rīga LATVIA Palanga Hill of Crosses Klaipėda LITHUANIA Ventė Nida Vilnius Kaunas BELARUS RUSSIA Trakai POLAND Tour distances: cycling ~310 km, by coach ~1340 km, by boat ~62 km 11 days / 10 nights TOUR INFORMATION 11 days guided group cycling tour from Vilnius to Tallinn (Code G1) Cycling grade: The Baltic coast and National Parks of Lithuania, Latvia and Estonia explored on highly scenic routes, We rate this trip Easygoing. Daily biking routes mainly on low traffic roads and cycle paths range including the three capital cities – Vilnius, Riga and Tallinn – with their old towns designated by UNESCO from 25 to 60 km (15-37 miles each day). The as the World Heritage Sites; and featuring the previously-closed Curonian Spit and beautiful Estonian terrain is varied and rolling with some gradual island. Travel from Lithuania in the south, through Latvia and on to Estonia in the north, enjoy a great hills on some riding days (some steep ups and variety of towns, villages and landscapes, and get an excellent feel for the different characters of these downs in the Gauja River valley) and dead flat most of the tour. Our walking in the capital towns distinctive countries. is along cobbled streets. Arrival & departure information /Transfers Day 1: Arrive in Vilnius grey herons and cormorants, visit the to Riga. (Cycle ~40 km, bus ~100 km). Airports: Vilnius / Kaunas / Tallinn Welcome meeting at the hotel with Hill of Witches. -
Gulf of Riga (Latvia)
EUROSION Case Study GULF OF RIGA (LATVIA) Contact: Ramunas POVILANSKAS 31 EUCC Baltic Office Tel: +37 (0)6 312739 or +37 (0)6 398834 e-mail: [email protected] 1 EUROSION Case Study 1. GENERAL DESCRIPTION OF THE AREA The length of the Latvian coastline along the Baltic proper and the Gulf of Riga is 496 km. Circa 123 km of the coastline is affected by erosion. The case area ‘Gulf of Riga’ focuses on coastal development within the Riga metropolitan area, which includes the coastal zone of two urban municipalities (pilsetas) – Riga and Jurmala (Figure 1). Riga is the capital city of Latvia. It is located along the lower stream and the mouth of the Daugava river. Its several districts (Bulli, Daugavgriva, Bolderaja, Vecdaugava, Mangali and Vecaki) lie in the deltas of Daugava and Lielupe rivers and on the Gulf of Riga coast. Jurmala municipality is adjacent to Riga from the west. It stretches ca. 30 km along the Gulf of Riga. It is the largest Latvian and Eastern Baltic seaside resort. 1.1 Physical process level 1.1.1 Classification According to the coastal typology adopted for the EUROSION project, the case study area can be described as: 3b. Wave-dominated sediment. Plains. Microtidal river delta. Within this major coastal type several coastal formations and habitats occur, including the river delta and sandy beaches with bare and vegetated sand dunes. Fig. 1: Location of the case study area. 1.1.2 Geology Recent geological history of the case area since the end of the latest Ice Age (ca. -
Baltic Sea): a Comparative Study with Different Modelling Scenarios
ICES CM 2009/G:02 Not to be cited without prior reference to the author Developments in the shallow coastal ecosystem of the Väike Strait (Baltic Sea): a comparative study with different modelling scenarios Ülo Suursaar, Robert Aps, Tiit Kullas, Georg Martin, and Mikk Otsmann Abstract The Väike Strait in the West Estonian Archipelago has been closed by a 3 km-long road dam since 1896, forming two separate bays. Conditions in the northern part are mainly governed by the more saline Baltic Proper; in the S-part relatively nutrient-rich Gulf of Riga waters prevail. In recent decades, ecological conditions have been deteriorating in the area and acceleration of accumulation and eutrophication has been observed. Reproduction areas of whitefish and herring have been disturbed. According to widespread opinion, as no water exchange occurs through the strait, the existence of the dam is the reason for those adverse changes. Therefore, a question of constructing some bridged openings has risen several times in the past. The aims of the study are to analyse the ongoing changes in the area, and to decide whether re-opening of the strait may help to restore the past situation. The study is based on monitoring and special measurements data in the area. The possible influence of openings were analysed using high-resolution 2D hydrodynamic modelling. Changes in renewal times of water masses were calculated and matter fluxes were studied. The results suggested that most of the past changes have probably occurred due to natural and of larger scale causes, such as isostatic land uplift, regional increase in water temperature, sedimentation and overall eutrophication of the sea. -
CR20 Cover 0529.Cdr
Sterr, Maack & Schultz (eds.): Development Concept for the Territory of the Baltic Green Belt - A Synthesis Report of the INTERREG IVB Project Baltic Green Belt. Coastline Reports 20 (2012), ISSN 0928-2734, ISBN 978-3-939206-05-7 S. 77 - 87 Involving Stakeholders along the Baltic Green Belt of Latvia Erik Sachtleber1 & Andra Ratkeviča2 1Institute of Geography, Kiel University 2Dabas aizsardzības pārvalde, Latvia Abstract An essential part of nature protection is involving stakeholders by communicating the need and the benefits from conserving nature. This is very often not easy to handle, the communication with important stakeholders can be disrupted and communication with these stakeholders might malfunction. In these cases a neutral mediator can influence the process and atmosphere of communication in a way that most disruptions and barriers can be overcome. The Slitere National Park is taken as an example for the processes of communication in nature protection and the impact of a neutral stakeholder in a complicated communication regime. This paper analyses the process of communication, which circumstances influenced this process, the history of the area and its stakeholders. As a result, general guidelines for strategic communication with stakeholders in nature protection are given. 1 Introduction An important part of nature conservation is to reduce the pressure of mankind on nature, for example by reducing the negative effects of stakeholders (organisations or key persons with an interest in the usage of land in a nature protection site), economic development and people’s lifestyle. This means, nature protection depends on involving stakeholders; forming alliances and agreements with those who might harm nature with their actions, although it is not their aim – for example in tourism. -
1 Reply to Referee #1 We Thank the Referee for Careful Reading The
Reply to Referee #1 We thank the referee for careful reading the manuscript, critical assessment of the analysis and useful and professional comments which helped to improve the paper. Please find below the detailed replies to all the questions. 1) Please clarify the study area. In L. 83-85 it is said that the study focusses on Gulf of Riga. A bit later (line 97) it said that “The study area – the shores of Latvia with a total length of about 500 km...” I think that neither is fully correct: Besides Gulf of Riga, also Latvian coasts in the Baltic Proper are considered. Secondly, large part of the discussed Gulf of Riga actually belongs to Estonia, including one station where the data come from (Pärnu). Also the paper title says that the study area is “Latvian waters”. I understand that it is difficult to conveniently introduce such details in the title. But the fact about Pärnu and Estonia should be stated possibly earlier in the paper. Currently it is hidden to far quarters of the manuscript. - Thank you for this observation. The study area involves all Latvian waters, but we also use data from one Estonian tide gauge. We state now this fact earlier in the paper. 2) L.110 “...may increase the average sea level in the entire Baltic Sea by almost 1 m for several months (Soomere and Pindsoo, 2016)”. I believe this 1 m is exaggerated for the entire Baltic. Soomere and Pindsoo (2016) said “...raise the average sea level by almost 1 m for a few weeks”. -
Baltica 18-1.P65
Baltica wwwgeolt/Baltica/balticahtm since 1961 BALTICA Volume 18 Number 1 June 2005 : 38-43 Long-term fluctuations in the volume of beach and foredune deposits along the coast of Latvia Jânis Lapinskis Lapinskis, J , 2005 Long-term fluctuations in the volume of beach and foredune deposits along the coast of Latvia Baltica, Vol 18 (1), 38-43 Vilnius ISSN 0067-3064 Abstract Assessed in the course of this study is the sediment budget of five coastal sections with a total length of 325 km, along the sea coast of Latvia These sites are important to community due to their value as a tourism and recreation areas, with possible loss of land and recreational suitability due to coastal erosion triggered by global climate change The changes in volume of the deposits forming the relief of the exposed part of the shore slope have been determined on the basis of 57 stationary levelling transects established in 1991, 1993 and 1994 Keywords Coastal evolution, coast of Latvia, storms, erosion, accretion, monitoring Jânis Lapinskis [janisl@lanet lv], University of Latvia, Faculty of Geography & Earth Sciences, Raiòa bul 19, Riga, Latvia, LV1586 Manuscript submitted 20 December 2004; accepted 12 April 2005 INTRODUCTION erosion and deposition The range of covered coastal environments with total length of 325 km includes high Similar to other coastal areas worldwide, the Latvian energy, sediment rich sections on the open coast of the coastal zone is presently subjected to notable changes, Baltic Sea and Irbe strait to relatively low energy, as presumably, -
The Leba Ridge–Riga–Pskov Fault Zone – a Major East European Craton Interior Dislocation Zone and Its Role in the Early Palaeozoic Development of the Platform Cover
Estonian Journal of Earth Sciences, 2019, 68, 4, 161–189 https://doi.org/10.3176/earth.2019.12 The Leba Ridge–Riga–Pskov Fault Zone – a major East European Craton interior dislocation zone and its role in the early Palaeozoic development of the platform cover Igor Tuuling Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected] Received 31 May 2019, accepted 23 July 2019, available online 24 October 2019 Abstract. Analysis of data published on basement faulting in the Baltic region makes it possible to distinguish the >700 km long East European Craton (EEC) interior fault zone extending from the Leba Ridge in the southern Baltic Sea across the Latvian cities of Liepaja and Riga to Pskov in Russia (LeRPFZ). The complex geometry and pattern of its faults, with different styles and flower structures, suggests that the LeRPFZ includes a significant horizontal component. Exceptionally high fault amplitudes with signs of pulsative activities reveal that the LeRPFZ has been acting as an early Palaeozoic tectonic hinge-line, accommodating bulk of the far-field stresses and dividing thus the NW EEC interior into NW and SW halves. The LeRPFZ has been playing a vital role in the evolution of the Baltic Ordovician–Silurian Basin, as a deep-facies protrusion of this basin (Livonian Tongue) extending into the remote NW EEC interior adheres to this fault zone. The Avalonia–Baltica collision record suggests that transpression with high shear stress, forcing the SE blocks in the LeRPFZ to move obliquely to the NE, reigned in the Ordovician. -
Estonia Today
80 YEARS OF JUNE DEPORTATIONS 1. 80 YEARS OF JUNE DEPORTATIONS In June 1941, within one week about 95 000 people from Estonia, Latvia, Lithuania, Poland, and Bessarabia (Moldova) were deported to the Soviet Union. This mass operation was carried out simultaneously in Lithuania, Latvia and Estonia – between 14 and 17 June 1941. The operation saw the arrest of all people who were still at liberty and considered a thorn in the side of the occupying forces, mainly members of the political, military and economic elite who had been instrumental in building the independence of their states. They were taken to prison camps where most of them were executed or perished within a year. Their family members, including elderly people and children, were arrested alongside them, and they were subsequently separated and deported to the “distant regions” of the Soviet Union with extremely harsh living conditions. To cover their tracks, the authorities also sent a certain number of criminals to the camps. Prologue • As a result of the Molotov-Ribbentrop Pact signed between Nazi Germany and the Soviet Union on 23 August 1939, the Soviet Union occupied Estonia in June 1940. • Preparations for the launch of communist terror in civil society were made already before the occupation. As elsewhere, its purpose was to suppress any possible resistance of the society from the very beginning and to instil fear in people to rule out any organised resistance movement in the future. • The decision to carry out this mass operation was made at the suggestion of Soviet State Security chiefs Lavrentiy Beria and Vsevolod Merkolov in Moscow on 16 May 1941. -
CR20 Cover 0529.Cdr
COASTLINE 2012-20 REPORTS Development Concept for the Territory of the Baltic Green Belt - A Synthesis Report of the INTERREG IVB Project Baltic Green Belt Editors: H. Sterr, S. Maack & M. Schultz The Coastal Union Germany EUCC-D Die Küsten Union Deutschland Coastline Reports 20 (2012) Development Concept for the Territory of the Baltic Green Belt A Synthesis Report of the INTERREG IVB Project Baltic Green Belt Editors: H. Sterr, S. Maack & M. Schultz Department of Geography, Christian-Albrechts-Universität zu Kiel Kiel, 2012 ISSN 0928-2734 ISBN 978-3-939206-05-7 This report was prepared as part of the INTERREG Project Baltic Green Belt funded by the INTERREG IVB Baltic Sea Region Programme. The publication was part-financed by the European Union (European Regional Development Fund) Imprint Cover pictures: Part of the Baltic Green Belt community near old watchtower of Saka Manor, Estonia (Photo: Henri Järv) Insets (top-down): The Sea holly is a protected dune plant on the terrestrial part of the Baltic Green Belt (Photo: Jan Barkowski) Learning with and from each other at the Baltic Green Belt (Photo: Stefanie Maack) Beds of blue mussel are an important component of the marine part of the Baltic Green Belt (Photo: Wolf Wichmann) The Baltic Green Belt at the Latvian Coast (Photo: Stefanie Maack) A Baltic Green Belt workcamp (Photo: Jurate Morkvenaite-Pauluskiene) Coastline Reports is published by: EUCC – Die Küsten Union Deutschland e.V. c/o Leibniz-Institut für Ostseeforschung Warnemünde Seestr. 15, 18119 Rostock, Germany [email protected] Coastline Reports are available online under http: //www.eucc-d.de/ and http://www.eucc.net/.