Phylogenetics of the Florally Diverse Andean Clade Iochrominae (Solanaceae)1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny of the Andean Genus Deprea (Physalideae, Solanaceae): Testing the Generic Circumscription
Phytotaxa 238 (1): 071–081 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.238.1.3 Phylogeny of the Andean genus Deprea (Physalideae, Solanaceae): testing the generic circumscription CAROLINA CARRIZO GARCÍA 1, GREG WAHLERT 2, CLARA INÉS OROZCO 3, GLORIA E. BARBOZA 1,4* & LYNN BOHS 2* 1 Instituto Multidisciplinario de Biología Vegetal (CONICET), Av. Velez Sarsfield 1611, Córdoba, Argentina 2 Department of Biology, University of Utah, 201 South Biology, Salt Lake City, USA 84112 3 Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Entrada Calle 53, Bogotá, Colombia; A. A.7495 4 Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Córdoba, Argentina * Corresponding authors: [email protected]; [email protected] Abstract Deprea (Solanaceae) is a small South American genus of 10 species occurring in Andean areas from Venezuela to Bolivia. The circumscription of Deprea has been repeatedly modified in recent years, with new species being described and others transferred into or out of the genus. The relationships of Deprea to other genera of Solanaceae are still poorly understood, although it seems to be closely related to Larnax. A phylogenetic analysis was performed to test the monophyly of Deprea. Sequences from three molecular markers (nuclear ITS and waxy and chloroplast psbA-trnH) were analyzed by parsimony and Bayesian methods. All the species of Deprea and Larnax sampled were intermixed in a strongly supported clade in the consensus trees, and therefore the currently recognized Deprea species do not form a monophyletic group. -
A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U. -
University of California, San Diego
UNIVERSITY OF CALIFORNIA, SAN DIEGO Evolutionary Genetics of Self-incompatibility in Solanaceae and Papaveraceae A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Timothy Paape Committee in charge: Professor Joshua R. Kohn, Chair Professor Ronald S. Burton Professor Lin Chao Professor Stephen G. Weller Professor Christopher Wills 2009 Copyright Timothy Paape, 2009 All rights reserved. ii The dissertation of Timothy Paape is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego iii Table of Contents Signature Page............................................................................................................. iii Table of Contents ........................................................................................................ iv List of Tables .............................................................................................................. vi List of Figures ............................................................................................................. viii Acknowledgements ..................................................................................................... x Vita and Publications................................................................................................... xi Abstract of the Dissertation ......................................................................................... xiii Chapter I .................................................................................................................... -
A Molecular Phylogeny of the Solanaceae
TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae. -
Color by Numbers: Nuclear Gene Phylogeny of Jaltomata (Solanaceae), Sister Genus to Solanum, Supports Three Clades Differing in Fruit Color Author(S) :Ryan J
Color by Numbers: Nuclear Gene Phylogeny of Jaltomata (Solanaceae), Sister Genus to Solanum, Supports Three Clades Differing in Fruit Color Author(s) :Ryan J. Miller, Thomas Mione, Hanh-La Phan, and Richard G. Olmstead Source: Systematic Botany, 36(1):153-162. 2011. Published By: The American Society of Plant Taxonomists URL: http://www.bioone.org/doi/full/10.1600/036364411X553243 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. PersonIdentityServiceImpl Systematic Botany (2011), 36(1): pp. 153–162 © Copyright 2011 by the American Society of Plant Taxonomists DOI 10.1600/036364411X553243 Color by Numbers: Nuclear Gene Phylogeny of Jaltomata (Solanaceae), Sister Genus to Solanum , Supports Three Clades Differing in Fruit Color Ryan J. Miller , 1 Thomas Mione , 2, 3 Hanh-La Phan , 1 and Richard G. Olmstead 1 1 Department of Biology, University of Washington, Box 355325, Seattle, Washington 98915-5325 U. -
Evolutionary Routes to Biochemical Innovation Revealed by Integrative
RESEARCH ARTICLE Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway Gaurav D Moghe1†, Bryan J Leong1,2, Steven M Hurney1,3, A Daniel Jones1,3, Robert L Last1,2* 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States; 2Department of Plant Biology, Michigan State University, East Lansing, United States; 3Department of Chemistry, Michigan State University, East Lansing, United States Abstract The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome- localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of *For correspondence: [email protected] innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the † Present address: Section of emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non- Plant Biology, School of model plant species that remain underexplored. Integrative Plant Sciences, DOI: https://doi.org/10.7554/eLife.28468.001 Cornell University, Ithaca, United States Competing interests: The authors declare that no Introduction competing interests exist. -
(Trnf) Pseudogenes Defines a Distinctive Clade in Solanaceae Péter Poczai* and Jaakko Hyvönen
Poczai and Hyvönen SpringerPlus 2013, 2:459 http://www.springerplus.com/content/2/1/459 a SpringerOpen Journal SHORT REPORT Open Access Discovery of novel plastid phenylalanine (trnF) pseudogenes defines a distinctive clade in Solanaceae Péter Poczai* and Jaakko Hyvönen Abstract Background: The plastome of embryophytes is known for its high degree of conservation in size, structure, gene content and linear order of genes. The duplication of entire tRNA genes or their arrangement in a tandem array composed by multiple pseudogene copies is extremely rare in the plastome. Pseudogene repeats of the trnF gene have rarely been described from the chloroplast genome of angiosperms. Findings: We report the discovery of duplicated copies of the original phenylalanine (trnFGAA) gene in Solanaceae that are specific to a larger clade within the Solanoideae subfamily. The pseudogene copies are composed of several highly structured motifs that are partial residues or entire parts of the anticodon, T- and D-domains of the original trnF gene. Conclusions: The Pseudosolanoid clade consists of 29 genera and includes many economically important plants such as potato, tomato, eggplant and pepper. Keywords: Chloroplast DNA (cpDNA); Gene duplications; Phylogeny; Plastome evolution; Tandem repeats; trnL-trnF; Solanaceae Findings of this region. If this is ignored, it will easily lead to situa- The plastid trnT-trnF region has been widely applied to tions where basic requirement of homology of the charac- resolve phylogeny of embryophytes (Quandt and Stech ters used for phylogenetic analyses is compromised. This 2004; Zhao et al. 2011) and to address various questions of might lead to false hypotheses of phylogeny, especially population genetics since the development of universal when they are based on the analyses of only this region. -
Capsicum'' 1 Capsicum
''Capsicum'' 1 Capsicum Capsicum Fruit and longitudinal section Scientific classification Kingdom: Plantae (unranked): Angiosperms (unranked): Eudicots (unranked): Asterids Order: Solanales Family: Solanaceae Subfamily: Solanoideae Tribe: Capsiceae Genus: Capsicum [1] L. Species [2] See text For the fruit, see: Chili pepper For the heat simulating chemical in Chili pepper, see: Capsaicin Capsicum is a genus of flowering plants in the nightshade family, Solanaceae. Its species are native to the Americas, where they have been cultivated for thousands of years by the people of the tropical Americas, and are now cultivated worldwide. Some of the members of Capsicum are used as spices, vegetables, and medicines. The fruit of Capsicum plants have a variety of names depending on place and type. They are commonly called chilli pepper, red or green pepper, or sweet pepper in Britain, and typically just capsicum in Australian, New Zealand, and Indian English. The large mild form is called bell pepper in the U.S. and Canada. They are called paprika in some other countries (although paprika can also refer to the powdered spice made from various capsicum fruit). The generic name is derived from the Greek word καπτο (kapto), meaning "to bite" or "to swallow."[3] The original Mexican term, chilli (now chile in Mexico) came from the Nahuatl word chilli or xilli, referring to a larger Capsicum variety cultivated at least since 3000 BC, as evidenced by remains found in pottery from Puebla and Oaxaca.[4] ''Capsicum'' 2 Capsaicin in capsicum The fruit of most species of Capsicum contains capsaicin (methyl vanillyl nonenamide), a lipophilic chemical that can produce a strong burning sensation in the mouth of the unaccustomed eater. -
Kohn JR (2004) Historical Inferences from the Self-Incompatibility Locus
Chapter 5 What Genealogies of S-alleles Tell Us J.R. Kohn Abstract Drawing on examples from S-RNase-based self-incompatibility (SI), S- locus genealogies are used to infer the demographic history of lineages, the history of mating-system transitions in entire plant families and aspects of the evolution of the S-locus itself. Two lineages of Solanaceae suffered severe restrictions of S-locus diversity evident after millions of years. Broadly shared ancestral S-locus polymorphism is evidence that loss of this form of incompatibility was irreversible in the Solanaceae. Frequent and irreversible loss implies incompatibility is either declining in frequency through time, or that it confers an increased diversification rate relative to self-compatibility (SC). Differences in diversification rate among self-incompatible and self-compatible lineages likely cause the failure of current phylogenetic methods to correctly reconstruct the history of SI. Genealogies also show that origination of new S-RNases rarely occurs within the lifetimes of species. Surprisingly, genealogies of F-box genes purported to provide pollen specificity often do not correspond to those of their cognate S-RNases, indicating we have much to learn about how this system works and evolves. Abbreviations cpDNA DNA from plant plastids GSI Gametophytic SI mya Million years ago SC Self-compatibility SCR/SP11 S-locus cysteine-rich protein (the pollen S-determinant in Brassica) J.R. Kohn Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla CA, 92093–0116 USA, e-mail: [email protected] V.E. Franklin-Tong (ed.) Self-Incompatibility in Flowering Plants – Evolution, Diversity, 103 and Mechanisms. -
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? CAMPINAS 2020 TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Biologia Vegetal. Orientador: Prof. Dr. Fernando Roberto Martins ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO/TESE DEFENDIDA PELO ALUNO TIAGO PEREIRA RIBEIRO DA GLORIA E ORIENTADA PELO PROF. DR. FERNANDO ROBERTO MARTINS. CAMPINAS 2020 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Gloria, Tiago Pereira Ribeiro da, 1988- G514c GloComo a variação no número cromossômico pode indicar relações evolutivas entre a Caatinga, o Cerrado e a Mata Atlântica? / Tiago Pereira Ribeiro da Gloria. – Campinas, SP : [s.n.], 2020. GloOrientador: Fernando Roberto Martins. GloDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. Glo1. Evolução. 2. Florestas secas. 3. Florestas tropicais. 4. Poliploide. 5. Ploidia. I. Martins, Fernando Roberto, 1949-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: How can chromosome number -
Thomas Coulter's Californian Exsiccata
Aliso: A Journal of Systematic and Evolutionary Botany Volume 37 Issue 1 Issue 1–2 Article 2 2019 Plantae Coulterianae: Thomas Coulter’s Californian Exsiccata Gary D. Wallace California Botanic Garden, Claremont, CA Follow this and additional works at: https://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Wallace, Gary D. (2020) "Plantae Coulterianae: Thomas Coulter’s Californian Exsiccata," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 37: Iss. 1, Article 2. Available at: https://scholarship.claremont.edu/aliso/vol37/iss1/2 Aliso, 37(1–2), pp. 1–73 ISSN: 0065-6275 (print), 2327-2929 (online) PLANTAE COULTERIANAE: THOMAS COULTER’S CALIFORNIAN EXSICCATA Gary D. Wallace California Botanic Garden [formerly Rancho Santa Ana Botanic Garden], 1500 North College Avenue, Claremont, California 91711 ([email protected]) abstract An account of the extent, diversity, and importance of the Californian collections of Thomas Coulter in the herbarium (TCD) of Trinity College, Dublin, Ireland, is presented here. It is based on examination of collections in TCD, several other collections available online, and referenced literature. Additional infor- mation on historical context, content of herbarium labels and annotations is included. Coulter’s collections in TCD are less well known than partial duplicate sets at other herbaria. He was the first botanist to cross the desert of southern California to the Colorado River. Coulter’s collections in TCD include not only 60 vascular plant specimens previously unidentified as type material but also among the first moss andmarine algae specimens known to be collected in California. A list of taxa named for Thomas Coulter is included. -
Cordell Et Al.: Towards Restoration of Hawaiian Tropical Dry Forests 281
Towards restoration of Hawaiian tropical dry forests: the Kaupulehu outplanting programme SUSAN CORDELL1, MOANA MCCLELLAN2, YVONNE YARBER CARTER3 and LISA J. HADWAY4 Hawaiian tropical dry forests contain diverse assemblages of woody canopy species, including many endemic and endangered species that warrant conservation attention before completely disappearing. Today, tropical dry forests in Hawaii are not viable ecosystems. Poor land use practices, fragmentation, non-native plant invasions, and inadequate native vegetation regeneration are all factors that have contributed to their endangerment. Only an ambitious restoration programme that includes non-native ungulate exclusion, weed control, fire management, and the outplanting of seeds and seedlings will be sufficient to enhance Hawaiian tropical dry forests. We selected a 25 ha preserve within the Kaupulehu Dry Forest Preserve, located in North Kona on the Island of Hawaii, to test dry forest restoration strategies. In 1997, the preserve was fenced and all non-native ungulates were removed. Altogether, 4892 outplants were planted from 1999–2006. In 2007, we surveyed all of the outplants. The survey found 1487 live plants, 3357 dead, and 48 plants missing. This equates to an overall survival rate of 30%. Survival by vegetation type indicated that vines had the highest rate of survival (63%) followed by trees (34%). Herbs had the lowest rate of survival (12%). Twelve of a total of 35 species that were outplanted in the Kaupulehu Dry Forest Preserve accounted for more than 90% of the total surviving plants species, while five federally listed species represent almost 60% of the total. The outplanting of dry forest species into the Kaupulehu Dry Forest Preserve considerably increased the population of many federally listed endangered species.