Physalis Angulata (L.)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physalis Peruviana Linnaeus, the Multiple Properties of a Highly Functional Fruit: a Review
Review Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review Luis A. Puente a,⁎, Claudia A. Pinto-Muñoz a, Eduardo S. Castro a, Misael Cortés b a Universidad de Chile, Departamento de Ciencia de los Alimentos y Tecnología Química. Av. Vicuña Mackenna 20, Casilla, Santiago, Chile b Universidad Nacional de Colombia, Facultad de Ciencias Agropecuarias, Departamento de Ingeniería Agrícola y de Alimento, A.A. 568 Medellin Colombia abstract The main objective of this work is to spread the physicochemical and nutritional characteristics of the Physalis peruviana L. fruit and the relation of their physiologically active components with beneficial effects on human health, through scientifically proven information. It also describes their optical and mechanical properties and presents micrographs of the complex microstructure of P. peruviana L. fruit and studies on the antioxidant Keywords: capacity of polyphenols present in this fruit. Physalis peruviana Bioactive compounds Functional food Physalins Withanolides Contents 1. Introduction .............................................................. 1733 2. Uses and medicinal properties of the fruit ................................................ 1734 3. Microstructural analysis ........................................................ 1734 4. Mechanical properties of the fruit .................................................... 1735 5. Optical properties of the fruit ...................................................... 1735 6. Antioxidant properties of fruit -
Of Physalis Longifolia in the U.S
The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review1 ,2 3 2 2 KELLY KINDSCHER* ,QUINN LONG ,STEVE CORBETT ,KIRSTEN BOSNAK , 2 4 5 HILLARY LORING ,MARK COHEN , AND BARBARA N. TIMMERMANN 2Kansas Biological Survey, University of Kansas, Lawrence, KS, USA 3Missouri Botanical Garden, St. Louis, MO, USA 4Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA 5Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA *Corresponding author; e-mail: [email protected] The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review. The wild tomatillo, Physalis longifolia Nutt., and related species have been important wild-harvested foods and medicinal plants. This paper reviews their traditional use as food and medicine; it also discusses taxonomic difficulties and provides information on recent medicinal chemistry discoveries within this and related species. Subtle morphological differences recognized by taxonomists to distinguish this species from closely related taxa can be confusing to botanists and ethnobotanists, and many of these differences are not considered to be important by indigenous people. Therefore, the food and medicinal uses reported here include information for P. longifolia, as well as uses for several related taxa found north of Mexico. The importance of wild Physalis species as food is reported by many tribes, and its long history of use is evidenced by frequent discovery in archaeological sites. These plants may have been cultivated, or “tended,” by Pueblo farmers and other tribes. The importance of this plant as medicine is made evident through its historical ethnobotanical use, information in recent literature on Physalis species pharmacology, and our Native Medicinal Plant Research Program’s recent discovery of 14 new natural products, some of which have potent anti-cancer activity. -
Phylogeny of the Andean Genus Deprea (Physalideae, Solanaceae): Testing the Generic Circumscription
Phytotaxa 238 (1): 071–081 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.238.1.3 Phylogeny of the Andean genus Deprea (Physalideae, Solanaceae): testing the generic circumscription CAROLINA CARRIZO GARCÍA 1, GREG WAHLERT 2, CLARA INÉS OROZCO 3, GLORIA E. BARBOZA 1,4* & LYNN BOHS 2* 1 Instituto Multidisciplinario de Biología Vegetal (CONICET), Av. Velez Sarsfield 1611, Córdoba, Argentina 2 Department of Biology, University of Utah, 201 South Biology, Salt Lake City, USA 84112 3 Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Entrada Calle 53, Bogotá, Colombia; A. A.7495 4 Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Córdoba, Argentina * Corresponding authors: [email protected]; [email protected] Abstract Deprea (Solanaceae) is a small South American genus of 10 species occurring in Andean areas from Venezuela to Bolivia. The circumscription of Deprea has been repeatedly modified in recent years, with new species being described and others transferred into or out of the genus. The relationships of Deprea to other genera of Solanaceae are still poorly understood, although it seems to be closely related to Larnax. A phylogenetic analysis was performed to test the monophyly of Deprea. Sequences from three molecular markers (nuclear ITS and waxy and chloroplast psbA-trnH) were analyzed by parsimony and Bayesian methods. All the species of Deprea and Larnax sampled were intermixed in a strongly supported clade in the consensus trees, and therefore the currently recognized Deprea species do not form a monophyletic group. -
Colonial Garden Plants
COLONIAL GARD~J~ PLANTS I Flowers Before 1700 The following plants are listed according to the names most commonly used during the colonial period. The botanical name follows for accurate identification. The common name was listed first because many of the people using these lists will have access to or be familiar with that name rather than the botanical name. The botanical names are according to Bailey’s Hortus Second and The Standard Cyclopedia of Horticulture (3, 4). They are not the botanical names used during the colonial period for many of them have changed drastically. We have been very cautious concerning the interpretation of names to see that accuracy is maintained. By using several references spanning almost two hundred years (1, 3, 32, 35) we were able to interpret accurately the names of certain plants. For example, in the earliest works (32, 35), Lark’s Heel is used for Larkspur, also Delphinium. Then in later works the name Larkspur appears with the former in parenthesis. Similarly, the name "Emanies" appears frequently in the earliest books. Finally, one of them (35) lists the name Anemones as a synonym. Some of the names are amusing: "Issop" for Hyssop, "Pum- pions" for Pumpkins, "Mushmillions" for Muskmellons, "Isquou- terquashes" for Squashes, "Cowslips" for Primroses, "Daffadown dillies" for Daffodils. Other names are confusing. Bachelors Button was the name used for Gomphrena globosa, not for Centaurea cyanis as we use it today. Similarly, in the earliest literature, "Marygold" was used for Calendula. Later we begin to see "Pot Marygold" and "Calen- dula" for Calendula, and "Marygold" is reserved for Marigolds. -
Characterisation of Physico-Mechanical Properties and Colour of Physalis Angulata
Characterisation of Physico-Mechanical Properties and Colour of Physalis Angulata Rohmah Luthfiyanti*, Dadang D Hidayat, Raden Cecep Erwan Andriansyah, Nurhaidar Rahman, Taufik Rahman and Ade Chandra Iwansyah Research Centre for Appropriate Technology, Indonesian Institute of Sciences, Jl. KS. Tubun No. 5 Subang, West Java, Indonesia Keywords: Physalis Angulata, Physical Properties, Mechanical Properties. Abstract: This work was conducted to characterise the physical and mechanical properties of Physalis angulata. At a moisture content of 76.50 ± 1.10% wb, the study showed that the average polar, equatorial and geometric diameters were 13.49 ± 0.69 mm, 12.92±0.76 mm, 13.10±0.66 mm. The surface area, mass and volume were 540.19±54.55 mm2, 1.39 ± 0.20 gr and 2.63 ± 0.47 cm3 respectively. The particle and bulk densities were 0.53 ± 0.04 gr/cm3 and 0.42± 0.005 gr/cm3. The sphericity, aspect ratio and porosity ranged from, 97.17 ± 3.51 %, 95.84 ± 5.18%, and 20.26 ± 6.63% respectively. The fruits were spherical, and the colour was pale yellow with the value of CIE l*a*b* and CIE l*c*h* of (37.80 ± 0.010, 1.85 ± 0.023, 10.79 ± 0.006), and (37.80 ± 0.010, 10.95 ± 0.007, 0.002 ± 0.002) respectively. The average hardness, gumminess, adhesiveness, chewiness, cohesiveness , resilience and springiness ranged from 625.01± 101.97 gf, 346.74±64.28 gf, -2.27± 0.60 gf/sec, 27.41±5.79 gf/sec, 0.57± 0.13, 0.32 ± 0.12 and 0.08 ± 0.008 respectively. -
Chemical Components and Bioactivities of Cape Gooseberry (Physalis Peruviana)
International Journal of Food Nutrition and Safety, 2013, 3(1): 15-24 International Journal of Food Nutrition and Safety ISSN: 2165-896X Journal homepage: www.ModernScientificPress.com/Journals/IJFNS.aspx Florida, USA Review Chemical Components and Bioactivities of Cape Gooseberry (Physalis peruviana) Yu-Jie Zhang 1, Gui-Fang Deng 1, Xiang-Rong Xu 2, Shan Wu 1, Sha Li 1, Hua-Bin Li 1, * 1 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China 2 Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-20-87332391; Fax: +86-20-87330446. Article history: Received 10 January 2013, Received in revised form 8 February 2013, Accepted 9 February 2013, Published 12 February 2013. Abstract: Cape gooseberry (Physalis peruviana) is a fruit with high nutritional value and medicinal properties. The fruit has been widely used as a source of vitamins A and C, and minerals, mainly iron and potassium. Physalis peruviana is also a widely used herb in folk medicine for treating cancer, leukemia, hepatitis and other diseases. The whole plant, leaves and roots as well as berries and the surrounding calyx contain several bioactive withanolides. The fruit pomace contained 6.6% moisture, 17.8% protein, 3.10% ash, 28.7% crude fibre and 24.5% carbohydrates. This review summarized chemical components and bioactivities of Physalis peruviana. Keywords: cape gooseberry; goldenberry; Physalis peruviana; chemical component; bioactivity; anticancer. -
A Molecular Phylogeny of the Solanaceae
TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae. -
Iconography of the Solanaceae from Antiquity to the Xviith Century: a Rich Source of Information on Genetic Diversity and Uses
Iconography of the Solanaceae from Antiquity to the XVIIth Century: a Rich Source of Information on Genetic Diversity and Uses Marie-Christine Daunay and Henri Laterrot Jules Janick INRA, Unité de Génétique & Amélioration Department of Horticulture des Fruits et Légumes Landscape Architecture Domaine St. Maurice, BP 94 Purdue University 84143 Montfavet cedex 625 Agriculture Mall Drive France West Lafayette, IN 47907–2010 USA Keywords: alkekenge, belladonna, capsicum pepper, datura, eggplant, henbane, husk tomato, mandrake, nightshades, potato, tobacco, tomato, Renaissance herbals Abstract The systematic study of solanaceous plant iconography has been a neglected source of information although historical records (ceramics, painted and printed images in manuscripts, and printed documents) are numerous. Many wild and domesticated solanaceous species have been associated with human culture from antiquity, as medicinal, ritual or magical herbs and/or food crops in the Old World (alkekenge, belladonna, eggplant, henbane, mandrake) and New World (capsicum pepper, datura, husk tomato, potato, tobacco, tomato). Mandrake (Mandragora spp.) images can be found in Egyptian sources in the second millennium BCE, and along with alkekenge (Physalis alkekengi) and black nightshade (Solanum nigrum aff.) are found in the oldest extant copy of the Materia Medica of Dioscorides (Codex Vindobonensis, Aniciae Julianae, 512 CE), as well as in many later Medieval and Renaissance sources. Images of henbane (Hyocyamus spp.) appears in the VIIIth century while belladonna (Atropa belladonna) first appears in the Renaissance. Images of eggplant (Solanum melongena), an Asian crop, are found in Asian and European manuscripts from the XIVth century onwards. Images of New World species are present in pre-Columbian sources, attesting to their wide use by native populations. -
The Therapeutic Efficacy of Physalis Alkekengi Hydro Alcoholic Extract on Estrogen Receptor-Positive Breast Cancer Mice Model in an Autophagy Manner
Sys Rev Pharm 2020;11(8):118-122 A multifaceted review journal in the field of pharmacy The Therapeutic Efficacy of Physalis Alkekengi Hydro alcoholic Extract on Estrogen Receptor-Positive Breast Cancer Mice Model in an Autophagy Manner 1 2 Ghaith Ali Jasim , Abdolmajid Ghasemian 1Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Emails: [email protected] 2Department of Biology, Central Tehran Branch Islamic Azad University, Tehran, Iran, Email: [email protected] Corresponding author: Ghaith Ali Jasim, Email: [email protected] ABSTRACT Objective: Physalis Alkekengi has several biological activities. Our aim was to Keywords: Physalis Alkekengi, ER+ breast cancer, BALB/c mice, Autophagy assess the anti-cancer effect of hydro alcoholic extract of Physalis Alkekengi on the estrogen receptor-positive breast cancer in mice model. Correspondence: Methods: Twenty-eight ER+ breast cancer BALB/c mice (four groups each Ghaith Ali Jasim including seven members) were enrolled. The P. Alkekengi hydro alcoholic 1Department of Pharmacology and Toxicology, College of Pharmacy, extract (10, 50 and 100 mg/kg) was administered for two weeks against EGFR2 Mustansiriyah University, Baghdad, Iraq, Emails: [email protected] cancerous cells. The tumor size, histopathological features, and mRNA expression amount of ATG5 Autophagy-specific gene were investigated. Results: At the two higher doses (50 and 100 mg/kg), the P. Alkekengi hydro alcoholic extract inhibited the breast cancer growth. Consequently, there was a significant histopathological change in the breast cancer among the groups treated with P. Alkekengi compared to the control group (p=0.0189). Additionally, the P. Alkekengi hydro alcoholic extract significantly enhanced the mRNA expression level of theATG5at 50 mg/kg. -
Germination Biology of Two Invasive Physalis Species and Implications for Their Management in Arid and Semi-Arid Regions
www.nature.com/scientificreports OPEN Germination Biology of Two Invasive Physalis Species and Implications for Their Management Received: 6 April 2017 Accepted: 22 November 2017 in Arid and Semi-arid Regions Published: xx xx xxxx Cumali Ozaslan1, Shahid Farooq 2, Huseyin Onen 2, Selcuk Ozcan3, Bekir Bukun1 & Hikmet Gunal4 Two Solanaceae invasive plant species (Physalis angulata L. and P. philadelphica Lam. var. immaculata Waterfall) infest several arable crops and natural habitats in Southeastern Anatolia region, Turkey. However, almost no information is available regarding germination biology of both species. We performed several experiments to infer the efects of environmental factors on seed germination and seedling emergence of diferent populations of both species collected from various locations with diferent elevations and habitat characteristics. Seed dormancy level of all populations was decreased with increasing age of the seeds. Seed dormancy of freshly harvested and aged seeds of all populations was efectively released by running tap water. Germination was slightly afected by photoperiods, which suggests that seeds are slightly photoblastic. All seeds germinated under wide range of temperature (15–40 °C), pH (4–10), osmotic potential (0 to −1.2 MPa) and salinity (0–400 mM sodium chloride) levels. The germination ability of both plant species under wide range of environmental conditions suggests further invasion potential towards non-infested areas in the country. Increasing seed burial depth signifcantly reduced the seedling emergence, and seeds buried below 4 cm of soil surface were unable to emerge. In arable lands, soil inversion to maximum depth of emergence (i.e., 6 cm) followed by conservational tillage could be utilized as a viable management option. -
(Trnf) Pseudogenes Defines a Distinctive Clade in Solanaceae Péter Poczai* and Jaakko Hyvönen
Poczai and Hyvönen SpringerPlus 2013, 2:459 http://www.springerplus.com/content/2/1/459 a SpringerOpen Journal SHORT REPORT Open Access Discovery of novel plastid phenylalanine (trnF) pseudogenes defines a distinctive clade in Solanaceae Péter Poczai* and Jaakko Hyvönen Abstract Background: The plastome of embryophytes is known for its high degree of conservation in size, structure, gene content and linear order of genes. The duplication of entire tRNA genes or their arrangement in a tandem array composed by multiple pseudogene copies is extremely rare in the plastome. Pseudogene repeats of the trnF gene have rarely been described from the chloroplast genome of angiosperms. Findings: We report the discovery of duplicated copies of the original phenylalanine (trnFGAA) gene in Solanaceae that are specific to a larger clade within the Solanoideae subfamily. The pseudogene copies are composed of several highly structured motifs that are partial residues or entire parts of the anticodon, T- and D-domains of the original trnF gene. Conclusions: The Pseudosolanoid clade consists of 29 genera and includes many economically important plants such as potato, tomato, eggplant and pepper. Keywords: Chloroplast DNA (cpDNA); Gene duplications; Phylogeny; Plastome evolution; Tandem repeats; trnL-trnF; Solanaceae Findings of this region. If this is ignored, it will easily lead to situa- The plastid trnT-trnF region has been widely applied to tions where basic requirement of homology of the charac- resolve phylogeny of embryophytes (Quandt and Stech ters used for phylogenetic analyses is compromised. This 2004; Zhao et al. 2011) and to address various questions of might lead to false hypotheses of phylogeny, especially population genetics since the development of universal when they are based on the analyses of only this region. -
Comparative Chemotaxonomic Investigations on Physalis Angulata Linn
Asian Journal of Applied Sciences (ISSN: 2321 – 0893) Volume 01– Issue 05, December 2013 Comparative Chemotaxonomic Investigations on Physalis angulata Linn. and Physalis micrantha Linn. (Solanaceae) C. Wahua, S. M. Sam Department of Plant Science and Biotechnology University of Port Harcourt, P.M.B. 5323, Choba, Port Harcourt, Nigeria _________________________________________________________________________________________________ ABSTRACT— The present study is set to investigate the comparative micro- and macro-morphological, anatomical, cytological and phytochemical properties of Physalis angulata Linn. and Physalis micrantha Linn., members of the family Solanaceae predominantly found in the Niger Delta Tropics, Nigeria. They are used as vegetable and medicine. Their habits are annual herbaceous plants which attain up to 50cm or more in height. The leaves are simple, ovate and dentate, acuminate at apex, cuneate to rounded at base and petiolate measuring 6 ± 2.47cm in length and 3 ± 1.24cm in width for Physalis angulata Linn. while Physalis micrantha Linn. is 2± 1.64cm in length and 2± 0.84cm with alternate phyllotaxy.Their glabrous stems are angular with hollow and the inflorescence has stalked solitary axilliary flowers. The petals are pale yellowish and sepals greenish which enlarges into an encapsulated 5 lobed, prominently veined,membranous structure housing a many seeded berry fruit measuring 2.5± 1.41cm long for Physalis angulata Linn. and 1± 0.74cm long for Physalis micrantha Linn. The epidermal studies revealed anomocytic stomata whereas the trichomes are simple uniseriate forms and the flowers are axile in placentation borne at nodes. The anatomy of mid-ribs and petioles showed bicollateral vascular systems. There are 3 vascular traces and node is unilacunar in each species, their stems have 5 to 6 vascular bundles, their petioles are associated with 2 rib traces at primary growth phases.