1. Padil Species Factsheet Scientific Name: Common Name Image

Total Page:16

File Type:pdf, Size:1020Kb

1. Padil Species Factsheet Scientific Name: Common Name Image 1. PaDIL Species Factsheet Scientific Name: Hexathele hochstetteri Ausserer, 1871 (Araneae: Hexathelidae: Hexathelinae) Common Name Banded Tunnelweb Spider Live link: http://www.padil.gov.au/maf-border/Pest/Main/140604 Image Library New Zealand Biosecurity Live link: http://www.padil.gov.au/maf-border/ Partners for New Zealand Biosecurity image library Landcare Research — Manaaki Whenua http://www.landcareresearch.co.nz/ MPI (Ministry for Primary Industries) http://www.biosecurity.govt.nz/ 2. Species Information 2.1. Details Specimen Contact: MAF Plant Health & Environment Laboratory - [email protected] Author: MAF Plant Health & Environment Laboratory Citation: MAF Plant Health & Environment Laboratory (2011) Banded Tunnelweb Spider(Hexathele hochstetteri)Updated on 4/9/2014 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/maf-border/Pest/Main/140604 2.3. Facets Groups: Spiders Commodity Overview: Horticulture Commodity Type: Yam Status: NZ - Exotic Pest Status: 0 Unknown Distribution: 0 Unknown Host Family: 0 Unknown 2.4. Other Names Funnel-web Spider 2.5. Diagnostic Notes **Adult** Body length around 25 mm. **Female** Colour: carapace orange brown, darker on head and median area of the thorax; dorsal surface of abdomen with 6 dark chevrons enclosing 5 pairs of cream patches; ventral surface shaded with brown but with 3 pale patches between epigastric groove and spinnerets. Carapace: fovea straight; lateral margins of thorax with weak fringe of hairs. Eyes: eyegroup occupies one half of the width of the head; from above the anterior row is straight and the posterior row strongly recurved. Sternum: longer than wide. Maxillae: spines extend over one half of the length of the segment. Labium: spines numerous; restricted to anterior margin. Chelicerae: promargin with 15 teeth. Abdomen: posterior pair of spinnerets longer than 4th tarsi in the ratio of 10.7. **Male** Similar to female. Lateral margins of carapace with fringe of strong bristles; lateral eyes are relatively smaller than females; promargin with 12-13 teeth; posterior pair of spinnerets only slightly longer than 4th tarsi, ratio is 87.80. Palp: bulb drawn out into a fine, sharp point; simple kind of alveolus. **References** - Forster, R.R. & Wilton, C.L. (1968). The spiders of New Zealand. Part II. _Otago Museum Bulletin_, 2: 1- 180. 2.6. References - Forster, R.R. & Wilton, C.L. (1968). The spiders of New Zealand. Part II. _Otago Museum Bulletin_, 2: 1- 180. 3. Diagnostic Images ARA11 ARA11 Dorsal - Male: Caroline Harding MAF Headfront - Male: Caroline Harding MAF ARA11 ARA11 Lateral - Male: Caroline Harding MAF Palp - Male: Caroline Harding MAF Results Generated: Sunday, October 3, 2021 .
Recommended publications
  • Funnel Weaver Spiders (Funnel-Web Weavers, Grass Spiders)
    Colorado Arachnids of Interest Funnel Weaver Spiders (Funnel-web weavers, Grass spiders) Class: Arachnida (Arachnids) Order: Araneae (Spiders) Family: Agelenidae (Funnel weaver Figure 1. Female grass spider on sheet web. spiders) Identification and Descriptive Features: Funnel weaver spiders are generally brownish or grayish spiders with a body typically ranging from1/3 to 2/3-inch when full grown. They have four pairs of eyes that are roughly the same size. The legs and body are hairy and legs usually have some dark banding. They are often mistaken for wolf spiders (Lycosidae family) but the size and pattern of eyes can most easily distinguish them. Like wolf spiders, the funnel weavers are very fast runners. Among the three most common genera (Agelenopsis, Hololena, Tegenaria) found in homes and around yards, Agelenopsis (Figures 1, 2 and 3) is perhaps most easily distinguished as it has long tail-like structures extending from the rear end of the body. These structures are the spider’s spinnerets, from which the silk emerges. Males of this genus have a unique and peculiarly coiled structure (embolus) on their pedipalps (Figure 3), the appendages next to the mouthparts. Hololena species often have similar appearance but lack the elongated spinnerets and male pedipalps have a normal clubbed appearance. Spiders within both genera Figure 2. Adult female of a grass spider, usually have dark longitudinal bands that run along the Agelenopsis sp. back of the cephalothorax and an elongated abdomen. Tegenaria species tend to have blunter abdomens marked with gray or black patches. Dark bands may also run along the cephalothorax, which is reddish brown with yellowish hairs in the species Tegenaria domestica (Figure 4).
    [Show full text]
  • (Araneae: Theraphosidae) from Miocene Chiapas Amber, Mexico
    XX…………………………………… ARTÍCULO: A fossil tarantula (Araneae: Theraphosidae) from Miocene Chiapas amber, Mexico Jason A. Dunlop, Danilo Harms & David Penney ARTÍCULO: A fossil tarantula (Araneae: Theraphosidae) from Miocene Chiapas amber, Mexico Jason A. Dunlop Museum für Naturkunde der Humboldt Universität zu Berlin D-10115 Berlin, Germany [email protected] Abstract: Danilo Harms A fossil tarantula (Araneae: Mygalomorphae: Theraphosidae) is described from Freie Universität BerlinInstitut für an exuvium in Tertiary (Miocene) Chiapas amber, Simojovel region, Chiapas Biologie, Chemie & Pharmazie State, Mexico. It is difficult to assign it further taxonomically, but it is the first Evolution und Systematik der Tiere mygalomorph recorded from Chiapas amber and only the second unequivocal Königin-Luise-Str. 1–3 record of a fossil theraphosid. With a carapace length of ca. 0.9 cm and an es- D-14195 Berlin, Germany timated leg span of at least 5 cm it also represents the largest spider ever re- [email protected] corded from amber. Of the fifteen currently recognised mygalomorph families, eleven have a fossil record (summarised here), namely: Atypidae, Antrodiaeti- David Penney dae, Mecicobothriidae, Hexathelidae, Dipluridae, Ctenizidae, Nemesiidae, Mi- Earth, Atmospheric and Environmental crostigmatidae, Barychelidae, Cyrtaucheniidae and Theraphosidae. Sciences. Key words: Araneae, Theraphosidae, Palaeontology, Miocene, amber, Chiapas, The University of Manchester Mexico. Manchester. M13 9PL, UK [email protected] Revista Ibérica de Aracnología ISSN: 1576 - 9518. Un fósil de tarántula (Araneae: Theraphosidae) en ambar del Dep. Legal: Z-2656-2000. Vol. 15, 30-VI-2007 mioceno de Chiapas, México. Sección: Artículos y Notas. Pp: 9 − 17. Fecha publicación: 30 Abril 2008 Resumen: Se describe una tarántula fósil a partir de una exuvia en ámbar del terciario Edita: (mioceno) de Chiapas, región de Simojovel, estado de Chiapas, Mexico.
    [Show full text]
  • First Records of the Endangered Spider Macrothele Calpeiana (Walckenaer, 1805) (Hexathelidae) in Portugal
    Boletín Sociedad Entomológica Aragonesa, n1 41 (2007) : 445–446. NOTAS BREVES First records of the endangered spider Macrothele calpeiana (Walckenaer, 1805) (Hexathelidae) in Portugal Alberto Jiménez-Valverde1*, Teresa García-Díez1 & Sergé Bogaerts2 1Museo Nacional de Ciencias Naturales. Dpto. Biodiversidad y Biología Evolutiva. C/ José Gutiérrez Abascal, 2. 28006 Madrid – [email protected] 2 Honigbijenhof 3, NL-6533RW, Nijmegen, The Netherlands Summary: The first records of the endangered spider Macrothele calpeiana (Walckenaer, 1805) for Portugal are given. Keywords: first records, Macrothele calpeiana, Portugal Resumen: Se publican en este trabajo los primeros registros de Macrothele calpeiana (Walckenaer, 1805) para Portugal. Palabras clave: Macrothele calpeiana, Portugal, primeras citas Introduction Macrothele calpeiana (Walckenaer, 1805), the cork oak black spi- correspond to areas previously identified as highly suitable (Fig. 2; der, is an endemic Iberian spider included in the Bern Convention Jiménez-Valverde & Lobo, in press). Other authors have demos- (1979 appendix II) and Habitat directives (92/43/EEC, appendix IV). trated this practical application of distribution models, i.e, discove- It is the only spider in Europe with this strong protection. It belongs ring new species and/or populations (Raxworthy et al., 2003; Bourg to the family Hexathelidae, a group of spiders of probable Gond- et al., 2005; Guisan et al., 2006). Thus, M. calpeiana should be wanic origin (Raven, 1980). The genus Macrothele contains 26 mainly surveyed in those areas revealed as suitable in previous species distributed from Western Europe to Japan, being four of studies (Fig. 2; Jiménez-Valverde & Lobo, 2006 and Jiménez- them exclusive of central Africa (Platnick, 2006). Just only two Valverde & Lobo, in press).
    [Show full text]
  • Conservation Status of New Zealand Araneae (Spiders), 2020
    2021 NEW ZEALAND THREAT CLASSIFICATION SERIES 34 Conservation status of New Zealand Araneae (spiders), 2020 Phil J. Sirvid, Cor J. Vink, Brian M. Fitzgerald, Mike D. Wakelin, Jeremy Rolfe and Pascale Michel Cover: A large sheetweb sider, Cambridgea foliata – Not Threatened. Photo: Jeremy Rolfe. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 5 years. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications. The NZTCS database can be accessed at nztcs.org.nz. For all enquiries, email [email protected]. © Copyright August 2021, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–1–99–115291–6 (web PDF) This report was prepared for publication by Te Rōpū Ratonga Auaha, Te Papa Atawhai/Creative Services, Department of Conservation; editing and layout by Lynette Clelland. Publication was approved by the Director, Terrestrial Ecosystems Unit, Department of Conservation, Wellington, New Zealand Published by Department of Conservation Te Papa Atawhai, PO Box 10420, Wellington 6143, New Zealand. This work is licensed under the Creative Commons Attribution 4.0 International licence.
    [Show full text]
  • A Reconsideration of the Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear Genes and Morphology
    A Reconsideration of the Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear Genes and Morphology Jason E. Bond1*, Brent E. Hendrixson2, Chris A. Hamilton1, Marshal Hedin3 1 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America, 2 Department of Biology, Millsaps College, Jackson, Mississippi, United States of America, 3 Department of Biology, San Diego State University, San Diego, California, United States of America Abstract Background: The infraorder Mygalomorphae (i.e., trapdoor spiders, tarantulas, funnel web spiders, etc.) is one of three main lineages of spiders. Comprising 15 families, 325 genera, and over 2,600 species, the group is a diverse assemblage that has retained a number of features considered primitive for spiders. Despite an evolutionary history dating back to the lower Triassic, the group has received comparatively little attention with respect to its phylogeny and higher classification. The few phylogenies published all share the common thread that a stable classification scheme for the group remains unresolved. Methods and Findings: We report here a reevaluation of mygalomorph phylogeny using the rRNA genes 18S and 28S, the nuclear protein-coding gene EF-1c, and a morphological character matrix. Taxon sampling includes members of all 15 families representing 58 genera. The following results are supported in our phylogenetic analyses of the data: (1) the Atypoidea (i.e., antrodiaetids, atypids, and mecicobothriids) is a monophyletic group sister to all other mygalomorphs; and (2) the families Mecicobothriidae, Hexathelidae, Cyrtaucheniidae, Nemesiidae, Ctenizidae, and Dipluridae are not monophyletic. The Microstigmatidae is likely to be subsumed into Nemesiidae.
    [Show full text]
  • (Mygalomorphae, Atracinae), with Implications for Venom
    www.nature.com/scientificreports OPEN Phylogenomic reclassifcation of the world’s most venomous spiders (Mygalomorphae, Atracinae), with Received: 10 November 2017 Accepted: 10 January 2018 implications for venom evolution Published: xx xx xxxx Marshal Hedin1, Shahan Derkarabetian 1,2, Martín J. Ramírez3, Cor Vink4 & Jason E. Bond5 Here we show that the most venomous spiders in the world are phylogenetically misplaced. Australian atracine spiders (family Hexathelidae), including the notorious Sydney funnel-web spider Atrax robustus, produce venom peptides that can kill people. Intriguingly, eastern Australian mouse spiders (family Actinopodidae) are also medically dangerous, possessing venom peptides strikingly similar to Atrax hexatoxins. Based on the standing morphology-based classifcation, mouse spiders are hypothesized distant relatives of atracines, having diverged over 200 million years ago. Using sequence- capture phylogenomics, we instead show convincingly that hexathelids are non-monophyletic, and that atracines are sister to actinopodids. Three new mygalomorph lineages are elevated to the family level, and a revised circumscription of Hexathelidae is presented. Re-writing this phylogenetic story has major implications for how we study venom evolution in these spiders, and potentially genuine consequences for antivenom development and bite treatment research. More generally, our research provides a textbook example of the applied importance of modern phylogenomic research. Atrax robustus, the Sydney funnel-web spider, is ofen considered the world’s most venomous spider species1. Te neurotoxic bite of a male A. robustus causes a life-threatening envenomation syndrome in humans. Although antivenoms have now largely mitigated human deaths, bites remain potentially life-threatening2. Atrax is a mem- ber of a larger clade of 34 described species, the mygalomorph subfamily Atracinae, at least six of which (A.
    [Show full text]
  • Phylogeny and Classification of Spiders
    18 FROM: Ubick, D., P. Paquin, P.E. Cushing, andV. Roth (eds). 2005. Spiders of North America: an identification manual. American Arachnological Society. 377 pages. Chapter 2 PHYLOGENY AND CLASSIFICATION OF SPIDERS Jonathan A. Coddington ARACHNIDA eyes, jumping spiders also share many other anatomical, Spiders are one of the eleven orders of the class Arach- behavioral, ecological, and physiological features. Most nida, which also includes groups such as harvestmen (Opil- important for the field arachnologist they all jump, a useful iones), ticks and mites (Acari), scorpions (Scorpiones), false bit of knowledge if you are trying to catch one. Taxonomic scorpions (Pseudoscorpiones), windscorpions (Solifugae), prediction works in reverse as well: that spider bouncing and vinegaroons (Uropygi). All arachnid orders occur in about erratically in the bushes is almost surely a salticid. North America. Arachnida today comprises approximately Another reason that scientists choose to base classifica- 640 families, 9000 genera, and 93,000 described species, but tion on phylogeny is that evolutionary history (like all his- the current estimate is that untold hundreds of thousands tory) is unique: strictly speaking, it only happened once. of new mites, substantially fewer spiders, and several thou- That means there is only one true reconstruction of evolu- sand species in the remaining orders, are still undescribed tionary history and one true phylogeny: the existing clas- (Adis & Harvey 2000, reviewed in Coddington & Colwell sification is either correct, or it is not. In practice it can be 2001, Coddington et ol. 2004). Acari (ticks and mites) are complicated to reconstruct the true phylogeny of spiders by far the most diverse, Araneae (spiders) second, and the and to know whether any given reconstruction (or classifi- remaining taxa orders of magnitude less diverse.
    [Show full text]
  • The Duration of Copulation in Spiders: Comparative Patterns
    Records of the Western Australian Museum Supplement No. 52: 1-11 (1995). The duration of copulation in spiders: comparative patterns Mark A. Elgar Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia Abstract - The duration of copulation in spiders varies both-within and between species, and in the latter by several orders of magnitude. The sources of this variation are explored in comparative analyses of the duration of copulation and other life-history variables of 135 species of spiders from 26 families. The duration of copulation is correlated with body size within several species, but the pattern is not consistent and more generally there is no inter-specific covariation between these variables. The duration of copulation within orb-weaving spiders is associated with both the location of mating and the frequency of sexual cannibalism, suggesting that the length of copulation is limited by the risk of predation. Finally, entelegyne spiders copulate for longer than haplogyne spiders, a pattern that can be interpreted in terms of male mating strategies or the complexity of their copulatory apparatus. INTRODUCTION after the copulatory organ has been inserted. In It is widely recognised that there are conflicts of species in which females mate with several males, interest between males and females in the choice of copulation may provide the male with the mating partner and the frequency of mating (e.g. opportunity to manipulate the sperm of other Elgar 1992). Thus, while the principal function of males that previously mated with that female. For copulation is to transfer gametes, the act of mating example, copulating male damselflies not only may have several additional functions, such as transfer their own sperm, but also remove the mate assessment or ensuring sperm priority, and sperm of rival males (e.g.
    [Show full text]
  • Evolução Nos Padrões De Teias E Análise Comparativa Do Comportamento De Autolimpeza Em Mygalomorphae"
    UNIVERSIDADE DE SÃO PAULO INSTITUTO DE PSICOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS E COMPORTAMENTO "EVOLUÇÃO NOS PADRÕES DE TEIAS E ANÁLISE COMPARATIVA DO COMPORTAMENTO DE AUTOLIMPEZA EM MYGALOMORPHAE" DISSERTAÇÃO DE MESTRADO ALUNA: CAMILA HUFFENBAECHER ORIENTADOR: DR. HILTON FERREIRA JAPYASSÚ Maio/2009 UNIVERSIDADE DE SÃO PAULO INSTITUTO DE PSICOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS E COMPORTAMENTO "EVOLUÇÃO NOS PADRÕES DE TEIAS E ANÁLISE COMPARATIVA DO COMPORTAMENTO DE AUTOLIMPEZA EM MYGALOMORPHAE" Dissertação apresentada ao Instituto de Psicologia, Universidade de São Paulo, como parte dos requisitos para obtenção do grau de Mestre em Neurociências e Comportamento. ALUNA: CAMILA HUFFENBAECHER ORIENTADOR: DR. HILTON FERREIRA JAPYASSÚ Maio/2009 “The very general opinion that the tarantula “looks so horrible” is also obviously without any basis. To anyone who has learned to know this spider, it is a handsome as a goldfinch and fully as interesting.” William J. Baerg, 1958 Agradecimentos Venho agradecer aqueles que contribuíram não só para a construção deste trabalho, mas também para a minha vida durante estes três anos em São Paulo. Pode parecer engraçado, mas esta está sendo a parte mais difícil de escrever nesta dissertação (e o medo de esquecer alguém?!), por isso adiei o máximo possível. Mas aqui vão os meus sinceros agradecimentos: À minha família, que sempre acreditou em mim e me apoiou em todas as minhas decisões, especialmente ao meu avô, João, a quem dedico esta dissertação. Ao meu orientador Hilton, que há sete anos conseguiu me convencer que comportamento de aranhas era o assunto mais legal e interessante do mundo, obrigada pela paciência e transmissão de conhecimentos.
    [Show full text]
  • Identifying Different Transcribed Proteins in the Newly Described Theraphosidae Pamphobeteus Verdolaga
    Toxicon 129 (2017) 81e88 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga * Sebastian Estrada-Gomez a, b, , Leidy Johana Vargas-Munoz~ c, Monica Saldarriaga-Cordoba d, e, Yeimy Cifuentes f, g, Carlos Perafan h a Programa de Ofidismo/Escorpionismo e Serpentario, Universidad de Antioquia UdeA, Carrera 53 No 61-30, Medellín, 050010, Antioquia, Colombia b Facultad de Ciencias Farmaceuticas y Alimentarias, Universidad de Antioquia UdeA, calle 70 No 52-21, Medellín, 050010, Antioquia, Colombia c Facultad de Medicina, Universidad Cooperativa de Colombia, Calle 50 A No 41-20, Medellín, 050012, Antioquia, Colombia d Departamento de Ciencias, Universidad Iberoamericana de Ciencias y Tecnología, Padre Miguel de Olivares, 1620, Santiago, Chile e Universidad Bernardo O’Higgins, Centro de Investigacion en Recursos Naturales y Sustentabilidad, Fabrica, 1990, Segundo Piso, Santiago, Chile f Laboratorio Especial de Ecologia e Evoluçao,~ Instituto Butantan, Avenida Vital Brazil 1500, 05503-900, Sao~ Paulo, SP, Brazil g Programa de Pos-Graduaç ao~ em Biologia Animal, Universidade Estadual Paulista “Júlio de Mesquita Filho”,Sao~ Jose do Rio Preto, SP, 15054-000, Brazil h Seccion Entomología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay article info abstract Article history: Theraphosidae spider venoms are well known for possess a complex mixture of protein and non-protein Received 23 September 2016 compounds in their venom. The objective of this study was to report and identify different proteins Received in revised form translated from the venom gland DNA information of the recently described Theraphosidae spider 8 February 2017 Pamphobeteus verdolaga.
    [Show full text]
  • Phylogenetic Systematics and Evolution of the Spider Infraorder Mygalomorphae Using Genomic
    bioRxiv preprint doi: https://doi.org/10.1101/531756; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic 2 scale data 3 Vera Opatova1, Chris A. Hamilton2, Marshal Hedin3, Laura Montes de Oca4, Jiří Král5, 4 Jason E. Bond1 5 6 1Department of Entomology and Nematology, University of California, Davis, CA 95616, USA 7 2Department of Entomology, Plant Pathology & Nematology, University of Idaho, Moscow, ID 8 83844, USA 9 3Department of Biology, San Diego State University, San Diego, CA, 92182–4614, USA 10 4Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas 11 Clemente Estable, Montevideo, Uruguay. 12 5Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague, 13 128 44, Czech Republic 14 15 16 Corresponding authors: 17 Vera Opatova, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616 18 Telephone: +1 530-754-5805, E-mail: [email protected] 19 20 Jason E. Bond, 1282 Academic Surge, One Shields Avenue, Davis, CA 95616 21 Telephone: +1 530-754-5805, E-mail: [email protected] 22 23 Running Head: PHYLOGENY OF MYGALOMORPH SPIDERS 24 bioRxiv preprint doi: https://doi.org/10.1101/531756; this version posted January 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A New Genus-Level Classification of the Australian Funnel-Web Spiders (Hexathelidae: Atracinae)
    54 Australasian Journal of Herpetology Australasian Journal of Herpetology 35:54-56. ISSN 1836-5698 (Print) Published 20 July 2017. ISSN 1836-5779 (Online) A new genus-level classification of the Australian Funnel-web Spiders (Hexathelidae: Atracinae). RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 25 April 2017, Accepted 21 June 2017, Published 20 July 2017. ABSTRACT In 2010, Michael Gray, published a long overdue revision of the Australian Funnel-web Spiders (Hexathelidae: Atracinae), at the time referred to the genera Atrax Cambridge, 1877 and Hadronyche Koch, 1873. While erecting a new monotypic genus Illawarra Gray, 2010 for a divergent species and placing three species in the genus Atrax, Gray placed the other 31 species into Hadronyche. In effect he created a very diverse assemblage. Recognising this diversity, Gray (2010) created so-called “species groups” for similar species. However as the differences between the various species groups are themselves worthy of genus-level division, this paper uses the work of Gray to divide Hadronyche into five obvious genera, using two available names and erecting three new names according to the current edition of the International Code of Zoological Nomenclature. A subgroup of four species within Hadronyche sensu stricto is also placed in a new subgenus. Keywords: Taxonomy; nomenclature; spiders; Funnel-web; Australia; Hexathelidae; Atracinae; South Australia; New South Wales; Queensland; Victoria; Atrax; Hadronyche; Illawarra; Anepsiada; Pseudatrax; new genus; Swilearanea; Shireenaranea; Grayaraneaus; new subgenus; Wongaraneaus. INTRODUCTION In 2010, Michael Gray, published a long overdue revision of the their new species to one or other of Atrax or Hadronyche.
    [Show full text]