SPECIES of the WEEK Devil's Matchstick Pilophorus Acicularis

Total Page:16

File Type:pdf, Size:1020Kb

SPECIES of the WEEK Devil's Matchstick Pilophorus Acicularis SPECIES OF THE WEEK Devil’s Matchstick Pilophorus acicularis Cipín an deabhail Devil’s Match stick, or nail lichen is a distinctive club lichen that looks like an oddly-coloured match: the straiGht to somewhat curved club is white to pale Green with a shiny black or red ball-shaped tip. These stick structures start life on a rock surface as Granular crust, which is known as the crustose, primary thallus. The lichen then develops fruticose (shrub-like) stalks up to 3cm tall and 1mm thick, with the coloured tip forminG the fruitinG body. The lichen is found on silicate stone in cool, moist forests at all elevations. It is more common at low elevations and is often found near waterfalls. Probably the most abundant species of the Genus, most species have been found on the west coast of North America as far north as Alaska. It is found in Ireland on peaty soil, mossy rocks on heathland and also on rottinG loGs. Devil’s matchstick is a tripartite lichen, meaninG it contains a funGus, a Green alGae and a cyanobacterium. Cyanobacteria are very important for the lichens survival as they can fix nitroGen from the air, allowinG the species to colonise nitroGen poor areas like rocks while also contributinG to soil fertility. Rock-colonizinG lichens (saxicolous lichen) like devil’s matchstick are also important in soil formation; they slowly loosen microscopic particles of rock, and by accumulatinG these particles as well as dust and other airborne particles they pave the way for mosses and other species to Grow on that substrate. .
Recommended publications
  • Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia (Lecanorales, Ascomycota)
    Microbial Ecology https://doi.org/10.1007/s00248-020-01633-3 FUNGAL MICROBIOLOGY Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia (Lecanorales, Ascomycota) Raquel Pino-Bodas1 & Soili Stenroos2 Received: 19 August 2020 /Accepted: 22 October 2020 # The Author(s) 2020 Abstract The diversity of lichen photobionts is not fully known. We studied here the diversity of the photobionts associated with Cladonia, a sub-cosmopolitan genus ecologically important, whose photobionts belong to the green algae genus Asterochloris. The genetic diversity of Asterochloris was screened by using the ITS rDNA and actin type I regions in 223 specimens and 135 species of Cladonia collected all over the world. These data, added to those available in GenBank, were compiled in a dataset of altogether 545 Asterochloris sequences occurring in 172 species of Cladonia. A high diversity of Asterochloris associated with Cladonia was found. The commonest photobiont lineages associated with this genus are A. glomerata, A. italiana,andA. mediterranea. Analyses of partitioned variation were carried out in order to elucidate the relative influence on the photobiont genetic variation of the following factors: mycobiont identity, geographic distribution, climate, and mycobiont phylogeny. The mycobiont identity and climate were found to be the main drivers for the genetic variation of Asterochloris. The geographical distribution of the different Asterochloris lineages was described. Some lineages showed a clear dominance in one or several climatic regions. In addition, the specificity and the selectivity were studied for 18 species of Cladonia. Potentially specialist and generalist species of Cladonia were identified. A correlation was found between the sexual reproduction frequency of the host and the frequency of certain Asterochloris OTUs.
    [Show full text]
  • 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
    Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S.
    [Show full text]
  • Lichens of Alaska's South Coast
    United States Department of Agriculture Lichens of Alaska’s South Coast Forest Service R10-RG-190 Alaska Region Reprint April 2014 WHAT IS A LICHEN? Lichens are specialized fungi that “farm” algae as a food source. Unlike molds, mildews, and mushrooms that parasitize or scavenge food from other organisms, the fungus of a lichen cultivates tiny algae and / or blue-green bacteria (called cyanobacteria) within the fabric of interwoven fungal threads that form the body of the lichen (or thallus). The algae and cyanobacteria produce food for themselves and for the fungus by converting carbon dioxide and water into sugars using the sun’s energy (photosynthesis). Thus, a lichen is a combination of two or sometimes three organisms living together. Perhaps the most important contribution of the fungus is to provide a protective habitat for the algae or cyanobacteria. The green or blue-green photosynthetic layer is often visible between two white fungal layers if a piece of lichen thallus is torn off. Most lichen-forming fungi cannot exist without the photosynthetic partner because they have become dependent on them for survival. But in all cases, a fungus looks quite different in the lichenized form compared to its free-living form. HOW DO LICHENS REPRODUCE? Lichens sexually reproduce with fruiting bodies of various shapes and colors that can often look like miniature mushrooms. These are called apothecia (Fig. 1) and contain spores that germinate and Figure 1. Apothecia, fruiting grow into the fungus. Each bodies fungus must find the right photosynthetic partner in order to become a lichen. Lichens reproduce asexually in several ways.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Lichens of Alaska's South Coast
    Lichens of Alaska’s South Coast United States Forest Service R10-RG-190 Department of Alaska Region July 2011 Agriculture WHAT IS A LICHEN? Lichens are specialized fungi that “farm” algae as a food source. Unlike molds, mildews, and mushrooms that parasi ze or scavenge food from other organisms, the fungus of a lichen cul vates ny algae and / or blue-green bacteria (called cyanobacteria) within the fabric of interwoven fungal threads that form the body of the lichen (or thallus). The algae and cyanobacteria produce food for themselves and for the fungus by conver ng carbon dioxide and water into sugars using the sun’s energy (photosynthesis). Thus, a lichen is a combina on of two or some mes three organisms living together. Perhaps the most important contribu on of the fungus is to provide a protec ve habitat for the algae or cyanobacteria. The green or blue-green photosynthe c layer is o en visible between two white fungal layers if a piece of lichen thallus is torn off . Most lichen-forming fungi cannot exist without the photosynthe c partner because they have become dependent on them for survival. But in all cases, a fungus looks quite diff erent in the lichenized form compared to its free-living form. HOW DO LICHENS REPRODUCE? Lichens sexually reproduce with frui ng bodies of various shapes and colors that can o en look like miniature mushrooms. These are called apothecia (Fig. 1) and contain spores that germinate and Figure 1. Apothecia, fruiting grow into the fungus. Each bodies fungus must fi nd the right photosynthe c partner in order to become a lichen.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
    A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10,
    [Show full text]
  • New and Interesting Lichens and Allied Fungi from British Columbia, Nova Scotia, Nunavut, Ontario, Prince Edward Island, and Quebec, Canada
    Opuscula Philolichenum, 17: 275-292. 2018. *pdf effectively published online 31January2018 via (http://sweetgum.nybg.org/philolichenum/) New and interesting lichens and allied fungi from British Columbia, Nova Scotia, Nunavut, Ontario, Prince Edward Island, and Quebec, Canada RICHARD TROY MCMULLIN1 ABSTRACT. – Ongoing biogeographical and ecological studies of lichens and allied fungi in Canada have resulted in range extensions throughout the country that are documented here. Four species are reported new to the Territory of Nunavut: Acarospora schleicheri, Buellia ocellata, Melanelixia subaurifera, and Rhizocarpon lecanorinum. New records are reported for five provinces: British Columbia (Microcalicium conversum, Umbilicaria arctica), Nova Scotia (Arthonia hypobela, A. vinosa, Micarea misella, and Sarea difformis), Ontario (Lecanora carpinea, Microcalicium conversum, Sphaerophorous fragilis, and Umbilicaria phaea var. phaea), Prince Edward Island (Ropalospora viridis), and Quebec (Candelariella lutella, Microcalicium arenarium, and Sclerophora peronella). New records representing major range extensions are reported for: Psora globifera, S. peronella, and Xanthomendoza weberi. Pilophorus fibula is also reinstated to the Ontario lichen list. KEYWORDS. – Biogeography, Canadian biodiversity, species at risk, calicioids. INTRODUCTION The rich history of lichen collecting in Canada dates back to the 1700’s and has been summarized by Goward et al. (1998). Since 1998, however, the results of many lichen collection efforts have been published which include numerous new provincial and national records. These include studies in British Columbia (Björk et al. 2009; Spribille et al. 2009), Manitoba (Piercey-Normore et al. 2016), Newfoundland and Labrador (McCarthy et. al. 2015; McMullin & Aresenault 2016; McMullin & Wiersma 2017), Nova Scotia (Anderson 2014; McMullin et al. 2008; McMullin 2009), Ontario (Brodo et al.
    [Show full text]
  • Lichens of the National Forests in Alaska
    Lichens of the National Forests in Alaska United States Forest Service R10-RG-170 Department of Alaska Region August 2006 Agriculture What is a Lichen? You can think of lichens as fungi that have discovered farm- ing. Instead of parasitizing or scavenging other organisms for a living (such as molds, mildews, mushrooms), lichen fungi cultivate tiny algae and/or blue-green bacteria (called cyanobacteria) within the fabric of interwoven fungal threads that form the lichen body (or thallus). The algae and cyano- bacteria produce food for the fungus by converting the sun’s energy into sugars through photosynthesis. Perhaps the most important contribution of the fungus is to provide a protective habitat for the algae or cyanobacteria. Thus, lichens are a combination of two or three organisms that live together inti- mately. The green or blue-green photosynthetic layer is often visible between two white fungal layers if a piece of lichen thallus is torn off. In some cases, the fungus and the photosynthetic partner that together make the lichen may be found living separately in nature. However, many lichen-forming fungi cannot exist by themselves because they have become dependent on their photosynthetic partners for survival. But in all cases, a fungus looks quite different in the lichenized form compared to its free-living form. How do Lichens Reproduce? Lichens sexually reproduce with fruiting bodies of various colors that can look like miniature mushrooms. These are called apothecia (Fig. 1) and contain spores that germinate and grow into the fungus. This fungus must find the right photosynthetic partner in order to become a lichen.
    [Show full text]
  • Air Quality Monitoring Alaska Region
    United States Department of Agriculture Forest Service Air Quality Monitoring Alaska Region Ri O-TB-46 on theTongass National September, 1994 Forest Methods and Baselines Using Lichens September 1994 Linda H. Geiser, Chiska C. Derr, and Karen L. Diliman USDA-Forest Service Tongass National Forest/ Stikine Area P.O. Box 309 Petersburg, Alaska 99833 ,, ) / / 'C ,t- F C Air Quality Monitoringon the Tongass National Forest Methods and Baselines Using Lichens Linda H. Geiser, Chiska C. Derr and Karen L. Diliman USDA-Forest Service Tongass National Forest/ Stikine Area P.O. Box 309 Petersburg, Alaska 99833 September, 1994 1 AcknowJedgment Project development and funding: Max Copenhagen, Regional Hydrologist, Jim McKibben Stikine Area FWWSA Staff Officer and Everett Kissinger, Stikine Area Soil Scientist, and program staff officers from the other Areas recognized the need for baseline air quality information on the Tongass National Forest and made possible the initiation of this project in 1989. Their continued management level support has been essential to the development of this monitoring program. Lichen collections and field work: Field work was largely completed by the authors. Mary Muller contributed many lichens to the inventory collected in her capacity as Regional Botanist during the past 10 years. Field work was aided by Sarah Ryll of the Stikine Area, Elizabeth Wilder and Walt Tulecke of Antioch College, and Bill Pawuk, Stikine Area ecologist. Lichen identifications: Help with the lichen identifications was given by Irwin Brodo of the Canadian National Museum, John Thomson of the University of Wisconsin at Madison, Pak Yau Wong of the Canadian National Museum, and Bruce McCune at Oregon State University.
    [Show full text]
  • New Insights Into Classification and Evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from Phylogenetic Analyses Of
    Mycologia, 98(6), 2006, pp. 1088–1103. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes Jolanta Miadlikowska1 Soili Stenroos Frank Kauff Botanical Museum, Finnish Museum of Natural Vale´rie Hofstetter History, University of Helsinki, P.O. Box 7, FI-00014 Emily Fraker Finland Department of Biology, Duke University, Durham, Irwin Brodo North Carolina 27708-0338 Canadian Museum of Nature, P.O. Box 3443, Station Martin Grube D, Ottawa, Ontario, K1P 6P4 Canada Josef Hafellner Gary B. Perlmutter Institut fu¨ r Botanik, Karl-Franzens-Universita¨t, North Carolina Botanical Garden, University of North Holteigasse 6, A-8010, Graz, Austria Carolina at Chapel Hill, CB 3375, Totten Center, Chapel Hill, North Carolina 27599-3375 Vale´rie Reeb Brendan P. Hodkinson Damien Ertz Department of Biology, Duke University, Durham, National Botanic Garden of Belgium, Department of North Carolina 27708-0338 Bryophytes-Thallophytes, Domaine de Bouchout, B-1860 Meise, Belgium Martin Kukwa Department of Plant Taxonomy and Nature Paul Diederich Conservation, Gdansk University, A. Legionow 9, Muse´e national d’histoire naturelle, 25 rue Munster, 80-441 Gdansk, Poland L-2160 Luxembourg, Luxembourg Robert Lu¨cking James C. Lendemer Field Museum of Natural History, 1400 South Lake Department of Botany, Academy of Natural Sciences of Shore Drive, Chicago, Illinois 60605-2496 Philadelphia, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103 Geir Hestmark Department of Biology, University of Oslo, P.O. Box Philip May 1066 Blindern, NO-0316 Oslo, Norway Farlow Herbarium, Harvard University, 22 Divinity Avenue, Cambridge, Massachusetts 02138 Monica Garcia Otalora A´ rea de Biodiversidad y Conservacio´n, ESCET, Conrad L.
    [Show full text]
  • Mediterranean Cladoniaceae A
    Mediterranean Cladoniaceae A. R. Burgaz, T. Ahti & R. Pino-Bodas Spanish Lichen Society (SEL) Madrid 2020 Mediterranean Cladoniaceae Ana Rosa Burgaz, Teuvo Ahti & Raquel Pino-Bodas Spanish Lichen Society (SEL) Madrid 2020 Mediterranean Cladoniaceae Ana Rosa Burgaz (Complutense University, Madrid) Teuvo Ahti (Finnish Museum of Natural History, Helsinki) Raquel Pino-Bodas (Royal Botanic Gardens, Kew) Photographer: Pablo Galán-Cela (Polytechnic University, Madrid) Cladoniaceae Supported by research project CGL2013-41839-P. Ministry of Science, Innovation and Universities, Spain. With the collaboration of Prof Soili Stenroos (Finnish Museum of Natural History, Helsinki), Dr Edit Farkas and Dr László Lőkös (Hungarian Academy of Sciences and Hungarian Natural History Museum, Budapest), Dr Mohammad Sohrabi (Iranian Research Organization for Science and Technology, Tehran), Dr Ayhan Şenkardeşler (University of Ege, Izmir, Turkey) and under the auspices of the Spanish Lichen Society (SEL) www.ucm.es/info/seliquen © Sociedad Española de Liquenología (SEL) Depósito Legal: B-18067-2020 ISBN: 978-84-09-21610-9 Impresión: erasOnze Artes Gráficas Cladoniaceae Introduction The Old World Mediterranean Region lies in Southern Central Italy have a temperate climate in the lower levels, Europe, Southeast Asia and Northern Africa, surround- while above the treeline the climate is alpine (for more ing the Mediterranean Sea basin (Fig. 1). Although it information see Nimis 2016). Most of Morocco, Algeria, represents only 1.6% of the land area of the planet, 10% Tunisia and Libya present desert climates. of all known vascular plants grow in this region, 50% of The Mediterranean lichens have been more in- which being endemic (Cowling et al. 1996). The domi- tensely studied in some countries for which a complete nant vegetation in this region is of sclerophyllous type, lichen flora or checklist exist.
    [Show full text]