Welcome to Ultrafast Optics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Near-Infrared Optical Modulation for Ultrashort Pulse Generation Employing Indium Monosulfide (Ins) Two-Dimensional Semiconductor Nanocrystals
nanomaterials Article Near-Infrared Optical Modulation for Ultrashort Pulse Generation Employing Indium Monosulfide (InS) Two-Dimensional Semiconductor Nanocrystals Tao Wang, Jin Wang, Jian Wu *, Pengfei Ma, Rongtao Su, Yanxing Ma and Pu Zhou * College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; [email protected] (T.W.); [email protected] (J.W.); [email protected] (P.M.); [email protected] (R.S.); [email protected] (Y.M.) * Correspondence: [email protected] (J.W.); [email protected] (P.Z.) Received: 14 May 2019; Accepted: 3 June 2019; Published: 7 June 2019 Abstract: In recent years, metal chalcogenide nanomaterials have received much attention in the field of ultrafast lasers due to their unique band-gap characteristic and excellent optical properties. In this work, two-dimensional (2D) indium monosulfide (InS) nanosheets were synthesized through a modified liquid-phase exfoliation method. In addition, a film-type InS-polyvinyl alcohol (PVA) saturable absorber (SA) was prepared as an optical modulator to generate ultrashort pulses. The nonlinear properties of the InS-PVA SA were systematically investigated. The modulation depth and saturation intensity of the InS-SA were 5.7% and 6.79 MW/cm2, respectively. By employing this InS-PVA SA, a stable, passively mode-locked Yb-doped fiber laser was demonstrated. At the fundamental frequency, the laser operated at 1.02 MHz, with a pulse width of 486.7 ps, and the maximum output power was 1.91 mW. By adjusting the polarization states in the cavity, harmonic mode-locked phenomena were also observed. To our knowledge, this is the first time an ultrashort pulse output based on InS has been achieved. -
Pulse Shaping and Ultrashort Laser Pulse Filamentation for Applications in Extreme Nonlinear Optics Antonio Lotti
Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics Antonio Lotti To cite this version: Antonio Lotti. Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics. Optics [physics.optics]. Ecole Polytechnique X, 2012. English. pastel-00665670 HAL Id: pastel-00665670 https://pastel.archives-ouvertes.fr/pastel-00665670 Submitted on 2 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITA` DEGLI STUDI DELL’INSUBRIA ECOLE´ POLYTECHNIQUE THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF PHILOSOPHIÆ DOCTOR IN PHYSICS Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics. Antonio Lotti Date of defense: February 1, 2012 Examining committee: ∗ Advisor Daniele FACCIO Assistant Prof. at University of Insubria Advisor Arnaud COUAIRON Senior Researcher at CNRS Reviewer John DUDLEY Prof. at University of Franche-Comte´ Reviewer Danilo GIULIETTI Prof. at University of Pisa President Antonello DE MARTINO Senior Researcher at CNRS Paolo DI TRAPANI Associate Prof. at University of Insubria Alberto PAROLA Prof. at University of Insubria Luca TARTARA Assistant Prof. at University of Pavia ∗ current position: Reader in Physics at Heriot-Watt University, Edinburgh Abstract English abstract This thesis deals with numerical studies of the properties and applications of spatio-temporally coupled pulses, conical wavepackets and laser filaments, in strongly nonlinear processes, such as harmonic generation and pulse reshap- ing. -
Autocorrelation and Frequency-Resolved Optical Gating Measurements Based on the Third Harmonic Generation in a Gaseous Medium
Appl. Sci. 2015, 5, 136-144; doi:10.3390/app5020136 OPEN ACCESS applied sciences ISSN 2076-3417 www.mdpi.com/journal/applsci Article Autocorrelation and Frequency-Resolved Optical Gating Measurements Based on the Third Harmonic Generation in a Gaseous Medium Yoshinari Takao 1,†, Tomoko Imasaka 2,†, Yuichiro Kida 1,† and Totaro Imasaka 1,3,* 1 Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; E-Mails: [email protected] (Y.T.); [email protected] (Y.K.) 2 Laboratory of Chemistry, Graduate School of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540, Japan; E-Mail: [email protected] 3 Division of Optoelectronics and Photonics, Center for Future Chemistry, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-92-802-2883; Fax: +81-92-802-2888. Academic Editor: Takayoshi Kobayashi Received: 7 April 2015 / Accepted: 3 June 2015 / Published: 9 June 2015 Abstract: A gas was utilized in producing the third harmonic emission as a nonlinear optical medium for autocorrelation and frequency-resolved optical gating measurements to evaluate the pulse width and chirp of a Ti:sapphire laser. Due to a wide frequency domain available for a gas, this approach has potential for use in measuring the pulse width in the optical (ultraviolet/visible) region beyond one octave and thus for measuring an optical pulse width less than 1 fs. -
Laboratory Astrophysics with Lasers Chantal Stehlé
Laboratory Astrophysics with lasers Chantal Stehlé LERMA (Laboratoire d’Etudes de la Ma4ère et du Rayonnement en Astrophysique et Atmosphères) This work is partly supported by French state funds managed by the ANR within the InvesBssements d'Avenir programme under reference ANR-11-IDEX-0004-02. Plasma astrophysics see for instance Savin et al. « Lab astro white paper », 2010 Perimeter Methods • Microscopic physical • Experiments processes (opacity, EOS) • Theory, databases • • MulBscale, mulphysics Numerical simulaons • Links to observaons processes (e.g. magne4c reconnecon, shock waves, instabili4es …) Tools • Study of large scale scaled • Medium size lab. processes, (e.g. stellar jets) experiments • Large scale faciliBes (lasers and pinches ) • Super-compung ressources OUTLINE • IntroducBon • Stellar Opacity • EOS for gazeous planets • Scaling • Accreon & Ejecon processes in Young Stars • Conclusion Opacity for stellar interiors From Turck Chièze et al. ApSS 2010 4 Opacity An example of opacity : For a optically thick medium, Hydrogen( Stehlé et al 1993) • LTE is ~ valid -> near blackbody radiaon κν/ρ • The monochromac radiave flux Fν ! is proporBonal to the gradient of rad. Energy and to 1/κν (The radia4on tends to escape from regions where κν is low, ie between lines) hν • The frequency averaged flux <F> is linked to the Rosseland opacity κR. 1 3 dν dB (T) / dT 16 σ T dT 1 ∫ κ ν < F > = and = ν d dB (T) / dT 3 κ R dz κ R ∫ ν ν 5 CEPHEIDS: the enigma Strong periodic (P~ 1 – 50 days) Rela4on P-L : variaons of luminosity L, Teff, and distance calibrator radius. Enveloppe 2 The pulsaon (κ mechanism) log(κR in g/cm ) 2 • in the external part of the stellar envelope 1.5 • linked to an increase of the opacity 1 4 6 -7 -2 3 0.5 10 < T < 10 K (10 < ρ < 10 g/cm ) 0 Hence radiaon is blocked in the internal layers, -> heang -> expansion and beang Core 34 32 30 28 log(External Mass in g ) 2 In the 90’, no code was able Temperature in K, κ in cm /g for M* = 5 M8, Y=0.25, Z=0.08, to reproduce the pulsa6on. -
Inertial Fusion Power Development:Path for Global Warming Suppression
Inertial Fusion Power Development:Path for Global Warming Suppression EU:France, UK,etc. US: LLNL, SNL, U. Rochester East Asia: Japan, China,etc. Kunioki Mima Institute of Laser Engineering, Osaka University IAEA- FC 2008, 50 years’ Ann. of Fusion Res. , Oct.15, 2008, Geneva, SW Outline • Brief introduction and history of IFE research • Frontier of IFE researches Indirect driven ignition by NIF/LMJ Ignition equivalent experiments for fast ignition • IF reactor concept and road map toward power plant IFE concepts Several concepts have been explored in IFE. Driver Irradiation Ignition Laser Direct Central hot spark Ignition HIB Indirect Fast ignition Impact ignition Pulse power Shock ignition The key issue of IFE is implosion physics which has progressed for more than 30 years Producing 1000times solid density and 108 degree temperature plasmas Plasma instabilities R Irradiation non-uniformities Thermal transport and ablation surface of fuel pellet ΔR R-M Instability ΔR0 R-T instability R0 R Feed through R-M and R-T Instabilities in deceleration phase Turbulent Mixing Canter of fuel pellet t Major Laser Fusion Facilities in the World NIF, LLNL, US. LMJ, CESTA, Bordeaux, France SG-III, Menyang,CAEP, China GXII-FIREX, ILE, Osaka, Japan OMEGA-EP, LLE, Rochester, US HiPER, RAL, UK Heavy Ion Beam Fusion: The advanced T-lean fusion fuel reactor Test Stand at LBNL NDCX-I US HIF Science Virtual National Lab.(LBNL, LLNL,PPPL) has been established in 1990. (Directed by G Logan) • Implosion physics by HIB • HIB accelerator technology for 1kA, 1GeV, 1mm2 beam: Beam brightness, Neutralization, NDCX II Collective effects of high current beam, Stripping.(R.Davidson etal) • Reactor concept with Flibe liquid jet wall (R.Moir: HYLIF for HIF Reactor) History of IFE Research 1960: Laser innovation (Maiman) 1972: Implosion concept (J. -
Nova Laser Technology
Nova Laser Technology In building the Nova laser, we have significantly advanced many technologies, including the generation and propagation of laser beams. We have also developed innovations in the fields of alignment, diagnostics, computer control, and image processIng.• For further information contact Nova is the world's most powerful at least 10 to 30 times more energetic John F. Holzrichter (415) 423-7454. laser system. It is designed to heat and than Shiva would be needed to compress small targets, typically 0.1 cm investigate ignition conditions and in size, to conditions otherwise produced possibly to reach gains near unity. only in nuclear weapons or in the Because of the importance of such a interior of stars. Its beams can facility to the progress of inertial fusion concentrate 80 to 120 kJ of energy (in research and because of the construction 3 ns) or 80 to 120 TW of power (in time entailed (at least five to seven 100 ps) on such targets. To couple energy years), the Nova project was proposed to more favorably with the target, Nova's the Energy Research and Development laser light will be harmonically converted Administration and to Congress. It was with greater than 50% efficiency from its decided to base this system on the near-infrared fundamental wavelength proven master-oscillator, linear-amplifier (1.05-,um wavelength) to green (0.525- chain laser system used on the Argus ,um) or blue (0.35-,um) wavelengths. The and Shiva systems. We had great goals of our experiments with Nova are confidence in extending this to make accurate measurements of high neodymium-glass laser technology to the temperature and high-pressure states of 200- to 300-kJ level. -
ENGINEERING DESIGN of the NOVA LASER FACILITY for By
ENGINEERING DESIGN OF THE NOVA LASER FACILITY FOR INERTIAL-CONFINEMENT FUSION* by W. W. Simmons, R. 0. Godwin, C. A. Hurley, E. P. Wallerstein, K. Whitham, J. E. Murray, E. S. Bliss, R. G. Ozarski. M. A. Summers, F. Rienecker, D. G. Gritton, F. W. Holloway, G. J. Suski, J. R. Severyn, and the Nova Engineering Team. Abstract The design of the Nova Laser Facility for inertia! confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to- performance requirements as they impact the various subsystems that comprise this complex experimental facility. - DISCLAIMER - CO;.T-CI104n--17D DEf;2 013.375 *Research performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. Foreword The Nova Laser System for Inertial Confinement Fusion studies at Lawrence Livermore National Laboratories represents a sophisticated engineering challenge to the national scientific and industrial community, embodying many disciplines - optical, mechanical, power and controls engineering for examples - employing state-of-the-art components and techniques. The papers collected here form a systematic, comprehensive presentation of the system engineering involved in the design, construction and operation of the Nova Facility, presently under construction at LLNL and scheduled for first operations in 1985. The 1st and 2nd Chapters present laser design and performance, as well as an introductory overview of the entire system; Chapters 3, 4 and 5 describe the major engineering subsystems; Chapters 6, 7, 8 and 9 document laser and target systems technology, including optical harmonic frequency conversion, its ramifications, and its impact upon other subsystems; and Chapters 10, 11, and 12 present an extensive discussion of our integrated approach to command, control and communications for the entire system. -
The Science and Applications of Ultrafast, Ultraintense Lasers
THE SCIENCE AND APPLICATIONS OF ULTRAFAST, ULTRAINTENSE LASERS: Opportunities in science and technology using the brightest light known to man A report on the SAUUL workshop held, June 17-19, 2002 THE SCIENCE AND APPLICATIONS OF ULTRAFAST, ULTRAINTENSE LASERS (SAUUL) A report on the SAUUL workshop, held in Washington DC, June 17-19, 2002 Workshop steering committee: Philip Bucksbaum (University of Michigan) Todd Ditmire (University of Texas) Louis DiMauro (Brookhaven National Laboratory) Joseph Eberly (University of Rochester) Richard Freeman (University of California, Davis) Michael Key (Lawrence Livermore National Laboratory) Wim Leemans (Lawrence Berkeley National Laboratory) David Meyerhofer (LLE, University of Rochester) Gerard Mourou (CUOS, University of Michigan) Martin Richardson (CREOL, University of Central Florida) 2 Table of Contents Table of Contents . 3 Executive Summary . 5 1. Introduction . 7 1.1 Overview . 7 1.2 Summary . 8 1.3 Scientific Impact Areas . 9 1.4 The Technology of UULs and its impact. .13 1.5 Grand Challenges. .15 2. Scientific Opportunities Presented by Research with Ultrafast, Ultraintense Lasers . .17 2.1 Basic High-Field Science . .18 2.2 Ultrafast X-ray Generation and Applications . .23 2.3 High Energy Density Science and Lab Astrophysics . .29 2.4 Fusion Energy and Fast Ignition. .34 2.5 Advanced Particle Acceleration and Ultrafast Nuclear Science . .40 3. Advanced UUL Technology . .47 3.1 Overview . .47 3.2 Important Research Areas in UUL Development. .48 3.3 New Architectures for Short Pulse Laser Amplification . .51 4. Present State of UUL Research Worldwide . .53 5. Conclusions and Findings . .61 Appendix A: A Plan for Organizing the UUL Community in the United States . -
14. Measuring Ultrashort Laser Pulses I: Autocorrelation the Dilemma the Goal: Measuring the Intensity and Phase Vs
14. Measuring Ultrashort Laser Pulses I: Autocorrelation The dilemma The goal: measuring the intensity and phase vs. time (or frequency) Why? The Spectrometer and Michelson Interferometer 1D Phase Retrieval Autocorrelation 1D Phase Retrieval E(t) Single-shot autocorrelation E(t–) The Autocorrelation and Spectrum Ambiguities Third-order Autocorrelation Interferometric Autocorrelation 1 The Dilemma In order to measure an event in time, you need a shorter one. To study this event, you need a strobe light pulse that’s shorter. Photograph taken by Harold Edgerton, MIT But then, to measure the strobe light pulse, you need a detector whose response time is even shorter. And so on… So, now, how do you measure the shortest event? 2 Ultrashort laser pulses are the shortest technological events ever created by humans. It’s routine to generate pulses shorter than 10-13 seconds in duration, and researchers have generated pulses only a few fs (10-15 s) long. Such a pulse is to one second as 5 cents is to the US national debt. Such pulses have many applications in physics, chemistry, biology, and engineering. You can measure any event—as long as you’ve got a pulse that’s shorter. So how do you measure the pulse itself? You must use the pulse to measure itself. But that isn’t good enough. It’s only as short as the pulse. It’s not shorter. Techniques based on using the pulse to measure itself are subtle. 3 Why measure an ultrashort laser pulse? To determine the temporal resolution of an experiment using it. To determine whether it can be made even shorter. -
Femtosecond Pulse Generation
Femto-UP 2020-21 School Femtosecond Pulse Generation Adeline Bonvalet Laboratoire d’Optique et Biosciences CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France 1 Definitions Electric field of a 10-fs 800-nm pulse nano 10-9 sec pico 10-12 femto 10-15 2,7 fs atto 10-18 10 fs time 2 Many properties Electric field of a 10-fs 800-nm pulse High peaki power (Energy /Duration) Ultrashorti Duration Spectral Properties i (Frequency Comb) time 3 Time-resolved spectroscopy Electric field of a 10-fs 800-nm pulse Ultrashorti Duration Time-resolved spectroscopy Direct observation of ultrafast motions time Ahmed Zewail, Nobel Prize in chemistry 1999, femtochemistry 4 Imaging Electric field of a 10-fs 800-nm pulse High peaki power (Energy /Duration) Nonlinear microscopy time 5 Material processing Electric field of a 10-fs 800-nm pulse High peaki power (Energy /Duration) Laser matter interaction Drilling, cutting, etching,… time Areas of applications : aeronautics, electronics, medical,6 optics… Light matter interaction Electric field of a 10-fs 800-nm pulse High peaki power (Energy /Duration) Ability to reach extreme conditions (amplified system) Applications : Sources of intense particles beams, X-rays, high energy density science, laboratory astroprophysics … time 7 Metrology Electric field of a 10-fs 800-nm pulse Spectral Properties i (Frequency Comb) Nobel Prize 2005 "for their contributions to the development of laser-based time precision spectroscopy, including the optical frequency comb technique." 8 Outline -
Ultrashort Laser Pulses I
Ultrashort Laser Pulses I Description of pulses Intensity and phase The instantaneous frequency and group delay Zero th and first-order phase Prof. Rick Trebino Georgia Tech The linearly chirped Gaussian pulse www.frog.gatech.edu An ultrashort laser ) t I( t ) ( pulse has an intensity X and phase vs. time. Neglecting the spatial dependence for field Electric now, the pulse electric field is given by: Time [fs] X ∝1 ω −φ + (t )2 I( t ) exp{ it [0 (t) ]} cc. Intensity Carrier Phase frequency A sharply peaked function for the intensity yields an ultrashort pulse. The phase tells us the color evolution of the pulse in time. The real and complex ) t I( t ) pulse amplitudes ( X X Removing the 1/2, the c.c., and the exponential factor with the carrier frequency yields the complex amplitude, E(t), of the pulse: field Electric E(t )∝I( t ) exp{ − i φ(t ) } Time [fs] This removes the rapidly varying part of the pulse electric field and yields a complex quantity, which is actually easier to calculate with. I( t ) is often called the real amplitude, A(t), of the pulse. The Gaussian pulse For almost all calculations, a good first approximation for any ultrashort pulse is the Gaussian pulse (with zero phase). = − τ 2 EtE( )0 exp ( t /HW 1/ e ) = − τ 2 E0 exp 2ln 2( t /FWHM ) = − τ 2 E0 exp 1.38( t /FWHM ) τ τ where HW1/e is the field half-width-half-maximum, and FWHM is the intensity full-width-half-maximum. 2 The intensity is: ∝ − τ 2 ItE()0 exp 4ln2(/ t FWHM ) ∝2 − τ 2 E0 exp 2.76( t /FWHM ) Intensity vs. -
Ultrashort Pulse Generation in the Mid-IR
Ultrashort pulse generation in the mid-IR H. Pires1, M. Baudisch1, D. Sanchez1,M. Hemmer 1,J. Biegert 2;1 1ICFO - The Institute of Photonics Sciences Mediterranean Technology Park 08860 Castelldefels (Barcelona), Spain 2ICREA - Institucio Catalana de Recerca i Estudis Avan¸cats,08010 Barcelona, Spain Abstract Recent developments in laser sources operating in the mid-IR (3 - 8 µm), have been motivated by the numerous possibilities for both fundamental and applied research. One example is the ability to unambiguously detect pollutants and car- cinogens due to the much larger oscillator strengths of their absorption features in the mid-IR spectral region compared with the visible. Broadband sources are of particular interest for spectroscopic applications since they remove the need for arduous scanning or several lasers and allow simultaneous use of multiple ab- sorption features thus increasing the confidence level of detection. In addition, sources capable of producing ultrashort and intense mid-IR radiation are gain- ing relevance in attoscience and strong-field physics due to wavelength scaling of re-collision based processes. In this paper we review the state-of-the-art in sources of coherent, pulsed mid-IR radiation. First we discuss semi-conductor based sources which are compact and turnkey, but typically do not yield short pulse duration. Mid-IR laser gain material based approaches will be discussed, either for direct broadband mid-IR lasers or as narrowband pump lasers for parametric amplification in nonlinear crystals. The main part will focus on mid-IR generation and amplification based on parametric frequency conversion, enabling highest mid-IR peak power pulses.