Design and Construction of a Potassium Faraday Filter for Potassium Lidar System Daytime Operation at Arecibo Observatory

Total Page:16

File Type:pdf, Size:1020Kb

Design and Construction of a Potassium Faraday Filter for Potassium Lidar System Daytime Operation at Arecibo Observatory 2002:373 CIV EXAMENSARBETE Design and Construction of a Potassium Faraday Filter for Potassium Lidar System Daytime Operation at Arecibo Observatory JONAS HEDIN MASTER OF SCIENCE PROGRAMME in Space Engineering Luleå University of Technology Department of Space Science, Kiruna 2002:373 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 02/373 - - SE Abstract Presented here in this thesis is the project work performed for the Master of Science degree in Space Engineering from Luleå University of technology, Sweden. This project work was conducted at the Arecibo Observatory in Arecibo, Puerto Rico, where I, during 6 months, designed and built a Potassium (K) -vapor Faraday filter to make daytime lidar observations of the mesopause region (80-105 km altitude) in the atmosphere a reality. The K Doppler-resonance lidar at the Arecibo Observatory is used to probe the temperature structure of the mesopause region. The climatology of this region is of vital importance in the understanding of earth’s climate system. The effects of global change are expected to be reflected strongly in the mesopause region, where tropospheric global warming will cause substantial cooling. This thesis will talk more about the background for making lidar observations of the mesopause region and the need for extending this observation to, not just nighttime, but also to daytime by making a filter that blocks broadband background skylight and only lets the ultra-narrow band signal pass. The thesis will present and explain the physical effects applied in the filter, such as anomalous dispersion and absorption at resonance frequency, the Zeeman effect and Faraday rotation. The filter characteristics will be given and the function of the filter will be explained. A computer program to determine the filter parameters (magnetic field strength, operating temperature and K-vapor cell length) is explained briefly and attached as an appendix, and the design and integration of the filter will be shown. The design and construction is based on a magnetic field strength of 1.3 kG, a temperature of 114˚C and a K-vapor cell length of 40 mm, which will give a full width half maximum (FWHM) of 5 pm for the filter. This is wide enough for a 99% transmission (for already polarized incident light and without reflection in the optical surfaces in the filter) of the three frequencies used in the observations. i Acknowledgements First I would like to thank my project advisor Dr. Jonathan S. Friedman, Department of Space and Atmospheric Sciences, Cornell University, Arecibo Observatory, for presenting me with a challenging project and for introducing me to the field of lidar based observations of the middle atmosphere. Secondly I would like to thank Raúl Garcia for all the help and guidance in the construction of the parts of the filter. I would also like to express my thanks to the Electronics Department staff for advice and help when this was needed, to Dr. Biff Williams of the Colorado State University lidar group for letting me use and modify his program for determining the filter parameters and answering questions about its operation, and to Dr. Josef Höffner at the Institute of Atmospheric Physics (IAP) in Kühlungsborn, Germany, for information regarding filter construction. Many thanks to my family and to a very special person for their support and for believing in me. And finally big thanks to everyone else who made my work and stay at the observatory so very pleasant. The work presented in this thesis has been performed at the Arecibo Observatory in Puerto Rico. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. ii Table of contents Abstract....................................................................................................................................... i Acknowledgements.................................................................................................................... ii Chapter 1. Introduction ...............................................................................................................1 Chapter 2. Physical Effects of the Filter .....................................................................................5 2.1 Dispersion .........................................................................................................................5 2.1.1 Normal dispersion......................................................................................................5 2.1.2 Anomalous dispersion................................................................................................6 2.2 Zeeman Effect...................................................................................................................8 2.3 Faraday Rotation.............................................................................................................12 2.3.1 Classical theory........................................................................................................12 2.3.2 Electromagnetic theory ............................................................................................13 Chapter 3. Filter Characteristics ...............................................................................................15 3.1 Filter transmission...........................................................................................................15 3.2 Filter description .............................................................................................................20 Chapter 4. Filter Design and Construction ...............................................................................22 4.1 Determining the filter parameters ...................................................................................22 4.2 Designing and constructing the filter..............................................................................24 4.3 Integration.......................................................................................................................30 Chapter 5. Conclusion and Discussion .....................................................................................31 5.1 Tests ................................................................................................................................31 5.2 Future improvements ......................................................................................................32 Appendix A...............................................................................................................................33 A.1 Main Program ................................................................................................................33 A.2 The Hjerting Function....................................................................................................40 A.3 The Rachkovsky Function .............................................................................................42 A.4 Dialog Select..................................................................................................................44 List of References .....................................................................................................................46 iii Chapter 1. Introduction The mesopause region of the atmosphere is a 25 km thick layer at an altitude from 80 to 105 km and is the boundary between the ionosphere and the neutral Atmosphere. This region has many properties that make it both interesting and difficult to study [1]. At and below this region, molecules, neutrals and neutral-ion chemistry are predominant and the atmospheric density is such that turbulence still occurs. Above, there is no turbulence and the atoms and atomic ions drift almost freely only driven by daily heating and cooling cycles and perturbed by braking gravity waves. The mesopause is the coldest region of the atmosphere with temperature minima in the range of 170–200 K (see Figure 1.1), and also the region where meteors deposit much of their material as they “burn up” when entering the atmosphere, creating metallic layers (the E-layer). The temperature here is colder in the summer than in the winter. It has been observed that this temperature difference is bigger at high latitudes and smaller at low latitudes and should become practically zero at the equator. Figure 1.1. Temperature profile of the atmosphere. [2] The climatology of the mesopause region is of vital importance in the understanding of the climate system of the earth. The effects of global change are expected to be reflected strongly in the mesopause region, where tropospheric global warming will cause significant cooling. There are different ways to study the mesopause. One is by optical observations of airglow emission from OH, O 2 and O. This gives some information of the chemistry and the winds but uncertain and incomplete altitude coverage. Another way is by Incoherent Scatter Radar (ISR) studies of the region, but mostly at daytime hours when the electron density is higher. At night ISR will only see the narrow sporadic E layers or descending tidal ions. Satellites are only good for higher altitude and cannot dip down that low in their orbit to do in-situ measurements. Of course, rockets can make in-situ measurements, but only occasional spot observations and at great expense. The best and easiest way to study the mesopause region is by utilizing lidars. The existence of the metallic layer (see Figure 1.2) makes it possible
Recommended publications
  • Polarizer QWP Mirror Index Card
    PH 481 Physical Optics Winter 2014 Laboratory #8 Week of March 3 Read: pp. 336-344, 352-356, and 360-365 of "Optics" by Hecht Do: 1. Experiment VIII.1: Birefringence and Optical Isolation 2. Experiment VIII.2: Birefringent crystals: double refraction 3. Experiment VIII.3: Optical activity: rotary power of sugar Experiment VIII.1: Birefringence and Optical Isolation In this experiment the birefringence of a material will be used to change the polarization of the laser beam. You will use a quarter-wave plate and a polarizer to build an optical isolator. This is a useful device that ensures that light is not reflected back into the laser. This has practical importance since light reflected back into a laser can perturb the laser operation. A quarter-wave plate is a specific example of a retarder, a device that introduces a phase difference between waves with orthogonal polarizations. A birefringent material has two different indices of refraction for orthogonal polarizations and so is well suited for this task. We will refer to these two directions as the fast and slow axes. A wave polarized along the fast axis will move through the material faster than a wave polarized along the slow axis. A wave that is linearly polarized along some arbitrary direction can be decomposed into its components along the slow and fast axes, resulting in part of the wave traveling faster than the other part. The wave that leaves the material will then have a more general elliptical polarization. A quarter-wave plate is designed so that the fast and slow Laser components of a wave will experience a relative phase shift of Index Card π/2 (1/4 of 2π) upon traversing the plate.
    [Show full text]
  • Lab 8: Polarization of Light
    Lab 8: Polarization of Light 1 Introduction Refer to Appendix D for photos of the appara- tus Polarization is a fundamental property of light and a very important concept of physical optics. Not all sources of light are polarized; for instance, light from an ordinary light bulb is not polarized. In addition to unpolarized light, there is partially polarized light and totally polarized light. Light from a rainbow, reflected sunlight, and coherent laser light are examples of po- larized light. There are three di®erent types of po- larization states: linear, circular and elliptical. Each of these commonly encountered states is characterized Figure 1: (a)Oscillation of E vector, (b)An electromagnetic by a di®ering motion of the electric ¯eld vector with ¯eld. respect to the direction of propagation of the light wave. It is useful to be able to di®erentiate between 2 Background the di®erent types of polarization. Some common de- vices for measuring polarization are linear polarizers and retarders. Polaroid sunglasses are examples of po- Light is a transverse electromagnetic wave. Its prop- larizers. They block certain radiations such as glare agation can therefore be explained by recalling the from reflected sunlight. Polarizers are useful in ob- properties of transverse waves. Picture a transverse taining and analyzing linear polarization. Retarders wave as traced by a point that oscillates sinusoidally (also called wave plates) can alter the type of polar- in a plane, such that the direction of oscillation is ization and/or rotate its direction. They are used in perpendicular to the direction of propagation of the controlling and analyzing polarization states.
    [Show full text]
  • (EM) Waves Are Forms of Energy That Have Magnetic and Electric Components
    Physics 202-Section 2G Worksheet 9-Electromagnetic Radiation and Polarizers Formulas and Concepts Electromagnetic (EM) waves are forms of energy that have magnetic and electric components. EM waves carry energy, not matter. EM waves all travel at the speed of light, which is about 3*108 m/s. The speed of light is often represented by the letter c. Only small part of the EM spectrum is visible to us (colors). Waves are defined by their frequency (measured in hertz) and wavelength (measured in meters). These quantities are related to velocity of waves according to the formula: 풗 = 흀풇 and for EM waves: 풄 = 흀풇 Intensity is a property of EM waves. Intensity is defined as power per area. 푷 푺 = , where P is average power 푨 o Intensity is related the magnetic and electric fields associated with an EM wave. It can be calculated using the magnitude of the magnetic field or the electric field. o Additionally, both the average magnetic and average electric fields can be calculated from the intensity. ퟐ ퟐ 푩 푺 = 풄휺ퟎ푬 = 풄 흁ퟎ Polarizability is a property of EM waves. o Unpolarized waves can oscillate in more than one orientation. Polarizing the wave (often light) decreases the intensity of the wave/light. o When unpolarized light goes through a polarizer, the intensity decreases by 50%. ퟏ 푺 = 푺 ퟏ ퟐ ퟎ o When light that is polarized in one direction travels through another polarizer, the intensity decreases again, according to the angle between the orientations of the two polarizers. ퟐ 푺ퟐ = 푺ퟏ풄풐풔 휽 this is called Malus’ Law.
    [Show full text]
  • Finding the Optimal Polarizer
    Finding the Optimal Polarizer William S. Barbarow Meadowlark Optics Inc., 5964 Iris Parkway, Frederick, CO 80530 (Dated: January 12, 2009) ”I have an application requiring polarized light. What type of polarizer should I use?” This is a question that is routinely asked in the field of polarization optics. Many applications today require polarized light, ranging from semiconductor wafer processing to reducing the glare in a periscope. Polarizers are used to obtain polarized light. A polarizer is a polarization selector; generically a tool or material that selects a desired polarization of light from an unpolarized input beam and allows it to transmit through while absorbing, scattering or reflecting the unwanted polarizations. However, with five different varieties of linear polarizers, choosing the correct polarizer for your application is not easy. This paper presents some background on the theory of polarization, the five different polarizer categories and then concludes with a method that will help you determine exactly what polarizer is best suited for your application. I. POLARIZATION THEORY - THE TYPES OF not ideal, they transmit less than 50% of unpolarized POLARIZATION light or less than 100% of optimally polarized light; usu- ally between 40% and 98% of optimally polarized light. Light is a transverse electromagnetic wave. Every light Polarizers also have some leakage of the light that is not wave has a direction of propagation with electric and polarized in the desired direction. The ratio between the magnetic fields that are perpendicular to the direction transmission of the desired polarization direction and the of propagation of the wave. The direction of the electric undesired orthogonal polarization direction is the other 2 field oscillation is defined as the polarization direction.
    [Show full text]
  • A Simple Experiment for Determining Verdet Constants Using Alternating
    A simple experiment for determining Verdet constants using alternating current magnetic fields Aloke Jain, Jayant Kumar, Fumin Zhou, and Lian Li Department of Physics, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854 Sukant Tripathy Department of Chemistry, Center for Advanced Materials, University of Massachusetts Lowell, Lowell, Massachusetts 01854 ͑Received 20 July 1998; accepted 15 December 1998͒ A simple experiment suitable for a senior undergraduate and graduate laboratory on the measurement of Faraday rotation using ac magnetic fields is described. The apparatus was used to measure the wavelength dependence of Verdet constants for several materials. A concentration-dependent study on ferric chloride water solution was also carried out to demonstrate that the diamagnetic and paramagnetic contributions to Faraday rotation have opposite signs. © 1999 American Association of Physics Teachers. I. INTRODUCTION in noise. The Verdet constants of several materials com- monly available in the laboratory were determined at differ- Faraday rotation1 is the rotation of the plane of polariza- ent wavelengths and compared with published data.8,9 tion of light due to magnetic-field-induced circular birefrin- gence in a material. In a nonabsorbing or weakly absorbing II. EXPERIMENT medium a linearly polarized monochromatic light beam pass- ing through the material along the direction of the applied The experimental setup is schematically shown in Fig. 1. magnetic field experiences circular birefringence, which re- The conventional large electromagnet is replaced with two sults in rotation of the plane of polarization of the incident 500-turn coils ͑wound with enamelled copper wire 1 mm in light beam. The angle of rotation ␪ can be expressed as ␪ diameter͒.
    [Show full text]
  • Lecture 14: Polarization
    Matthew Schwartz Lecture 14: Polarization 1 Polarization vectors In the last lecture, we showed that Maxwell’s equations admit plane wave solutions ~ · − ~ · − E~ = E~ ei k x~ ωt , B~ = B~ ei k x~ ωt (1) 0 0 ~ ~ Here, E0 and B0 are called the polarization vectors for the electric and magnetic fields. These are complex 3 dimensional vectors. The wavevector ~k and angular frequency ω are real and in the vacuum are related by ω = c ~k . This relation implies that electromagnetic waves are disper- sionless with velocity c: the speed of light. In materials, like a prism, light can have dispersion. We will come to this later. In addition, we found that for plane waves 1 B~ = ~k × E~ (2) 0 ω 0 This equation implies that the magnetic field in a plane wave is completely determined by the electric field. In particular, it implies that their magnitudes are related by ~ ~ E0 = c B0 (3) and that ~ ~ ~ ~ ~ ~ k · E0 =0, k · B0 =0, E0 · B0 =0 (4) In other words, the polarization vector of the electric field, the polarization vector of the mag- netic field, and the direction ~k that the plane wave is propagating are all orthogonal. To see how much freedom there is left in the plane wave, it’s helpful to choose coordinates. We can always define the zˆ direction as where ~k points. When we put a hat on a vector, it means the unit vector pointing in that direction, that is zˆ=(0, 0, 1). Thus the electric field has the form iω z −t E~ E~ e c = 0 (5) ~ ~ which moves in the z direction at the speed of light.
    [Show full text]
  • Polarization of Light Demonstration This Demonstration Explains Transverse Waves and Some Surprising Properties of Polarizers
    Polarization of Light Demonstration This demonstration explains transverse waves and some surprising properties of polarizers. Number of Participants: Unlimited Audience: Middle (ages 11-13) and up Duration: 5-10 min Microbehunter Difficulty: Level 1 Materials Required: • 3 sheets of polarizing film – at least (20mm)2 • Long spring or Slinky Setup: 1. If necessary, prepare polarizing sheets by cutting a larger sheet into smaller pieces. While larger pieces of polarizing material are preferred, the demonstration works with smaller pieces. Presenter Brief: Light is a transverse wave because its two components, electric and magnetic fields, oscillate perpendicular to the direction of propagation. In general, a beam of light will consist of many photons traveling in the same direction but with arbitrary alignment of their electric and magnetic fields. Specifically, for an unpolarized light beam the electromagnetic components of each photon, while confined to a plane, are not aligned. If light is polarized, photons have aligned electromagnetic components and travel in the same direction. Polarization of Light Vocabulary: • Light – Electromagnetic radiation, which can be in the visible range. • Electromagnetic – A transverse wave consisting of oscillating electric and magnetic components. • Transverse wave – A wave consisting of oscillations perpendicular to the direction of propagation. • Polarized light – A beam of photons propagating with aligned oscillating components.Polarizer – A material which filters homogenous light along a singular axis and thus blocks arbitrary orientations and allows a specific orientation of oscillations. Physics & Explanation: Middle (ages 11-13) and general public: Light, or an electromagnetic wave, is a transverse wave with oscillating electric and magnetic components. Recall that in a transverse wave, the vibrations,” or oscillations, are perpendicular to the direction of propagation.
    [Show full text]
  • Ellipsometry
    AALBORG UNIVERSITY Institute of Physics and Nanotechnology Pontoppidanstræde 103 - 9220 Aalborg Øst - Telephone 96 35 92 15 TITLE: Ellipsometry SYNOPSIS: This project concerns measurement of the re- fractive index of various materials and mea- PROJECT PERIOD: surement of the thickness of thin films on sili- September 1st - December 21st 2004 con substrates by use of ellipsometry. The el- lipsometer used in the experiments is the SE 850 photometric rotating analyzer ellipsome- ter from Sentech. THEME: After an introduction to ellipsometry and a Detection of Nanostructures problem description, the subjects of polar- ization and essential ellipsometry theory are covered. PROJECT GROUP: The index of refraction for silicon, alu- 116 minum, copper and silver are modelled us- ing the Drude-Lorentz harmonic oscillator model and afterwards measured by ellipsom- etry. The results based on the measurements GROUP MEMBERS: show a tendency towards, but are not ade- Jesper Jung quately close to, the table values. The mate- Jakob Bork rials are therefore modelled with a thin layer of oxide, and the refractive indexes are com- Tobias Holmgaard puted. This model yields good results for the Niels Anker Kortbek refractive index of silicon and copper. For aluminum the result is improved whereas the result for silver is not. SUPERVISOR: The thickness of a thin film of SiO2 on a sub- strate of silicon is measured by use of ellip- Kjeld Pedersen sometry. The result is 22.9 nm which deviates from the provided information by 6.5 %. The thickness of two thick (multiple wave- NUMBERS PRINTED: 7 lengths) thin polymer films are measured. The polymer films have been spin coated on REPORT PAGE NUMBER: 70 substrates of silicon and the uniformities of the surfaces are investigated.
    [Show full text]
  • Rietmann St., Biela J., Sensor Design for a Current Measurement System with High Bandwidth and High
    Sensor Design for a Current Measurement System with High Bandwidth and High Accuracy Based on the Faraday Effect St. Rietmann, J. Biela Power Electronic Systems Laboratory, ETH Zürich Physikstrasse 3, 8092 Zürich, Switzerland „This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of ETH Zürich’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional pur- poses or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document you agree to all provisions of the copyright laws protecting it.” Sensor Design for a Current Measurement System with High Bandwidth and High RIETMANN Stefan Accuracy Based on the Faraday Effect Sensor Design for a Current Measurement System with High Bandwidth and High Accuracy Based on the Faraday Effect Stefan Rietman and Jurgen¨ Biela Laboratory for High Power Electronic Systems, ETH Zurich, Switzerland Keywords Current Sensor, Sensor, Transducer, Frequency-Domain Analysis Abstract This paper presents the design of the optical system of a current sensor with a wide bandwidth and a high accuracy. The principle is based on the Faraday effect, which describes the effect of magnetic fields on linearly polarized light in magneto-optical material. To identify suitable materials for the optical system the main requirements and specification are determined. A theoretical description of the optical system shows a maximal applicable magnetic field frequency due to the finite velocity of light inside the material.
    [Show full text]
  • Essentials of Polarized Light Microscopy
    SELECTED TOPICS FROM ESSENTIALS OF POLARIZED LIGHT MICROSCOPY John Gustav Delly Scientific Advisor 850 Pasquinelli Drive Westmont, Illinois 60559-5539 Essentials of Polarized Light Microscopy, Fifth Edition (January 2008) John Gustav Delly, Scientific Advisor, College of Microscopy College of Microscopy 850 Pasquinelli Drive Westmont, Illinois 60559-5539 World Wide Web at www.collegeofmicroscopy.com Copyright © 2008, College of Microscopy Notice of Rights All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec- tronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher. For information on obtaining permission for reprints and excerpts, contact courses@collegeofmicroscopy. com. Cover Photomicrograph: Ammonium nitrate, NaNO3 , recrystallized from the melt; crossed polarizers, 100X Essentials of Polarized Light Microscopy iii TABLE OF CONTENTS Preface v 1. Introduction 7 2. Identifying Characteristics of Particles 9 3. Particle Identification: Observations Made Using Ordinary Light 13 A. Morphology 13 B. Size 13 C. Absorption Color 13 D. Magnetism 14 E. Brittleness/Elastomericity 14 4. Particle Identification: Observations Made Using Plane-Polarized Light 15 A. Pleochroism 15 B. Refractive Index 15 C. Dispersion Staining 17 5. Particle Identification: Observations Made Using Crossed Polarizers 19 A. Birefringence 19 Glossary 23 References 27 © 2008, College of Microscopy iv Essentials of Polarized Light Microscopy © 2008, College of Microscopy
    [Show full text]
  • Measurement of Verdet Constant in Diamagnetic Glass Using Faraday Effect
    18Kasetsart J. (Nat. Sci.) 40 : 18 - 23 (2006) Kasetsart J. (Nat. Sci.) 40(5) Measurement of Verdet Constant in Diamagnetic Glass Using Faraday Effect Kheamrutai Thamaphat, Piyarat Bharmanee and Pichet Limsuwan ABSTRACT Many materials exhibit what is called circular dichroism when placed in an external magnetic field. An equivalent statement would be that the two circular polarizations have different refractive indices in the presence of the field. For linearly polarized light, the plane of polarization rotates as it propagates through the material, a phenomenon that is called the Faraday effect. The angle of rotation is proportional to the product of magnetic field, path length through the sample and a constant known as the Verdet constant. The objectives of this experiment are to measure the Verdet constant for a sample of dense flint glass using Faraday effect and to compare its value to a theoretical calculated value. The experimental values for wavelength of 505 and 525 nm are V = 33.1 and 28.4 rad/T m, respectively. While the theoretical calculated values for wavelength of 505 and 525 nm are V = 33.6 and 30.4 rad/T m, respectively. Key words: verdet constant, diamagnetic glass, faraday effect INTRODUCTION right- and left-handed circularly polarized light are different. This effect manifests itself in a rotation Many important applications of polarized of the plane of polarization of linearly polarized light involve materials that display optical activity. light. This observable fact is called magnetooptic A material is said to be optically active if it rotates effect. the plane of polarization of any light transmitted Magnetooptic effects are those effects in through the material.
    [Show full text]
  • The Faraday Effect
    Faraday 1 The Faraday Effect Objective To observe the interaction of light and matter, as modified by the presence of a magnetic field, and to apply the classical theory of matter to the observations. You will measure the Verdet constant for several materials and obtain the value of e/m, the charge to mass ratio for the electron. Equipment Electromagnet (Atomic labs, 0028), magnet power supply (Cencocat. #79551, 50V-5A DC, 32 & 140 V AC, RU #00048664), gaussmeter (RFL Industries), High Intensity Tungsten Filament Lamp, three interference filters, volt-ammeter (DC), Nicol prisms (2), glass samples (extra dense flint (EDF), light flint (LF), Kigre), sample holder (PVC), HP 6235A Triple output power supply, HP 34401 Multimeter, Si photodiode detector. I. Introduction If any transparent solid or liquid is placed in a uniform magnetic field, and a beam of plane polarized light is passed through it in the direction parallel to the magnetic lines of force (through holes in the pole shoes of a strong electromagnet), it is found that the transmitted light is still plane polarized, but that the plane of polarization is rotated by an angle proportional to the field intensity. This "optical rotation" is called the Faraday rotation (or Farady effect) and differs in an important respect from a similar effect, called optical activity, occurring in sugar solutions. In a sugar solution, the optical rotation proceeds in the same direction, whichever way the light is directed. In particular, when a beam is reflected back through the solution it emerges with the same polarization as it entered before reflection.
    [Show full text]