Faraday Rotation of Dy2o3, Cef3 and Y3fe5o12 at the Mid-Infrared Wavelengths

Total Page:16

File Type:pdf, Size:1020Kb

Faraday Rotation of Dy2o3, Cef3 and Y3fe5o12 at the Mid-Infrared Wavelengths materials Article Faraday Rotation of Dy2O3, CeF3 and Y3Fe5O12 at the Mid-Infrared Wavelengths David Vojna 1,2,* , OndˇrejSlezák 1 , Ryo Yasuhara 3 , Hiroaki Furuse 4 , Antonio Lucianetti 1 and Tomáš Mocek 1 1 HiLASE Centre, FZU–Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828, 252 41 Dolní Bˇrežany, Czech Republic; [email protected] (O.S.); [email protected] (A.L.); [email protected] (T.M.) 2 Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Bˇrehová7, 115 19 Prague, Czech Republic 3 National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6, Oroshi-cho, Toki, Gifu 509-5292, Japan; [email protected] 4 Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan; [email protected] * Correspondence: [email protected] Received: 5 October 2020; Accepted: 23 November 2020; Published: 24 November 2020 Abstract: The relatively narrow choice of magneto-active materials that could be used to construct Faraday devices (such as rotators or isolators) for the mid-infrared wavelengths arguably represents a pressing issue that is currently limiting the development of the mid-infrared lasers. Furthermore, the knowledge of the magneto-optical properties of the yet-reported mid-infrared magneto-active materials is usually restricted to a single wavelength only. To address this issue, we have dedicated this work to a comprehensive investigation of the magneto-optical properties of both the emerging (Dy2O3 ceramics and CeF3 crystal) and established (Y3Fe5O12 crystal) mid-infrared magneto-active materials. A broadband radiation source was used in a combination with an advanced polarization-stepping method, enabling an in-depth analysis of the wavelength dependence of the investigated materials’ Faraday rotation. We were able to derive approximate models for the examined dependence, which, as we believe, may be conveniently used for designing the needed mid-infrared Faraday devices for lasers with the emission wavelengths in the 2-µm spectral region. In the case of Y3Fe5O12 crystal, the derived model may be used as a rough approximation of the material’s saturated Faraday rotation even beyond the 2-µm wavelengths. Keywords: Faraday effect; magneto-optical properties; Verdet constant; Faraday rotation; magneto-active materials; yttrium iron garnet; dysprosium sesquioxide; cerium fluoride; Faraday devices; mid-infrared lasers 1. Introduction A considerable amount of attention from the scientific community is currently directed towards the development of the mid-infrared (mid-IR) lasers. The main reason is that these laser sources possess the key properties for a vast number of technological applications (e.g., LiDAR, gas sensing, material processing, or pump sources of optical parametric oscillators [1–3]) and are enabling further advancement of the basic research as well (e.g., in the attosecond science for efficient high harmonic X-ray generation [4–6]). The huge demand for the mid-IR lasers has inevitably led to an intensified development of the corresponding laser sources and optical components [1,7–12]. One of the most commonly used components in laser systems are those based on the Faraday effect, incorporating, for instance, magneto-optical modulators, polarization switches, rotators, deflectors, or isolators. All of these are frequently used for the polarization-based signal processing Materials 2020, 13, 5324; doi:10.3390/ma13235324 www.mdpi.com/journal/materials Materials 2020, 13, 5324 2 of 17 of the laser beam, construction of multi-pass amplifiers, or as a protection of the laser system from back-reflections [13–15]. The fundamental part of these devices is a piece of magneto-active material in which the plane of the polarized radiation is rotated by a certain angle as a result of applying the magnetic field. A great portion of research dedicated to the development of Faraday devices now focuses on the investigation of new magneto-active materials, which would enable running these devices with high efficiency. The basic requirements on an efficient magneto-active material are to exhibit a high Faraday rotation, which is represented by the Verdet constant or the specific Faraday rotation parameters, and low absorption at the incident laser wavelength. In the case of a Faraday device designed for a high average power laser, the list of the material parameters which needs to be further assessed incorporates the thermo-optical, thermo-mechanical and elasto-optical properties of the material [16–19]. While a lot of scientific effort has been already put into the investigation of the magneto-active materials for the visible and near-IR wavelengths, the options for the mid-IR wavelengths are still very limited [18]. The materials used for the near-IR wavelengths usually include Tb3+ ions (e.g., the terbium-based garnets, fluorides or sesquioxides have been reported [20–23]), which have strong absorption in the mid-IR and, therefore, cannot be used. For low-power mid-IR laser applications, the ferrimagnetic yttrium iron garnet Y3Fe5O12 (YIG) crystal and its rare-earth-substituted compositions may be used, as these possess a very high specific Faraday rotation and low saturation magnetization [13,24]. Nevertheless, the fabrication of these crystals is a relatively time-consuming process due to the need for using the floating zone or liquid phase epitaxial methods. These drawbacks have recently prompted researchers to explore the possibility of fabricating the iron garnets in the form of transparent ceramics which would enable reducing the time needed for obtaining the iron-garnet-based magneto-optical elements as well as to manufacture them in larger sizes [25–27]. Most recently, quite a few paramagnetic or diamagnetic mid-IR magneto-active materials have been reported as well. Unlike to the ferrimagnetic iron garnets, the saturation of the Faraday effect is much less pronounced in these materials and, hence, they may be used in the linear regime of operation in which the polarization plane rotation angle is tuned by adjusting the applied magnetic field rather than by adjusting the length of the magneto-optical element. Concerning the paramagnetic materials, favourable optical characteristics for the mid-IR region were reported for fluorides including rare-earth ions [28], specifically for the CeF3, PrF3 and LiREF4 (RE = Dy, Ho or Er). Among these, to the best of our knowledge, only the properties of the CeF3 crystal were further investigated in the context of the Faraday devices [29–32]; and, concerning the mid-IR, its Verdet constant is still known only up to 1.95 µm [31]. Very recently, the mid-IR magneto-optical characteristics were reported for the (DyXY0.95−XLa0.05)2O3 ceramics [33] (with variable doping X = 0.7, 0.8 and 0.9), EuF2 crystal [34], Dy-doped multicomponent glasses [35] and for a tellurium-arsenic-selenium glass [36], all of them showing a great promise for the mid-IR region. In these papers, the room temperature Verdet constant on a single wavelength of ∼1.94 µm was reported for all of the mentioned materials to be in the range of ∼8–15 rad/Tm in the absolute value (see Table1). After the needed optimization of the fabrication process and further characterization, these materials may be used for the mid-IR Faraday devices, nevertheless, given the reported values of the Verdet constant, their use might require relatively strong magnetic fields >2 T. Permanent magnets with such peak magnetic field magnitudes were already reported [37–39]; however, it might be quite challenging to achieve the desired axial magnetic field over the whole needed length of the magneto-optical element. Therefore, searching for a non-ferrimagnetic mid-IR magneto-active material with higher magneto-optical characteristics still represents an up-to-date task. Materials 2020, 13, 5324 3 of 17 Table 1. The yet-reported paramagnetic or diamagnetic mid-IR magneto-active materials and the absolute values of their Verdet constant at ∼1.94 µm [31,33–36]. Material jVj [rad/T.m] @ ∼1.94 µm Magnetic Behaviour CeF3 crystal 10.1 paramagnetic (DyXY0.95−XLa0.05)2O3 ceramics (X = 0.7–0.9) 10.7–13.8 paramagnetic EuF2 crystal 12.3 paramagnetic 75 % wt. Dy3+-doped multicomponent glass 7.9 paramagnetic Te20As30Se50 glass 15.2 diamagnetic In our recent work [40], we have investigated the Verdet constant of a pure Dy2O3 ceramics as a function of wavelength and temperature. Compared to the Dy-Y-La-based ceramics [33], the pure 3+ Dy2O3 has a larger concentration of the highly magnetically active Dy ions, and, thereby, a larger magneto-optical activity was observed at the visible and near-IR wavelengths. In the study, we have specifically demonstrated the importance of consideration of the Dy3+ ion’s multiple transitions contribution to the Verdet constant of the Dy2O3 ceramics, nevertheless, the obtained data in the mid-IR suffered from a large measurement error due to the limited optical quality and short length of the characterized sample. In this paper, we report on the fabrication of a new material sample of Dy2O3 ceramics and a comprehensive investigation of the magneto-optical properties with a focus on the mid-IR region. Apart from the Dy2O3 ceramics, we have also investigated samples of YIG and CeF3 crystals under the same experimental conditions. The knowledge of the magneto-optical properties of both of these materials is incomplete in their mid-IR transparency windows, which, although these materials are commercially available, is currently hampering their practical implementation in the mid-IR Faraday devices. For all samples under investigation, we have measured the optical in-line transmittance (0.3–3 µm) and the Verdet constant dispersion (0.6–2.3 µm for the Dy2O3 ceramics and CeF3 crystal) or the specific Faraday rotation (1.1–2.3 µm for the YIG crystal) at the room temperature.
Recommended publications
  • A Simple Experiment for Determining Verdet Constants Using Alternating
    A simple experiment for determining Verdet constants using alternating current magnetic fields Aloke Jain, Jayant Kumar, Fumin Zhou, and Lian Li Department of Physics, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854 Sukant Tripathy Department of Chemistry, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854 ͑Received 20 July 1998; accepted 15 December 1998͒ A simple experiment suitable for a senior undergraduate and graduate laboratory on the measurement of Faraday rotation using ac magnetic fields is described. The apparatus was used to measure the wavelength dependence of Verdet constants for several materials. A concentration-dependent study on ferric chloride water solution was also carried out to demonstrate that the diamagnetic and paramagnetic contributions to Faraday rotation have opposite signs. © 1999 American Association of Physics Teachers. I. INTRODUCTION in noise. The Verdet constants of several materials com- monly available in the laboratory were determined at differ- Faraday rotation1 is the rotation of the plane of polariza- ent wavelengths and compared with published data.8,9 tion of light due to magnetic-field-induced circular birefrin- gence in a material. In a nonabsorbing or weakly absorbing II. EXPERIMENT medium a linearly polarized monochromatic light beam pass- ing through the material along the direction of the applied The experimental setup is schematically shown in Fig. 1. magnetic field experiences circular birefringence, which re- The conventional large electromagnet is replaced with two sults in rotation of the plane of polarization of the incident 500-turn coils ͑wound with enamelled copper wire 1 mm in light beam. The angle of rotation ␪ can be expressed as ␪ diameter͒.
    [Show full text]
  • Solid State Laser
    SOLID STATE LASER Edited by Amin H. Al-Khursan Solid State Laser Edited by Amin H. Al-Khursan Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Solid State Laser, Edited by Amin H.
    [Show full text]
  • Main Types of Lasers Used for Manufacturing- Key Properties and Key Applications
    Main Types of Lasers Used for Manufacturing- Key Properties and Key Applications Tom Kugler Fiber Systems Mgr. Laser Mechanisms, Inc. www.lasermech.com LME 2011 Topics • Laser Output Wavelengths • Laser Average Power • Laser Output Waveforms (Pulsing) • Laser Peak Power • Laser Beam Quality (Focusability) • Key Properties • Key Applications • Beam Delivery Styles 2 Tom Kugler- Laser Mechanisms Compared to standard light sources… • Laser Light is Collimated- the light rays are parallel to and diverge very slowly- they stay concentrated over long distances- that is a “laser beam” • Laser Light has high Power Density- parallel laser light has a power density in watts/cm2 that is over 1000 times that of ordinary incandescent light • Laser Light is Monochromatic- one color (wavelength) so optics are simplified and perform better • Laser light is highly Focusable- low divergence, small diameter beams, and monochromatic light mean the laser can be focused to a small focal point producing power densities at focus 1,000,000,000 times more than ordinary light. 3 Tom Kugler- Laser Mechanisms Laser Light • 100W of laser light focused to a diameter of 100um produces a power density of 1,270,000 Watts per square centimeter! 4 Tom Kugler- Laser Mechanisms Examples of Laser Types • Gas Lasers: Electrical Discharge in a Gas Mixture Excites Laser Action: – Carbon Dioxide (CO2) – Excimer (XeCl, KrF, ArF, XeF) • Light Pumped Solid State Lasers: Light from Lamps or Diodes Excites Ions in a Host Crystal or Glass: – Nd:YAG (Neodymium doped Yttrium Aluminum
    [Show full text]
  • Rietmann St., Biela J., Sensor Design for a Current Measurement System with High Bandwidth and High
    Sensor Design for a Current Measurement System with High Bandwidth and High Accuracy Based on the Faraday Effect St. Rietmann, J. Biela Power Electronic Systems Laboratory, ETH Zürich Physikstrasse 3, 8092 Zürich, Switzerland „This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of ETH Zürich’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional pur- poses or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document you agree to all provisions of the copyright laws protecting it.” Sensor Design for a Current Measurement System with High Bandwidth and High RIETMANN Stefan Accuracy Based on the Faraday Effect Sensor Design for a Current Measurement System with High Bandwidth and High Accuracy Based on the Faraday Effect Stefan Rietman and Jurgen¨ Biela Laboratory for High Power Electronic Systems, ETH Zurich, Switzerland Keywords Current Sensor, Sensor, Transducer, Frequency-Domain Analysis Abstract This paper presents the design of the optical system of a current sensor with a wide bandwidth and a high accuracy. The principle is based on the Faraday effect, which describes the effect of magnetic fields on linearly polarized light in magneto-optical material. To identify suitable materials for the optical system the main requirements and specification are determined. A theoretical description of the optical system shows a maximal applicable magnetic field frequency due to the finite velocity of light inside the material.
    [Show full text]
  • Measurement of Verdet Constant in Diamagnetic Glass Using Faraday Effect
    18Kasetsart J. (Nat. Sci.) 40 : 18 - 23 (2006) Kasetsart J. (Nat. Sci.) 40(5) Measurement of Verdet Constant in Diamagnetic Glass Using Faraday Effect Kheamrutai Thamaphat, Piyarat Bharmanee and Pichet Limsuwan ABSTRACT Many materials exhibit what is called circular dichroism when placed in an external magnetic field. An equivalent statement would be that the two circular polarizations have different refractive indices in the presence of the field. For linearly polarized light, the plane of polarization rotates as it propagates through the material, a phenomenon that is called the Faraday effect. The angle of rotation is proportional to the product of magnetic field, path length through the sample and a constant known as the Verdet constant. The objectives of this experiment are to measure the Verdet constant for a sample of dense flint glass using Faraday effect and to compare its value to a theoretical calculated value. The experimental values for wavelength of 505 and 525 nm are V = 33.1 and 28.4 rad/T m, respectively. While the theoretical calculated values for wavelength of 505 and 525 nm are V = 33.6 and 30.4 rad/T m, respectively. Key words: verdet constant, diamagnetic glass, faraday effect INTRODUCTION right- and left-handed circularly polarized light are different. This effect manifests itself in a rotation Many important applications of polarized of the plane of polarization of linearly polarized light involve materials that display optical activity. light. This observable fact is called magnetooptic A material is said to be optically active if it rotates effect. the plane of polarization of any light transmitted Magnetooptic effects are those effects in through the material.
    [Show full text]
  • The Faraday Effect
    Faraday 1 The Faraday Effect Objective To observe the interaction of light and matter, as modified by the presence of a magnetic field, and to apply the classical theory of matter to the observations. You will measure the Verdet constant for several materials and obtain the value of e/m, the charge to mass ratio for the electron. Equipment Electromagnet (Atomic labs, 0028), magnet power supply (Cencocat. #79551, 50V-5A DC, 32 & 140 V AC, RU #00048664), gaussmeter (RFL Industries), High Intensity Tungsten Filament Lamp, three interference filters, volt-ammeter (DC), Nicol prisms (2), glass samples (extra dense flint (EDF), light flint (LF), Kigre), sample holder (PVC), HP 6235A Triple output power supply, HP 34401 Multimeter, Si photodiode detector. I. Introduction If any transparent solid or liquid is placed in a uniform magnetic field, and a beam of plane polarized light is passed through it in the direction parallel to the magnetic lines of force (through holes in the pole shoes of a strong electromagnet), it is found that the transmitted light is still plane polarized, but that the plane of polarization is rotated by an angle proportional to the field intensity. This "optical rotation" is called the Faraday rotation (or Farady effect) and differs in an important respect from a similar effect, called optical activity, occurring in sugar solutions. In a sugar solution, the optical rotation proceeds in the same direction, whichever way the light is directed. In particular, when a beam is reflected back through the solution it emerges with the same polarization as it entered before reflection.
    [Show full text]
  • High Power Ultrafast Yb:Fiber Laser a Thesis Presented by Xinlong Li To
    High Power Ultrafast Yb:fiber Laser A Thesis presented by Xinlong Li to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Master of Science in Instrumentation (Physics) Stony Brook University August 2015 Stony Brook University The Graduate School Xinlong Li We, the thesis committe for the above candidate for the Master of Science degree, hereby recommend acceptance of this thesis Thomas K.Allison - Thesis Advisor Assistant Professor, Department of Physics and Astronomy, Department of Chemistry Eden Figueroa - Committee Member Assistant Professor, Department of Physics and Astronomy Matthew Dawber - Committee Member Associate Professor, Department of Physics and Astronomy Meigan C. Aronson - Committee Member Professor, Department of Physics and Astronomy This thesis is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Abstract of the Thesis High Power Ultrafast Yb:fiber Laser by Xinlong Li Master of Science in Instrumentation (Physics) Stony Brook University 2015 High power ultrafast laser pulses have broad applications in many fields such as mi- cromachining, real time imaging of ultrafast process, and frequency-comb-based precision spectroscopy, enabling large numbers of breakthroughs in science and technology. They even open the door to the attosecond (10−18 s) world via high harmonic generation thus gaining the insight into a wide range of electron dynamics. In this thesis, I present a linearly amplified Yb:fiber laser with 55 W average output power and 150 fs pulse duration. This laser is used for cavity-enhanced high harmonic generation to produce high-repetition-rate (78 MHz) extreme ultraviolet (XUV) femtosecond pulses. iii Contents List of Figures v List of Tables viii Acknowledgement ix 1 Introduction 1 1.1 Mode-Locking .
    [Show full text]
  • Tutorial: Fiber-Coupled Laser Diode Basics
    Tutorial: fiber-coupled laser diode basics Fiber coupled laser diodes: this tutorial provides an overview of the technical properties of fiber- coupled laser diodes. The various laser diode families such as DFB laser diodes or multi-emitter high power laser diodes will be described in this tutorial. I. Introduction Laser diodes are everywhere today. They are the simplest element to convert electrical power into laser power. Laser diodes are based on several semiconductor assembled materials (GaAs, InP or other more complex structures like GaN). Singlemode laser diodes are low power laser diodes (typically <1W) whereas multimode laser diodes are much higher power devices (typically >10 W up to several kW). II. Optical fibers: Two types of active fibers are commonly used to couple the light coming in from a laser diode: • Single mode fibers have a core of typically a few µm (for example ~6 µm around a wavelength of 1 µm, and 9 µm around a wavelength of 1.5 µm) • Multimode fibers are larger diameter fibers that can handle a much higher level of optical power. Standard versions have typically 62, 100, 200, 400, 800, or even > 1000 µm core diameter. For example, the smaller the diameter, the easier it is to focus to a small spot the light coming from the fiber with a lens or a microscope objective. Figure 1: Principle of a single mode or multi-mode fiber. The fiber core is much larger when considering a multimode fiber. • Polarization Maintaining fibers: Singlemode laser diode can be either standard (SMF) or Polarization maintaining (PM). In the latter, the optical fiber has a special clad structure which allows the maintenance of the polarization of light all along the fiber length.
    [Show full text]
  • Faraday Rotation Measurement Using a Lock-In Amplifier Sidney Malak, Itsuko S
    Faraday rotation measurement using a lock-in amplifier Sidney Malak, Itsuko S. Suzuki, and Masatsugu Sei Suzuki Department of Physics, State University of New York at Binghamton (Date: May 14, 2011) Abstract: This experiment is designed to measure the Verdet constant v through Faraday effect rotation of a polarized laser beam as it passes through different mediums, flint Glass and water, parallel to the magnetic field B. As the B varies, the plane of polarization rotates and the transmitted beam intensity is observed. The angle through which it rotates is proportional to B and the proportionality constant is the Verdet constant times the optical path length. The optical rotation of the polarized light can be understood circular birefringence, the existence of different indices of refraction for the left-circularly and right-circularly polarized light components. The linearly polarized light is equivalent to a combination of the right- and left circularly polarized components. Each component is affected differently by the applied magnetic field and traverse the system with a different velocity, since the refractive index is different for the two components. The end result consists of left- and right-circular components that are out of phase and whose superposition, upon emerging from the Faraday rotation, is linearly polarized light with its plane of polarization rotated relative to its original orientation. ________________________________________________________________________ Michael Faraday, FRS (22 September 1791 – 25 August 1867) was an English chemist and physicist (or natural philosopher, in the terminology of the time) who contributed to the fields of electromagnetism and electrochemistry. Faraday studied the magnetic field around a conductor carrying a DC electric current.
    [Show full text]
  • Epilog's Fiber Laser Guidebook to Industrial Etching & Marking Table of Contents
    EPILOG'S FIBER LASER GUIDEBOOK TO INDUSTRIAL ETCHING & MARKING TABLE OF CONTENTS Introduction ����������������������������������������������� 2 How a Fiber Laser Works �������������������������������������� 3 Compatible Materials ����������������������������������������� 4 Non-Compatible Materials ������������������������������������� 5 Types of Marks ��������������������������������������������� 6 Commonly Marked Products ������������������������������������ 7 How to Engrave with a Fiber Laser �������������������������������� 8 General Processing Guidelines ��������������������������������� 10 How to Reduce Overall Cycle Times ������������������������������ 11 Be Creative For Better Results ���������������������������������� 12 Beam Delivery Options �������������������������������������� 13 FAQS on Fiber Laser Systems ���������������������������������� 14 Suggested Material Settings ����������������������������������� 16 Annealing & Polishing of Metals �������������������������������� 20 Deep Metal Engraving ��������������������������������������� 22 Passivation ����������������������������������������������� 23 General Plastic Marking Guidelines ������������������������������ 25 Vector Scoring/Cutting Guidelines ������������������������������� 27 Common Types of Stainless Steel ������������������������������� 28 Common Types of Aluminum ���������������������������������� 33 Technical Specifications �������������������������������������� 37 Dual Source Opportunities ������������������������������������ 39 Defining Types of Lasers �������������������������������������
    [Show full text]
  • Ixblue Presentation at Advanced Fiber Laser
    Advanced – State of the Art – Fiber solutions and LiNbO3 Modulators and pulse generators for Fiber Lasers Dr Shuo ZHANG iXblue Photonics [email protected] High-Technology Independent Company 750+ employees 80% export 140+ M€ turnover Founded in 2000 iXblue in France Lannion Saint-Germain-en-Laye 8 industrial Specialty Fibers Navigation sites Navigation Headquarters Besançon 100% of R&D Integrated optics Brest Bonneuil- and production Underwater Acoustic sur-Marne Positioning Motion Systems as well as Acoustic Labcom 90% of suppliers located in France St Etienne Bordeaux Hardened optical fibers Labcom Cold Atoms Labcom Joint Research Laboratories La Ciotat Sonars Sea Operations Shipyard 1- AFL Topic 1: Fiber and Fiber based devices - Fiber and Fiber based devices offer for the laser world - Key Electro-optic modulation solutions for the laser world 2- AFL Topic 2: High power fiber laser - The laser seeder for the high Energy Industrial Lasers - Pump seeder source for Petawatt lasers based on OPCPA - The laser seeder for scientific High Energy Density Lasers TABLE OF - The diagnosis fibers for scientific High Energy Density Lasers 3- AFL Topic 3: Ultrafast fiber laser and nonlinear fiber optics CONTENT - Femtoscond Fiber Lasers and fibers solutions 4- AFL Topic 5: Beam combination of fiber lasers - The right electro-optical modulator for Coherent Beam Combining (CBC) lasers - The electro-optical modulators offer for Spectral Beam Combining (SBC) lasers 4- AFL Topic 6: Fiber laser application - 2 µm Fibre lasers for medical and defense
    [Show full text]
  • Diode-Pumped Solid-State Q-Switched Laser with Rhenium Diselenide As Saturable Absorber
    applied sciences Article Diode-Pumped Solid-State Q-Switched Laser with Rhenium Diselenide as Saturable Absorber Chun Li 1,2,3 , Yuxin Leng 2,* and Jinjin Huo 4 1 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; [email protected] 2 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Jingjiang Photoelectric Technology Co. Ltd., Jinan 250000, China; [email protected] * Correspondence: [email protected] Received: 7 August 2018; Accepted: 20 September 2018; Published: 28 September 2018 Abstract: We report a solid-state passively Q-switched Nd:YVO4 laser adopting rhenium diselenide (ReSe2) as saturable absorber (SA) materials. ReSe2 belongs to a type of transition metal dichalcogenides (TMDs) materials and it has the weak-layered dependent feature beneficial for the preparation of few-layer materials. The few-layer ReSe2 was prepared by ultrasonic exfoliation method. Using a power-dependent transmission experiment, its modulation depth and saturation intensity were measured to be 1.89% and 2 6.37 MW/cm . Pumped by diode laser and based on few-layer ReSe2 SA, the Q-switched Nd:YVO4 laser obtained the shortest Q-switched pulse width of 682 ns with the highest repetition rate of 84.16 kHz. The maximum average output power was 125 mW with the slope efficiency of 17.27%. Our experiment, to the best of our knowledge, is the first demonstration that used ReSe2 as SA materials in an all-solid-state laser.
    [Show full text]