Stellar Populations and Star Formation Histories of the Nuclear Star Clusters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hierarchical Star Formation in Nearby Galaxies? M
Astronomy & Astrophysics manuscript no. Rodriguez_2020_corr ©ESO 2020 October 28, 2020 Hierarchical star formation in nearby galaxies? M. J. Rodríguez1??, G. Baume1; 2 and C. Feinstein1; 2 1 Instituto de Astrofísica de La Plata (CONICET-UNLP), Paseo del bosque S/N, La Plata (B1900FWA), Argentina, 2 Facultad de Ciencias Astronómicas y Geofísicas - Universidad Nacional de La Plata, Paseo del bosque S/N, La Plata (B1900FWA), Argentina Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Aims. The purpose of this work is to study the properties of the spatial distribution of the young population in three nearby galaxies in order to better understand the first stages of star formation. Methods. We used ACS/HST photometry and the "path-linkage criterion" in order to obtain a catalog of young stellar groups (YSGs) in the galaxy NGC 2403. We studied the internal distribution of stars in these YSGs using the Q parameter. We extended these analyses to the YSGs detected in in NGC 300 and NGC 253 our previous works. We built the young stars’ density maps for these three galaxies. Through these maps, we were able to identify and study young stellar structures on larger scales. Results. We found 573 YSGs in the galaxy NGC 2403, for which we derived their individual sizes, densities, luminosity function, and other fundamental characteristics. We find that the vast majority of the YSGs in NGC 2403, NGC 300 and NGC 253 present inner clumpings, following the same hierarchical behavior that we observed in the young stellar structures on larger scales in these galaxies. We derived values of the fractal dimension for these structures between ∼ 1.5 and 1.6. -
Studying the ISM at ∼ 10 Pc Scale in NGC 7793 with MUSE - I
Astronomy & Astrophysics manuscript no. dellabruna_2020 c ESO 2020 February 24, 2020 Studying the ISM at ∼ 10 pc scale in NGC 7793 with MUSE - I. Data description and properties of the ionised gas Lorenza Della Bruna1, Angela Adamo1, Arjan Bik1, Michele Fumagalli2; 3; 4, Rene Walterbos5, Göran Östlin1, Gustavo Bruzual6, Daniela Calzetti7, Stephane Charlot8, Kathryn Grasha9, Linda J. Smith10, David Thilker11, and Aida Wofford12 1 Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm, Swe- den 2 Institute for Computational Cosmology, Durham University, South Road, Durham, DH1 3LE, UK 3 Centre for Extragalactic Astronomy, Durham University, South Road, Durham, DH1 3LE, UK 4 Dipartimento di Fisica G. Occhialini, Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy 5 Department of Astronomy, New Mexico State University, Las Cruces, NM, 88001, USA 6 Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacan, C.P. 58089, México 7 Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA 8 Sorbonne Université, CNRS, UMR7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 9 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 10 Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 2121, USA 11 Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA 12 Instituto de Astronomía, Universidad Nacional Autónoma de México, Unidad Académica en Ensenada, Km 103 Carr. Tijuana−Ensenada, Ensenada 22860, México Received XXX / Accepted YYY ABSTRACT Context. Studies of nearby galaxies reveal that around 50% of the total Hα luminosity in late-type spirals originates from diffuse ionised gas (DIG), which is a warm, diffuse component of the interstellar medium that can be associated with various mechanisms, the most important ones being ’leaking’ HII regions, evolved field stars, and shocks. -
The Extragalactic Distance Scale
The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID -
Radiative Models for Jets in X-Ray Binaries
UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Física Radiative models for jets in X-ray binaries A thesis submitted for the degree of Doctor of Philosophy in Physics Gabriela Soledad Vila Supervisor: Dr. Gustavo E. Romero Counsellor: Dr. Pablo D. Mininni Workplace: Instituto Argentino de Radioastronomía Buenos Aires, 2012 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Física Modelos radiativos para jets en binarias de rayos X Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área Ciencias Físicas Gabriela Soledad Vila Director de Tesis: Dr. Gustavo E. Romero Consejero de Estudios: Dr. Pablo D. Mininni Lugar de Trabajo: Instituto Argentino de Radioastronomía Buenos Aires, 2012 This work has been awarded the Carlos M. Varsavsky Prize to the Best PhD Thesis on Astronomy and Astrophysics in Argentina 2010-2012, granted by the Astronomical Society of Argentina. Este trabajo ha sido galardonado con el Premio Carlos M. Varsavsky a la Mejor Tesis Doctoral en Astronomía y Astrofísica de la Argentina 2010-2012, otorgado por la Asociación Argentina de Astronomía. ABSTRACT Radiative models for jets in X-ray binaries An outstanding feature of astrophysical accreting sources at all scales in the Universe is the production of jets - collimated, bipolar, extended flows of matter and electromagnetic field ejected from the surroundings of a rotating object. Microquasars are X-ray binaries that produce relativistic jets. Jets in microquasars emit along the whole electromagnetic spectrum. The radiation is non-thermal; this reveals that jets accelerate particles up to relativistic energies. -
UBVI Surface Photometry of the Spiral Galaxy NGC 300 in The
Chin. J. Astron. Astrophys. Vol. 0, No. 0, (200x) 000–000 Chinese Journal of Astronomy and Astrophysics UBVI Surface Photometry of the Spiral Galaxy NGC 300 in the Sculptor Group Sang Chul Kim1 ⋆, Hwankyung Sung2, Hong Soo Park3, and Eon-Chang Sung1 1Korea Astronomy Observatory, Taejon 305-348, Republic of Korea 2Department of Astronomy and Space Science, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea 3Astronomy Program, SEES, Seoul National University, Seoul 151-742, Republic of Korea Received 2004 ;accepted 2004 Abstract We present UBVI surface photometry for 20.′5 × 20.′5 area of a late-type spiral galaxy NGC 300. In order to understand the morphological properties and luminosity distribution charac- teristics of NGC 300, we have derived isophotal maps, surface brightness profiles, ellipticity profiles, position angle profiles, and color profiles. By merging the I-band data of our surface brightness measurements with those of B¨oker et al. (2002) based on Hubble Space Telescope observations, we have made combined I-band surface brightness profiles for the region of 0.′′02 <r< 500′′ and decomposed the profiles into three components: a nucleus, a bulge, and an exponential disk. Key words: galaxies: spiral — galaxies: photometry — galaxies: individual (NGC 300) — galaxies: nuclei arXiv:astro-ph/0404036v1 2 Apr 2004 1 INTRODUCTION NGC 300 (=ESO 295-G020, IRAS 00525-3757, PGC 3238) is a late-type (SA(s)d, de Vaucouleurs et al. 1991) spiral galaxy in the nearest galaxy group, the Sculptor group, which contains five major spiral galaxies (NGC 55, NGC 247, NGC 253, NGC 300, and NGC 7793) and ∼20 dwarf galaxies (Cˆot´eet al. -
407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical -
New Blue and Red Variable Stars in NGC
New Blue and Red Variable Stars in NGC 247 T.J. Davidge1,2,3 Dominion Astrophysical Observatory, Herzberg Astronomy & Astrophysics Research Center, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC Canada V9E 2E7 [email protected]; [email protected] ABSTRACT Images recorded with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South are combined with archival images from other facilities to search for variable stars in the southern portion of the nearby disk galaxy NGC 247. Fifteen new periodic and non-periodic variables are identified. These include three Cepheids with periods < 25 days, four semi-regular variables, one of which shows light variations similar to those of RCrB stars, five variables with intrinsic visible/red brightnesses and colors that are similar to those of luminous blue variables (LBVs), and three fainter blue variables, one of which may be a non- eclipsing close binary system. The S Doradus instability strip defines the upper envelope of a distinct sequence of objects on the (i, g−i) color-magnitude diagram (CMD) of NGC 247. The frequency of variability with an amplitude ≥ 0.1 magnitude in the part of the CMD that contains LBVs over the seven month period when the GMOS images were recorded is ∼ 0.2. The light curve of the B[e] supergiant J004702.18–204739.9, which is among the brightest stars in NGC 247, is also examined. Low amplitude variations on day-to-day timescales are found, coupled with a systematic trend in mean brightness over a six month time interval. arXiv:2107.14354v1 [astro-ph.GA] 29 Jul 2021 1Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Coun- cil (Canada), CONICYT (Chile), Minist´erio da Ciˆencia, Tecnologia e Inova¸c˜ao (Brazil) and Ministerio de Ciencia, Tecnolog´ıae Innovaci´on Productiva (Argentina). -
Ω Cen 127 M96 = NGC 3377 116 582
INDEX OF OBJECTS Palomar 3 95 Palomar 4 95 Palomar 5 95 CLUSTERS OF GALAXIES Palomar 14 95 85 203 Abell Palomar 15 95 Abell 262 203 47 Tue 155 Abell 1060 203 Abell 1367 181 GALAXIES Abell 1795 189. 203 A0136-080 5, 315 Abell 2029 203 AM2020-5050 315 Abell 2199 203 Arp 220 432 Abell 2256 169-170 Abell 2319 203 Carina 145-147, 158-159, 247-249 Abell 2626 203 Cygnus A 208 AWM 4 167. 169 DDO 127 139, 141-142, 147-148, 152 AWM 7 169. 208 DDO 154 141 Cancer 59 Draco 5, 144-147, 149, 153-155, Canes-Venatici/Ursa Major complex 157-159, 247-249 115 ESO 415-G26 315 Centaurus 110, 168 ESO 474-G20 314 Coma 1, 15, 87, 97, 101, 112, 115, Fornax 5, 144-147, 158-159, 249, 165, 169, 181, 186-187, 283, 351 403, 408 Galaxy, The (Milky Way) 2, 16-20, DC1842-63 59-60 23-25, 33, 36, 39-41, 43-44, 46- Hercules 59 47, 49-50, 87-88, 95, 111, 119, Hickson 88 51-52 122, 127-130, 136, 197, 207, Local Group 43, 50, 100, 115, 250, 213, 237, 248-250, 289, 294-295, 253, 322, 331, 350, 362, 402, 297-298, 301, 322, 327, 331, 435, 439, 539, 541 356, 391, 397-398, 407, 411-413, MKW 4 169 433. 436, 473, 494, 496, 499, MKW 9 169 519, 525, 530-531, 535-536, 540, M96 Group 116 542, 551, 553, 555, 557 Pegasus I 59, 167 Hickson 88a 51-52 Perseus 15, 105, 186, 189, 197, IC 724 59 206-207, 313 IC 2233 416, 418 Sculptor Group 132 Magellanic Clouds 408 Virgo 97-104, 107-108, 110, 115, M31 49-50, 86-87, 127-128, 146, 162, 168, 175, 203, 216, 248, 249-250, 275, 297, 331, 334, 257, 322, 332, 350. -
Exótico Cielo Profundo 9
9 El escultor de galaxias Sculptor (Scl) Sculptoris. Escultor. · Exótico Cielo Profundo 9 de Rodolfo Ferraiuolo y Enzo De Bernardini Constelación Sculptor (Scl) Época Comienzos de la Primavera Austral Blanco 1 NGC 55 NGC 131 NGC 134 NGC 150 HD 4113 HD 4208 Objetos NGC 253 NGC 289 NGC 288 NGC 300 SDEG NGC 7793 El comienzo de la primavera austral es una gran ocasión para explorar algunos magníficos objetos de Sculptor, constelación creada en el año 1752 por el astrónomo rumano-francés Nicolai-Ludovici De La Caille, más conocido como Nicolás-Louis de Lacaille. Dentro de sus límites encontramos a, la mayoría de una veintena de galaxias, del tipo tardío, de un cercano (el más próximo al Grupo Local) y pequeño grupo, bautizado en 1959 por el astrónomo francés G. de Vaucouleurs como Grupo de Sculptor y, en 1960 por el astrónomo argentino J. L. Sérsic, Grupo del Polo Sur Galáctico, debido a que sus miembros se localizan agrupados en dirección al Polo Sur Galáctico. De este sugestivo grupo elegimos algunas hermosas galaxias que, estudiaremos junto a otros interesantes objetos más, como el cúmulo globular NGC 288, el cúmulo abierto Blanco 1, otras galaxias lejanas y, como curiosidad ya que no es habitual en la sección, veremos un par de brillantes estrellas con exoplanetas. Nuestro punto de partida será al Sur de la constelación, donde estudiaremos a NGC 300. Esta bonita galaxia espiral, clase SA(s)d, es miembro del Grupo del Polo Galáctico Sur y, fue descubierta por J. Dunlop en el año 1826, unos 8 años antes que J. -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
Parameters of Selected Central Stars of Planetary Nebulae from Consistent Optical and Uv Spectral Analysis
PARAMETERS OF SELECTED CENTRAL STARS OF PLANETARY NEBULAE FROM CONSISTENT OPTICAL AND UV SPECTRAL ANALYSIS Cornelius Bernhard Kaschinski PARAMETERS OF SELECTED CENTRAL STARS OF PLANETARY NEBULAE FROM CONSISTENT OPTICAL AND UV SPECTRAL ANALYSIS Dissertation Ph.D. Thesis an der Ludwig–Maximilians–Universitat¨ (LMU) Munchen¨ at the Ludwig–Maximilians–University (LMU) Munich fur¨ den Grad des for the degree of Doctor rerum naturalium vorgelegt von submitted by Cornelius Bernhard Kaschinski Munchen,¨ 2013 1st Evaluator: Prof. Dr. A. W. A. Pauldrach 2nd Evaluator: Prof. Dr. Barbara Ercolano Date of oral exam: 25.4.2013 Contents Contents vii List of Figures xii List of Tables xiii Zusammenfassung xv Abstract xvii 1 Introduction 1 1.1 Hot Stars . 1 1.1.1 Evolution of hot stars . 1 1.2 Impact of massive stars on the evolution of stellar clusters . 5 1.3 Motivation of this thesis . 5 1.4 Organization of this thesis . 8 2 Radiation-driven winds of hot luminous stars 11 XVII. Parameters of selected central stars of PN from consistent optical and UV spectral analysis and the universality of the mass–luminosity relation 2.1 Introduction . 12 2.2 Methods . 15 2.2.1 Parameter determination using hydrodynamic models and the UV spectrum . 15 2.2.2 Parameter determination using optical H and He lines . 18 2.2.3 Combined analysis . 19 2.3 Implementation of Stark broadening in the model atmosphere code WM-basic . 19 2.4 CSPN observational material . 25 2.5 Consistent optical and UV analysis of the CSPNs NGC 6826 and NGC 2392 . 25 2.5.1 NGC 6826 . -
The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type
UC Irvine UC Irvine Electronic Theses and Dissertations Title The Structure and Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies Permalink https://escholarship.org/uc/item/3634g66n Author Carson, Daniel James Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics by Daniel J. Carson Dissertation Committee: Professor Aaron Barth, Chair Associate Professor Michael Cooper Professor James Bullock 2016 Portion of Chapter 1 c 2015 The Astronomical Journal Chapter 2 c 2015 The Astronomical Journal Chapter 3 c 2015 The Astronomical Journal Portion of Chapter 5 c 2015 The Astronomical Journal All other materials c 2016 Daniel J. Carson TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGMENTS vii CURRICULUM VITAE viii ABSTRACT OF THE DISSERTATION x 1 Introduction 1 2 HST /WFC3 data 9 2.1 SampleSelection ................................. 9 2.2 DescriptionofObservations . 10 2.3 DataReduction.................................. 14 3 Analysis of Structural Properties 17 3.1 Surface Brightness Profile Fitting . 17 3.1.1 PSFModels................................ 18 3.1.2 FittingMethod .............................. 19 3.1.3 Comparison with ISHAPE ......................... 21 3.1.4 1DRadialProfiles ............................ 22 3.1.5 Uncertainties in Cluster Parameters . 25 3.2 Results....................................... 29 3.2.1 SingleBandResults ........................... 29 3.2.2 PanchromaticResults........................... 40 3.2.3 Stellar Populations . 46 3.3 CommentsonIndividualObjects . 51 3.3.1 IC342................................... 51 3.3.2 M33 ...................................