CDG and Immune Response: from Bedside to Bench and Back Authors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mass Cytometric Functional Profiling of Acute Myeloid Leukemia Defines Cell-Cycle and Immunophenotypic Properties That Correlate with Known Responses to Therapy
Published OnlineFirst June 19, 2015; DOI: 10.1158/2159-8290.CD-15-0298 ReseaRch aRticle Mass Cytometric Functional Profiling of Acute Myeloid Leukemia Defines Cell-Cycle and Immunophenotypic Properties That Correlate with Known Responses to Therapy Gregory K. Behbehani1,2,3, Nikolay Samusik1, Zach B. Bjornson1, Wendy J. Fantl1,4, Bruno C. Medeiros2,3, and Garry P. Nolan1 Downloaded from cancerdiscovery.aacrjournals.org on September 25, 2021. © 2015 American Association for Cancer Research. Published OnlineFirst June 19, 2015; DOI: 10.1158/2159-8290.CD-15-0298 abstRact Acute myeloid leukemia (AML) is characterized by a high relapse rate that has been attributed to the quiescence of leukemia stem cells (LSC), which renders them resistant to chemotherapy. However, this hypothesis is largely supported by indirect evidence and fails to explain the large differences in relapse rates across AML subtypes. To address this, bone mar- row aspirates from 41 AML patients and five healthy donors were analyzed by high-dimensional mass cytometry. All patients displayed immunophenotypic and intracellular signaling abnormalities within CD34+CD38lo populations, and several karyotype- and genotype-specific surface marker patterns were identified. The immunophenotypic stem and early progenitor cell populations from patients with clinically favorable core-binding factor AML demonstrated a 5-fold higher fraction of cells in S-phase compared with other AML samples. Conversely, LSCs in less clinically favorable FLT3-ITD AML exhib- ited dramatic reductions in S-phase fraction. Mass cytometry also allowed direct observation of the in vivo effects of cytotoxic chemotherapy. SIGNIFICANCE: The mechanisms underlying differences in relapse rates across AML subtypes are poorly understood. -
The Diversity of Dolichol-Linked Precursors to Asn-Linked Glycans Likely Results from Secondary Loss of Sets of Glycosyltransferases
The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases John Samuelson*†, Sulagna Banerjee*, Paula Magnelli*, Jike Cui*, Daniel J. Kelleher‡, Reid Gilmore‡, and Phillips W. Robbins* *Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 715 Albany Street, Boston, MA 02118-2932; and ‡Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01665-0103 Contributed by Phillips W. Robbins, December 17, 2004 The vast majority of eukaryotes (fungi, plants, animals, slime mold, to N-glycans of improperly folded proteins, which are retained in and euglena) synthesize Asn-linked glycans (Alg) by means of a the ER by conserved glucose-binding lectins (calnexin͞calreticulin) lipid-linked precursor dolichol-PP-GlcNAc2Man9Glc3. Knowledge of (13). Although the Alg glycosyltransferases in the lumen of ER this pathway is important because defects in the glycosyltrans- appear to be eukaryote-specific, archaea and Campylobacter sp. ferases (Alg1–Alg12 and others not yet identified), which make glycosylate the sequon Asn and͞or contain glycosyltransferases dolichol-PP-glycans, lead to numerous congenital disorders of with domains like those of Alg1, Alg2, Alg7, and STT3 (1, 14–16). glycosylation. Here we used bioinformatic and experimental Protists, unicellular eukaryotes, suggest three notable exceptions methods to characterize Alg glycosyltransferases and dolichol- to the N-linked glycosylation path described in yeast and animals PP-glycans of diverse protists, including many human patho- (17). First, the kinetoplastid Trypanosoma cruzi (cause of Chagas gens, with the following major conclusions. First, it is demon- myocarditis), fails to glucosylate the dolichol-PP-linked precursor strated that common ancestry is a useful method of predicting and so makes dolichol-PP-GlcNAc2Man9 (18). -
IDF Patient & Family Handbook
Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. FIFTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. REPRINT 2015 Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases 5th Edition This publication has been made possible through a generous grant from Baxalta Incorporated Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R. Michael Blaese, MD William Blouin, MSN, ARNP, CPNP State University of New York Georgetown University Hospital Immune Deficiency Foundation Miami Children’s Hospital Buffalo, NY Washington, DC Towson, MD Miami, FL Francisco A. -
Allergy, Asthma & Immunology Associates (Private Practice) 2808
CURRICULUM VITAE Roger H. Kobayashi, M.D. Business Address: Allergy, Asthma & Immunology Associates (Private practice) 2808 South 80th Avenue, Suites 210 and 240, Omaha, NE 68124 (402) 391-1800 Fax (402) 391-1563 email: [email protected] Education: 6/1969 University of Nebraska, Lincoln, Nebraska, B.A. (Pre-Med/Economics) 9/69-6/73 University of Hawaii Medical School, Honolulu, Hawaii 6/72-5/75 University of Hawaii Graduate School, Honolulu, Hawaii, M.S. (Physiology) 9/74-4/75 UCSD School of Medicine & UCLA School of Medicine 7/73-5/75 University of Nebraska College of Medicine, Omaha, Nebraska, M.D. Academic Positions: 6/75-7/76 Pediatric Intern, University of Southern California School of Medicine, Los Angeles, California 7/76-7/77 Pediatric Resident, University of Southern California School of Medicine, Los Angeles, California 7/77-12/79 Fellowship, Pediatric Immunology & Allergy, UCLA School of Medicine, Los Angeles, California 1/80-6/84 Assistant Professor of Pediatrics and Medical Microbiology, University of Nebraska College of Medicine, Omaha, Nebraska 1/80-9/88 Director, Division of Allergy and Immunology, Department of Pediatrics, University of Nebraska 7/84-9/88 Associate Professor of Pediatrics, University of Nebraska College of Medicine 7/85-9/88 Associate Professor of Pathology and Medical Microbiology, University of Nebraska College of Medicine 9/88-1/90 Associate Professor of Pediatrics, UCLA School of Medicine, Los Angeles, CA 1/90-6/95 Assoc Clinical Prof of Pediatrics UCLA School of Medicine, Los Angeles, CA 6/95-present -
Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer Kumardeep Chaudhary1, Olivier B
Published OnlineFirst October 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0853 Statistics in CCR Clinical Cancer Research Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer Kumardeep Chaudhary1, Olivier B. Poirion1, Liangqun Lu1,2, and Lana X. Garmire1,2 Abstract Identifying robust survival subgroups of hepatocellular car- index (C-index) ¼ 0.68]. More aggressive subtype is associated cinoma (HCC) will significantly improve patient care. Current- with frequent TP53 inactivation mutations, higher expression ly, endeavor of integrating multi-omicsdatatoexplicitlypredict of stemness markers (KRT19 and EPCAM)andtumormarker HCC survival from multiple patient cohorts is lacking. To fill BIRC5, and activated Wnt and Akt signaling pathways. We this gap, we present a deep learning (DL)–based model on HCC validated this multi-omics model on five external datasets of that robustly differentiates survival subpopulations of patients various omics types: LIRI-JP cohort (n ¼ 230, C-index ¼ 0.75), in six cohorts. We built the DL-based, survival-sensitive model NCI cohort (n ¼ 221, C-index ¼ 0.67), Chinese cohort (n ¼ on 360 HCC patients' data using RNA sequencing (RNA-Seq), 166, C-index ¼ 0.69), E-TABM-36 cohort (n ¼ 40, C-index ¼ miRNA sequencing (miRNA-Seq), and methylation data from 0.77), and Hawaiian cohort (n ¼ 27, C-index ¼ 0.82). This TheCancerGenomeAtlas(TCGA),whichpredictsprognosis is the first study to employ DL to identify multi-omics features as good as an alternative model where genomics and clinical linked to the differential survival of patients with HCC. Given data are both considered. This DL-based model provides two its robustness over multiple cohorts, we expect this workflow to optimal subgroups of patients with significant survival differ- be useful at predicting HCC prognosis prediction. -
Physical Interactions Between the Alg1, Alg2, and Alg11 Mannosyltransferases of the Endoplasmic Reticulum
Glycobiology vol. 14 no. 6 pp. 559±570, 2004 DOI: 10.1093/glycob/cwh072 Advance Access publication on March 24, 2004 Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum Xiao-Dong Gao2, Akiko Nishikawa1, and Neta Dean1 begins on the cytosolic face of the ER, where seven sugars (two N-acetylglucoseamines and five mannoses) are added 1Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, sequentially to dolichyl phosphate on the outer leaflet of NY 11794-5215, and 2Research Center for Glycoscience, National the ER, using nucleotide sugar donors (Abeijon and Institute of Advanced Industrial Science and Technology, Tsukuba Hirschberg, 1992; Perez and Hirschberg, 1986; Snider and Downloaded from https://academic.oup.com/glycob/article/14/6/559/638968 by guest on 30 September 2021 Central 6, 1-1 Higashi, Tsukuba 305-8566, Japan Rogers, 1984). After a ``flipping'' or translocation step, the Received on January 26, 2004; revised on March 2, 2004; accepted on last seven sugars (four mannoses and three glucoses) are March 2, 2004 added within the lumen of the ER, using dolichol-linked sugar donors (Burda and Aebi, 1999). Once assembled, the The early steps of N-linked glycosylation involve the synthesis oligosaccharide is transferred from the lipid to nascent of a lipid-linked oligosaccharide, Glc3Man9GlcNAc2-PP- protein in a reaction catalyzed by oligosaccharyltransferase. dolichol, on the endoplasmic reticulum (ER) membrane. After removal of terminal glucoses and a single mannose, Prior to its lumenal translocation and transfer to nascent nascent glycoproteins bearing the N-linked Man8GlcNAc2 glycoproteins, mannosylation of Man5GlcNAc2-PP-dolichol core can exit the ER to the Golgi, where this core may is catalyzed by the Alg1, Alg2, and Alg11 mannosyltrans- undergo further carbohydrate modifications. -
Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2010 Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis Ryan Fassnacht Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Physiology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2246 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Ryan C. Fassnacht 2010 All Rights Reserved Molecular Mechanisms Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by Ryan Christopher Fassnacht, B.S. Hampden Sydney University, 2005 M.S. Virginia Commonwealth University, 2010 Director: Valeria Mas, Ph.D., Associate Professor of Surgery and Pathology Division of Transplant Department of Surgery Virginia Commonwealth University Richmond, Virginia July 9, 2010 Acknowledgement The Author wishes to thank his family and close friends for their support. He would also like to thank the members of the molecular transplant team for their help and advice. This project would not have been possible with out the help of Dr. Valeria Mas and her endearing -
Primary Antibodies Flyer
Primary Antibodies Your choice of size and format Format Concentration Size CF® dye conjugates (13 colors) 0.1 mg/mL 100 or 500 uL Biotin, HRP or AP conjugates 0.1 mg/mL 100 or 500 uL R-PE, APC, or Per-CP conjugates 0.1 mg/mL 250 uL Purified, with BSA 0.1 mg/mL 100 or 500 uL Purified, BSA-free (Mix-n-Stain™ Ready) 1 mg/mL 50 uL Advantages Figure 1. IHC staining of human prostate Figure 2. Flow cytometry analysis of U937 • More than 1000 monoclonal antibodies carcinoma with anti-ODC1 clone cells with anti-CD31/PECAM clone C31.7, • Growing selection of monoclonal rabbit ODC1/485. CF647 conjugate (blue) or isotype control (orange). antibodies • Validated in IHC and other applications Your choice of 13 bright and photostable CF® dyes • Choose from 13 bright and stable CF® dyes CF® dye Ex/Em (nm) Features • Also available with R-PE, APC, PerCP, HRP, AP, CF®405S 404/431 • Better fit for the 450/50 flow cytometer channel than Alexa Fluor® 405 or biotin CF®405M 408/452 • More photostable than Pacific Blue®, with less green spill-over • Purified antibodies available BSA-free, 1 mg/mL, • Compatible with super-resolution imaging by SIM ready to use for Mix-n-Stain™ labeling or other CF®488A 490/515 • Less non-specific binding and spill-over than Alexa Fluor® 488 conjugation • Very photostable and pH-insensitive • Compatible with super-resolution imaging by TIRF • Offered in affordable 100 uL size CF®543 541/560 • Brighter than Alexa Fluor® 546 CF®555 555/565 • Brighter than Cy®3 • Validated in multicolor super-resolution imaging by STORM CF®568 -
Somatic Mosaicism in Wiskott–Aldrich Syndrome Suggests in Vivo Reversion by a DNA Slippage Mechanism
Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism Taizo Wada*, Shepherd H. Schurman*, Makoto Otsu*, Elizabeth K. Garabedian*, Hans D. Ochs†, David L. Nelson‡, and Fabio Candotti*§ *Disorders of Immunity Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; †Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195; and ‡Immunophysiology Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Francis S. Collins, National Institutes of Health, Bethesda, MD, May 24, 2001 (received for review April 23, 2001) Somatic mosaicism caused by in vivo reversion of inherited muta- of whom showed a progressively mild clinical course because of tions has been described in several human genetic disorders. Back the selective growth advantage of the revertant lymphocytes. mutations resulting in restoration of wild-type sequences and The molecular mechanism leading to the reversion events has second-site mutations leading to compensatory changes have been remained unknown in most cases, except for the few cases where shown in mosaic individuals. In most cases, however, the precise crossing over or gene conversion has been shown in compound genetic mechanisms underlying the reversion events have re- heterozygous patients (11, 12). DNA polymerase slippage is the mained unclear, except for the few instances where crossing over most commonly invoked mechanism to explain triplet repeat or gene conversion have been demonstrated. Here, we report a expansion in human diseases (e.g., Huntington’s disease, fragile patient affected with Wiskott–Aldrich syndrome (WAS) caused by X syndrome, and Friedreich ataxia) (16). -
Clinical Utility Gene Card For: ALG1 Defective Congenital Disorder of Glycosylation
European Journal of Human Genetics (2015) 23, doi:10.1038/ejhg.2015.9 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg CLINICAL UTILITY GENE CARD Clinical utility gene card for: ALG1 defective congenital disorder of glycosylation Jaak Jaeken*,1, Dirk Lefeber2 and Gert Matthijs3 European Journal of Human Genetics (2015) 23, doi:10.1038/ejhg.2015.9; published online 4 February 2015 1. DISEASE CHARACTERISTICS are known to the authors. The frequency and the prevalence of the 1.1 Name of the disease (synonyms) disease are not known. Deficiency of GDP-Man:GlcNAc2-PP-Dol mannosyltransferase, manno- syltransferase 1 deficiency, ALG1-CDG, CDG-Ik. 1.9 Diagnostic setting 1.2 OMIM# of the disease 608540 Yes No A. (Differential) diagnostics ⊠ ⊠ 1.3 Name of the analysed genes or DNA/chromosome segments: B. Predictive testing C. Risk assessment in relatives ⊠ □ ALG1. D. Prenatal ⊠ □ 1.4 OMIM# of the gene 605907. Comment: ALG1-CDG belongs to the five most common N-glycosylation 1.5 Mutational spectrum disorders together with PMM2-CDG, ALG6-CDG, MPI-CDG and Thirteen variants have been reported: ten missense variants, two SRD5A3-CDG. It is an autosomal recessive disease with a broad splicing variants and one deletion variant. The most frequent variant clinical spectrum, and with early death at the second day of life to – is c.773C4T(p.Ser258Leu)1–6 (www.lovd.nl/ALG1). The standard survival beyond the age of 20 years.1 10 Its phenotype is characterized reference sequence indicating reported variants (ENSG00000033011) by a predominant neurological involvement. -
Selectin Ligand Sialyl-Lewis X Antigen Drives Metastasis of Hormone-Dependent Breast Cancers
Published OnlineFirst October 24, 2011; DOI: 10.1158/0008-5472.CAN-11-1139 Cancer Tumor and Stem Cell Biology Research Selectin Ligand Sialyl-Lewis x Antigen Drives Metastasis of Hormone-Dependent Breast Cancers Sylvain Julien1, Aleksandar Ivetic2, Anita Grigoriadis3, Ding QiZe1, Brian Burford1, Daisy Sproviero1, Gianfranco Picco1, Cheryl Gillett4, Suzanne L. Papp5, Lana Schaffer5, Andrew Tutt3, Joyce Taylor-Papadimitriou1, Sarah E. Pinder4, and Joy M. Burchell1 Abstract The glycome acts as an essential interface between cells and the surrounding microenvironment. However, changes in glycosylation occur in nearly all breast cancers, which can alter this interaction. Here, we report that profiles of glycosylation vary between ER-positive and ER-negative breast cancers. We found that genes involved in the synthesis of sialyl-Lewis x (sLex; FUT3, FUT4, and ST3GAL6) are significantly increased in estrogen receptor alpha-negative (ER-negative) tumors compared with ER-positive ones. SLex expression had no influence on the survival of patients whether they had ER-negative or ER-positive tumors. However, high expression of sLex in ER- positive tumors was correlated with metastasis to the bone where sLex receptor E-selectin is constitutively expressed. The ER-positive ZR-75-1 and the ER-negative BT20 cell lines both express sLex but only ZR-75-1 cells could adhere to activated endothelial cells under dynamic flow conditions in a sLex and E-selectin–dependent manner. Moreover, L/P-selectins bound strongly to ER-negative MDA-MB-231 and BT-20 cell lines in a heparan sulfate (HS)–dependent manner that was independent of sLex expression. Expression of glycosylation genes involved in heparan biosynthesis (EXT1 and HS3ST1) was increased in ER-negative tumors. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.