ICON: Eosinophil Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reptile Clinical Pathology Vickie Joseph, DVM, DABVP (Avian)
Reptile Clinical Pathology Vickie Joseph, DVM, DABVP (Avian) Session #121 Affiliation: From the Bird & Pet Clinic of Roseville, 3985 Foothills Blvd. Roseville, CA 95747, USA and IDEXX Laboratories, 2825 KOVR Drive, West Sacramento, CA 95605, USA. Abstract: Hematology and chemistry values of the reptile may be influenced by extrinsic and intrinsic factors. Proper processing of the blood sample is imperative to preserve cell morphology and limit sample artifacts. Identifying the abnormal changes in the hemogram and biochemistries associated with anemia, hemoparasites, septicemias and neoplastic disorders will aid in the prognostic and therapeutic decisions. Introduction Evaluating the reptile hemogram is challenging. Extrinsic factors (season, temperature, habitat, diet, disease, stress, venipuncture site) and intrinsic factors (species, gender, age, physiologic status) will affect the hemogram numbers, distribution of the leukocytes and the reptile’s response to disease. Certain procedures should be ad- hered to when drawing and processing the blood sample to preserve cell morphology and limit sample artifact. The goal of this paper is to briefly review reptile red blood cell and white blood cell identification, normal cell morphology and terminology. A detailed explanation of abnormal changes seen in the hemogram and biochem- istries in response to anemia, hemoparasites, septicemias and neoplasia will be addressed. Hematology and Chemistries Blood collection and preparation Although it is not the scope of this paper to address sites of blood collection and sample preparation, a few im- portant points need to be explained. For best results to preserve cell morphology and decrease sample artifacts, hematologic testing should be performed as soon as possible following blood collection. -
CDG and Immune Response: from Bedside to Bench and Back Authors
CDG and immune response: From bedside to bench and back 1,2,3 1,2,3,* 2,3 1,2 Authors: Carlota Pascoal , Rita Francisco , Tiago Ferro , Vanessa dos Reis Ferreira , Jaak Jaeken2,4, Paula A. Videira1,2,3 *The authors equally contributed to this work. 1 Portuguese Association for CDG, Lisboa, Portugal 2 CDG & Allies – Professionals and Patient Associations International Network (CDG & Allies – PPAIN), Caparica, Portugal 3 UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal 4 Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium Word count: 7478 Number of figures: 2 Number of tables: 3 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jimd.12126 This article is protected by copyright. All rights reserved. Abstract Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are Congenital Disorders of Glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterised by an increased propensity to – often life-threatening – infection. -
Severe Congenital Neutropenia with Monocytosis and Non-Syndromic Sensorineural Hear
Venugopal et al. BMC Medical Genetics (2020) 21:35 https://doi.org/10.1186/s12881-020-0971-z RESEARCH ARTICLE Open Access Two monogenic disorders masquerading as one: severe congenital neutropenia with monocytosis and non-syndromic sensorineural hearing loss Parvathy Venugopal1,2†, Lucia Gagliardi1,2,3,4,5†, Cecily Forsyth6†, Jinghua Feng7,8, Kerry Phillips9, Milena Babic1,2, Nicola K. Poplawski9, Hugh Young Rienhoff Jr10, Andreas W. Schreiber2,7,8,11, Christopher N. Hahn1,2,3,8†, Anna L. Brown1,2,8† and Hamish S. Scott1,2,3,7,8*† Abstract Background: We report a large family with four successive generations, presenting with a complex phenotype of severe congenital neutropenia (SCN), partially penetrant monocytosis, and hearing loss of varying severity. Methods: We performed whole exome sequencing to identify the causative variants. Sanger sequencing was used to perform segregation analyses on remaining family members. Results: We identified and classified a pathogenic GFI1 variant and a likely pathogenic variant in MYO6 which together explain the complex phenotypes seen in this family. Conclusions: We present a case illustrating the benefits of a broad screening approach that allows identification of oligogenic determinants of complex human phenotypes which may have been missed if the screening was limited to a targeted gene panel with the assumption of a syndromic disorder. This is important for correct genetic diagnosis of families and disentangling the range and severity of phenotypes associated with high impact variants. Keywords: Neutropenia, Congenital neutropenia, Leukemia predisposition, Polygenic inheritance, Hearing loss Background cases [2]. It may also occur as a part of a syndrome with Severe congenital neutropenia (SCN) was first described other developmental defects (e.g. -
The Significance of Various Granulocytic Inclusions
4/8/19 THE SIGNIFICANCE OF VARIOUS DISCLOSURES GRANULOCYTIC INCLUSIONS ¡ No relevant financial interests to disclose. KRISTLE HABERICHTER, DO, FCAP GRAND TRAVERSE PATHOLOGY, PLLC OBJECTIVES GRANULOCYTES ¡ Innate immune system ¡ Travel to sites of infection, recognize and phagocytose pathogens ¡ Recognize common and uncommon granulocytic inclusions, including those associated with certain ¡ Utilize numerous cytotoxic mechanisms to kill pathogens inherited disorders and infectious etiologies ¡ Granulopoiesis occurs in the bone marrow ¡ Sufficient stem cells, adequate microenvironment, and regulatory factors ¡ Identify newly described green neutrophilic inclusions ¡ Granulocyte colony stimulating factor (G-CSF) → Granulocytes ¡ Monocyte colony stimulating factor (M-CSF) → Monocytes ¡ Understand the clinical significance and implications of various inclusions ¡ Granulocyte-monocytes colony stimulating factor (GM-CSF) → Granulocytes & Monocytes ¡ 1-3 weeks for complete granulopoiesis to occur ¡ Neutrophils only circulate for a few hours before migrating to the tissues Photo by K. Haberichter (Giemsa, 1000x) GRANULOCYTES INCLUSION CATEGORIES ¡ Primary granules → Myeloperoxidase Reactive/Acquired Changes Congenital Abnormalities Infectious Etiologies ¡ “Late” myeloblasts and promyelocytes ¡ To x ic G r a n u la t io n ¡ Chédiak-Higashi Syndrome ¡ Anaplasma ¡ Secondary granules → Leukocyte alkaline phosphatase ¡ Döhle Bodies ¡ Alder-Reilly Anomaly ¡ Ehrlichia ¡ Myelocytes, metamyelocytes, band and segmented neutrophils ¡ Cytokine Effect ¡ May-Hegglin -
Blood and Immunity
Chapter Ten BLOOD AND IMMUNITY Chapter Contents 10 Pretest Clinical Aspects of Immunity Blood Chapter Review Immunity Case Studies Word Parts Pertaining to Blood and Immunity Crossword Puzzle Clinical Aspects of Blood Objectives After study of this chapter you should be able to: 1. Describe the composition of the blood plasma. 7. Identify and use roots pertaining to blood 2. Describe and give the functions of the three types of chemistry. blood cells. 8. List and describe the major disorders of the blood. 3. Label pictures of the blood cells. 9. List and describe the major disorders of the 4. Explain the basis of blood types. immune system. 5. Define immunity and list the possible sources of 10. Describe the major tests used to study blood. immunity. 11. Interpret abbreviations used in blood studies. 6. Identify and use roots and suffixes pertaining to the 12. Analyse several case studies involving the blood. blood and immunity. Pretest 1. The scientific name for red blood cells 5. Substances produced by immune cells that is . counteract microorganisms and other foreign 2. The scientific name for white blood cells materials are called . is . 6. A deficiency of hemoglobin results in the disorder 3. Platelets, or thrombocytes, are involved in called . 7. A neoplasm involving overgrowth of white blood 4. The white blood cells active in adaptive immunity cells is called . are the . 225 226 ♦ PART THREE / Body Systems Other 1% Proteins 8% Plasma 55% Water 91% Whole blood Leukocytes and platelets Formed 0.9% elements 45% Erythrocytes 10 99.1% Figure 10-1 Composition of whole blood. -
BHS Leucocytosis and Leucopenia Dr Caers
Leucocytoses & leucopenia Jo Caers Dept of Clinical Hematology [email protected] Bone marrow Blood Granulopoiesis Proliferation & 5 days maturation Storage 1 day Marginisation& Circulation 1 day Tissues 1-2 days Granulopoiesis Proliferation & 5 days maturation Storage 1 day Marginisation& Circulation 1 day Tissues 1-2 days Granulopoiesis Proliferation & 5 days maturation Storage 1 day Marginisation& Circulation 1 day Tissues 1-2 days Lymphocytes Monocytes NORMAL BLOOD CELL COUNT Hemoglobin 12.0 – 15.0 g/dl (F) 13.0 – 17.0 g/dl (M) Red Blood Cells 3.9 – 5.6 x 10 6/µl (F) 4.5 – 6.5 x 10 6/µl (M) Hematocrit 36 – 48% (F) 40 – 52% (M) Mean Corpuscular Volume 80 – 95µ³ Mean Hb Concentration 27 – 34 pg Conc corp mean Hb 30 – 35 g/dl Reticulocytes 0.5 – 20 % Leucocytes 4.0 – 10.0 x 10 3/µl ¨ Neutophils 1.8 – 7.5 Lymphocytes 1.5 – 3.5 Monocytes 0.2 – 0.8 Eosinophils 0.04 – 0.45 Basophils 0.01 – 0.1 Platelets 100 – 400 x 10 3/dl Hyperleucocytosis > 10.000 WBC/mm³ Normal Cells Abnormal cells or blastic cells Infections ? Neutrophilia (> 7.500/mm³) Acute Leukemias Lymphocytosis (> 4.500/mm³) Chronic Myelomonocytic Leukemias Chronic Lymhocytic leukemia Chronic Myeloid Leukemia Non Hodgkin Lymphoma Chronic Monocytosis (> 800/mm³) … Inflammations? Eosinophilia (> 400/mm³) Basophilia (> 100/mm³) Leukoerythroblastic reaction Cytopenia with immature RBCs (normoblasts) immature WBCs (agranular neutrophils, myelocytes, metamyelocytes ) Causes BM infiltration • Solid tumor or hematological malignancy • Myelofibrosis Strong BM stimulation • Infection, -
Persistent Eosinophilia Is a Challenging Problem
DOI: 10.26717/BJSTR.2017.01.000244 Nahla A M Hamed. Biomed J Sci & Tech Res ISSN: 2574-1241 Editorial Open Access Persistent Eosinophilia is a Challenging Problem Nahla AM Hamed* Professor of Hematology, Faculty of Medicine, Alexandria University, Egypt Received: July 25, 2017; Published: August 01, 2017 *Corresponding author: Nahla AM Hamed, Professor of Hematology, Faculty of Medicine, Alexandria University, Egypt Abstract 9 HE is defined as >1.5 x 10 /L eosinophils in the blood on 2 examinations (interval >1 mo) and/or tissue HE defined by: eosinophils percentage in BM section exceeding 20% of all nucleated cells; and/or extensive eosinophilic tissue infiltration by pathologist opinion; and/or presenceAbbreviations: of marked deposition of eosinophil granule proteins (in the absence or presence of major tissue eosinophils infiltration). AEC: absolute eosinophil count; HE: Hypereosinophilia; ABPA: Allergic Bronchopulmonary Aspergillosis; B-ALL: Acute B-cell lymphoblastic leukemia; GVHD: Graft-Versus-Host Disease; BM: Bone Marrow; PB: Peripheral Blood; IL5: Interleukin 5; AML: Acute Myeloid Leukemia; LV: Lymphocytic Variant; Th2:T-cells have a helper type 2; EPPER: Eosinophilic, polymorphic, and pruritic Eruption Associated with Radiotherapy; MPN: Myeloproliferative Neoplasm; HES: Hypereosinophilic Syndrome; PDGFRA: Platelet-Derived Growth Factor Receptor Alpha; PDGFRB: Platelet-Derived Growth Factor Receptor Beta; FGFR1: Fibroblast Growth Factor Receptor 1; CEL-NOS: Chronic Eosinophilic Leukemia-Not Otherwise Specified; MDS: Myelodysplastic Syndrome; IgH: Ig Heavy Chain; EBV: Epstein-Barr virus Introduction cystic structures (e.g. hydatid cyst, neurocysticercosis) are unlikely Eosinophilia3 is defined as an AEC >500/μL [1].3 The severity ), and severe to cause eosinophilia [7]. Disseminated coccidioidomycosis and of eosinophilia has3 been arbitrarily divided into mild9 (AEC: 500- aspergillosis (when presenting as ABPA) are well-known fungal 1,500/mm ), moderate (AEC: 1,500-5,000/mm causes of eosinophilia. -
Oligomonocytic Chronic Myelomonocytic Leukemia
Modern Pathology (2017) 30, 1213–1222 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 1213 Oligomonocytic chronic myelomonocytic leukemia (chronic myelomonocytic leukemia without absolute monocytosis) displays a similar clinicopathologic and mutational profile to classical chronic myelomonocytic leukemia Julia T Geyer1, Wayne Tam1, Yen-Chun Liu1, Zhengming Chen2, Sa A Wang3, Carlos Bueso-Ramos3, Jean Oak4, Daniel A Arber5, Eric Hsi6, Heesun J Rogers6, Katherine Levinson7, Adam Bagg7, Duane C Hassane1, Robert P Hasserjian8 and Attilio Orazi1 1Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA; 2Division of Biostatistics and Epidemiology, Department of Healthcare Policy & Research, Weill Cornell Medical College, New York, NY, USA; 3Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; 4Department of Pathology, Stanford University, Stanford, CA, USA; 5Department of Pathology, University of Chicago, Chicago, IL, USA; 6Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA; 7Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA and 8Department of Pathology, Massachusetts General Hospital, Boston, MA, USA Chronic myelomonocytic leukemia is characterized by persistent absolute monocytosis (≥1×109/l) in the peripheral blood and dysplasia in ≥ 1 lineages. In the absence of dysplasia, an acquired clonal genetic abnormality is required or causes for reactive monocytosis have to be excluded. -
Congenital Neutropenia: in Vitro Growth of Colonies Mimicking the Disease (Hematopoietic/Defective Stem Cell/Abnormal Clone/Differentiation)
Proc. Nat. Acad. Sci. USA Vol. 70, No. 3, pp. 669-672, March 1973 Congenital Neutropenia: In Vitro Growth of Colonies Mimicking the Disease (hematopoietic/defective stem cell/abnormal clone/differentiation) PIERRE L'ESPERANCE*, RICHARD BRUNNINGt, AND ROBERT A. GOOD* * Department of Pathology and t Department of Laboratory Medicine, University of Minnesota Medical School, Minneapolis, Minn. 55455 Contributed by Robert A. Good, January 2, 1973 ABSTRACT Congenital neutropenia is a lethal disease beef-lung heparin (1:1000, Upjohn). The bone marrow spec- characterized by recurrent infections beginning in the imen was centrifuged at 1000 rpm for 5 min (183 X g). After neonatal period, absence of neutrophils in the peripheral blood, eosinophilia, and monocytosis. The bone marrow centrifugation, the bone-marrow cells were removed with a shows an apparent "maturation arrest" of the neutrophil Pasteur pipette and washed three times in McCoy's 5A series at the promyelocyte stage. Granulocytic colonies medium. The culture method described by Pike and Robinson grown in vitro in soft agar medium show normal develop- (2) was used. The medium used to prepare underlayers and ment of eosinophilic colonies and monocyte-macrophage overlayers is McCoy's 5A tissue culture medium (Micro- colonies, but defective neutrophil maturation. The ab- normal colonies observed contained only myeloblasts and biological Ass., Bethesda, Md.) to which has been added promyelocytes. Thus, it seems to have been possible to 15% fetal-calf serum and supplements of amino acids and mimic in vitro the abnormal differentiation that is ob- vitamins. served in vivo. Colony growth was stimulated by plating 1 ml of McCoy's 5A medium mixed in a 9:1 concentration with boiled 5% Blood and bone-marrow cells of animals and man (1-4) can agar (Difco-Bacto-agar) to give a final concentration of 0.5%. -
Congenital Neutropenias
Hematology, 2005; 10 Supplement 1: 306Á/311 CONGENITAL CYTOPENIAS Congenital neutropenias CORNELIA ZEIDLER Introduction course of the disease indicate an underlying genetic instability leading to an increased risk of malignant The term congenital neutropenia (CN) has been used transformation. If and how rHuG-CSF treatment for a group of hematological disorders characterized impacts on these adverse events remains unclear since by severe neutropenia with absolute neutrophil counts 9 1 there are no historical controls for comparison. (ANC) below 0.5/10 L associated with increased Hematopoietic stem cell transplantation is still the susceptibility to bacterial infections. This group of only available treatment for patients refractory to diseases includes primary bone marrow failure syn- rHuG-CSF treatment. dromes with isolated neutropenias like Kostmann syndrome and cyclic neutropenia, and neutropenias associated with metabolic or immunological disor- Severe congenital neutropenia ders, like glycogen storage disease type 1b and Hyper IgM-syndrome, and neutropenias being one feature of Pathophysiology a complex syndrome, like Shwachman-Diamond The underlying genetic defect of this group of syndrome or Barth syndrome. To avoid confusion, disorders, including Kostmann syndrome is still only we prefer using the term CN only for the most severe partially identified. The original hypothesis for disorder among this group. Severe neutropenia char- Kostmann syndrome included a genetic predisposi- acterized by an early stage maturation arrest of tion resulting in defective production of G-CSF or myelopoiesis leading to bacterial infections from early defective response of the neutrophilic precursors to infancy. This disease has originally been described as G-CSF or other hematopoietic growth factors. How- Kostmann syndrome [14,15] with an autosomal ever, serum from CN patients contains normal or recessive inheritance. -
The Idiopathic Hypereosinophilic Syndrome and Eosinophilic Leukemias
Editorials, Comments & Views Editorials, Comments & Views tion event permitted the diagnosis to be made. The idiopathic hypereosinophilic syndrome and For several decades the true nature of many exam- eosinophilic leukemias ples of idiopathic HES remained obscure although the striking male dominance suggested that one or more he idiopathic hypereosinophilic syndrome (idio- entities were there to be discovered. Recent research pathic HES) was first defined by Chusid et al. in has revealed at least two explanations of such cases T1975 as a condition in which there was unex- of chronic eosinophilia: (i) reactive eosinophilia as a plained eosinophilia (eosinophil count greater than response to cytokines secreted by aberrant T cells; (ii) 1.5×109/L) persisting for at least 6 months and lead- chronic eosinophilic leukemia with clonal molecular ing to tissue damage.1 The requirement for the genetic abnormalities but generally without cytoge- eosinophilia to persist and remain unexplained for six netic abnormalities. With the application of appropri- months served to exclude examples of reactive ate diagnostic techniques, the number of patients in eosinophilia in which an explanation emerged during whom the eosinophilia remains idiopathic has been this time. The requirement for tissue damage, such as reduced considerably. cardiac damage, would appear to be less important since there is likely to be a phase of this disease that Eosinophilia as a response to cytokines precedes tissue damage. Such patients can be regard- secreted by aberrant T cells ed as having chronic idiopathic eosinophilia (CIE), with Lymphoma, either Hodgkin’s disease or non- the recognition that they may well have the same Hodgkin’s lymphoma, is one of the well recognized spectrum of underlying disorders as those with idio- causes of reactive cytokine-driven eosinophilia. -
Isolated Monocytosis Was the Flag Preceding Abnormalities in Other
Precision and Future Medicine 2019;3(1):30-35 CASE https://doi.org/10.23838/pfm.2019.00023 REPORT pISSN: 2508-7940 · eISSN: 2508-7959 Isolated monocytosis was the flag preceding abnormalities in other parameters of complete blood counts in chronic myeloid leukemia with e1a2 (minor, P190) BCR-ABL1 chimeric transcripts 1 1 1 1 2 Jae Won Yun1 , Jung Yoon , Jong Won Kim , Sun-Hee Kim , Chul Won Jung , Hee-Jin Kim 1 DepartmentofLaboratoryMedicineandGenetics,SamsungMedicalCenter,SungkyunkwanUniversitySchoolofMedicine, Seoul,Korea 2 DivisionofHematology-Oncology,DepartmentofMedicine,SamsungMedicalCenter,SungkyunkwanUniversitySchoolof Medicine,Seoul,Korea Received: March 14, 2019 Revised: March 18, 2019 Accepted: March 21, 2019 ABSTRACT Chronicmyeloidleukemia(CML)isamyeloproliferativeneoplasmwiththemolecular Corresponding author: Hee-Jin Kim hallmarkofBCR-ABL1 chimerictranscriptsfromt(9;22)(q24;q22).Inmorethan95%of Department of Laboratory CML,thefusionoccursinthemajorbreakpointclusterregion(M-bcr)ofBCR,mostcom- Medicine and Genetics, monlyproducingthee14a2ore13a2type.CMLwithe1a2BCR-ABL1byfusioninminor Samsung Medical Center, bcrisrare,accountingforapproximately1%ofCML.CMLwithe1a2BCR-ABL1isreport- Sungkyunkwan University edlyassociatedwithmonocytosisandpoorprognosis.Herewedescribeawomanwho School of Medicine, 81 Irwon- underwentbonemarrow(BM)studywithanimpressionofchronicmyelomonocytic ro, Gangnam-gu, Seoul 06351, leukemiabasedonthrombocytosisandprominentmonocytosis.Geneticworkupre- Korea vealed,however,t(9;22)ande1a2BCR-ABL1,whichindicatedCMLandexplainedher