Somatic Mosaicism in Wiskott–Aldrich Syndrome Suggests in Vivo Reversion by a DNA Slippage Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Somatic Mosaicism in Wiskott–Aldrich Syndrome Suggests in Vivo Reversion by a DNA Slippage Mechanism Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism Taizo Wada*, Shepherd H. Schurman*, Makoto Otsu*, Elizabeth K. Garabedian*, Hans D. Ochs†, David L. Nelson‡, and Fabio Candotti*§ *Disorders of Immunity Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; †Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195; and ‡Immunophysiology Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Francis S. Collins, National Institutes of Health, Bethesda, MD, May 24, 2001 (received for review April 23, 2001) Somatic mosaicism caused by in vivo reversion of inherited muta- of whom showed a progressively mild clinical course because of tions has been described in several human genetic disorders. Back the selective growth advantage of the revertant lymphocytes. mutations resulting in restoration of wild-type sequences and The molecular mechanism leading to the reversion events has second-site mutations leading to compensatory changes have been remained unknown in most cases, except for the few cases where shown in mosaic individuals. In most cases, however, the precise crossing over or gene conversion has been shown in compound genetic mechanisms underlying the reversion events have re- heterozygous patients (11, 12). DNA polymerase slippage is the mained unclear, except for the few instances where crossing over most commonly invoked mechanism to explain triplet repeat or gene conversion have been demonstrated. Here, we report a expansion in human diseases (e.g., Huntington’s disease, fragile patient affected with Wiskott–Aldrich syndrome (WAS) caused by X syndrome, and Friedreich ataxia) (16). It is well accepted that a 6-bp insertion (ACGAGG) in the WAS protein gene, which abro- slippage-type events also can cause small insertion or deletion of gates protein expression. Somatic mosaicism was documented in tandem repeats (17), and it is therefore possible that in the this patient whose majority of T lymphocytes expressed nearly appropriate genomic context, this mechanism could lead to normal levels of WAS protein. These lymphocytes were found to reversion of a mutation to wild-type sequence (13). In this lack the deleterious mutation and showed a selective growth report, we describe a 43-year-old WAS patient carrying a advantage in vivo. Analysis of the sequence surrounding the spontaneous in vivo reversion likely caused by a DNA slippage mutation site showed that the 6-bp insertion followed a tandem mechanism. The mutation responsible for the disease in this repeat of the same six nucleotides. These findings strongly suggest patient’s family is a 6-bp insertion after a tandem microrepeat of that DNA polymerase slippage was the cause of the original the same six nucleotides. In contrast to those of other affected germ-line insertion mutation in this family and that the same family members, the majority of the proband’s T lymphocytes mechanism was responsible for its deletion in one of the propos- were demonstrated to express WASP and lack the deleterious itus T cell progenitors, thus leading to reversion mosaicism. mutation. In addition, we show evidence of selective advantage of the WASP-expressing (WASPϩ) T lymphocytes over the Ϫ he Wiskott–Aldrich syndrome (WAS) is an X-linked disor- WASP-negative (WASP ) ones, which explains the accumula- Tder characterized by thrombocytopenia with small-sized tion of the former cells. Finally, our patient has shown clinical platelets, eczema, and immune deficiency, leading to increased improvement over the years, which suggests the revertant T cells susceptibility to infection from all classes of pathogens (1, 2). having contributed to the modification of his previously severe Sepsis and severe intracerebral hemorrhage represent frequent clinical phenotype. causes of death in WAS boys, who also are subjected to malignancies with increased frequency. The disease gene was Materials and Methods discovered by positional cloning (3) and encodes the WAS Case Presentation. Fig. 1 shows a pedigree of the proband’s family protein (WASP), a 502-aa proline-rich protein, which is consti- whose history began at the age of 10 months with encephalitis. tutively expressed in cytoplasm of all nonerythroid hematopoi- Between the ages of 2 and 5 years, he had recurrent easy bruising, etic cells (4, 5). Although the definitive function of WASP eczema, and recurrent otitis media. At age 5, it was noted that remains to be determined, this protein has been demonstrated to his younger brother had petechiae and thrombocytopenia. The be involved in signal transduction pathways of important cellular patient’s platelet count was then tested and found to be in the growth factors (e.g., Nck, Fyn, Itk, and Grb2) and in cytoskeleton range of 13,000 to 20,000͞mm3. A clinical diagnosis of WAS was reorganization events of hematopoietic cells, possibly in re- made, and the patient underwent an elective splenectomy, sponse to cellular activation (6). leading to correction of platelet numbers and size. Shortly after It has been recently recognized that somatic reversion of splenectomy, the patient suffered from pneumococcal meningi- inherited mutations occurs in human genetic disorders. Back tis, from which he recovered. Frequent upper respiratory and͞or mutations resulting in restoration of wild-type sequences (7–13) ear infections and continued eczema are described until the age and second-site mutations leading to compensatory changes (14, of 12, when the patient was hospitalized for vasculitic rash, 15) have been shown in mosaic individuals. If a reverse mutation thrombocytopenia, and an illness resembling rheumatoid arthri- occurs in a somatic cell during mitosis and the cell with the reverse mutation has a selective growth advantage in vivo, cells carrying the original mutation are expected to be replaced by Abbreviations: WAS, Wiskott–Aldrich syndrome; WASP, WAS protein; X-SCID, X-linked severe combined immunodeficiency; PBMC, peripheral blood mononuclear cells; TCR, T cell revertants that have regained wild-type phenotype. This rare receptor; CDR3, complementarity-determining region 3; FACS, fluorescence-activated cell event may modify the disease clinical phenotype, leading to sorter. atypical and unexpectedly mild presentations. In fact, sponta- §To whom reprint requests should be addressed. E-mail: [email protected]. neous in vivo reversion has been reported in one patient with The publication costs of this article were defrayed in part by page charge payment. This GENETICS adenosine deaminase deficiency (7) and one patient with X- article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. linked severe combined immunodeficiency (X-SCID) (8), both §1734 solely to indicate this fact. www.pnas.org͞cgi͞doi͞10.1073͞pnas.151260498 PNAS ͉ July 17, 2001 ͉ vol. 98 ͉ no. 15 ͉ 8697–8702 Downloaded by guest on September 29, 2021 was boiled, subjected to 8% SDS͞PAGE, and electrotransferred onto nylon membranes (Immobilon-P, Millipore). The detection of WASP was performed as described (19). Flow Cytometric Analysis of WASP. Three-color immunofluores- cence analysis was used to study cell-surface antigens and intracellular WASP expression simultaneously. Detection of WASP was performed as described with minor modifications (20). Briefly, PBMC were stained for cell-surface antigens before cell membrane permeabilization using the following mAbs: Cy-chrome-conjugated anti-CD3 (PharMingen); TRI- color labeled anti-CD8 and anti-CD56 (Caltag, South San Francisco, CA); FITC-conjugated anti-CD4 (Caltag); and FITC- conjugated anti-CD45RA, anti-CD45R0, and anti-CD20 (PharMingen). After washing, cells were treated with Cytofix͞ Cytoperm solution from CytoStain kit (PharMingen) at 4°C for 20 min. After washing twice, they were incubated with 1:200 diluted anti-WASP (3F3-A5) mAb (5) or purified mouse IgG1 (PharMingen) at 4°C for 20 min. Cells were then reacted with Fig. 1. Simplified pedigree of the proband’s family. Solid squares represent biotin-conjugated anti-mouse IgG1 at 4°C for 20 min, followed affected individuals; diagonal lines indicate deceased subjects. Carrier status by further incubation with phycoerythrin-conjugated streptavi- of female subjects is indicated by a dot. din (both from PharMingen). Stained cells were analyzed with a FACScan [fluorescence-activated cell sorter (FACS)] flow cytom- eter using CELLQUEST software (Becton Dickinson). WASP expres- tis with concurrent dysgammaglobulinemia and nephritis. The sion of monocytes was evaluated in CD3-negative cells among same year, he developed pneumococcal meningitis and sepsis, monocytic cells determined by a distribution pattern in the forward which were successfully treated. One month later, another and side scatter. Because anti-WASP mAb (3F3-A5) belongs to episode of pneumococcal meningitis occurred. At age 16, the the mouse IgG1 subclass, all antibodies for surface staining were patient developed a right mastoiditis. This clinical history is chosen from mouse IgG2 subclass to avoid crossreaction. consistent with severe WAS phenotype (score of 5) (18). Since his 20s, the patient has been relatively well, with complaints of Mutation Analysis. DNA was extracted from blood samples with sinusitis episodes responding to antibiotic treatment. The patient the QIAamp DNA blood mini kit and from a skin biopsy is now 43 years
Recommended publications
  • Allergy, Asthma & Immunology Associates (Private Practice) 2808
    CURRICULUM VITAE Roger H. Kobayashi, M.D. Business Address: Allergy, Asthma & Immunology Associates (Private practice) 2808 South 80th Avenue, Suites 210 and 240, Omaha, NE 68124 (402) 391-1800 Fax (402) 391-1563 email: [email protected] Education: 6/1969 University of Nebraska, Lincoln, Nebraska, B.A. (Pre-Med/Economics) 9/69-6/73 University of Hawaii Medical School, Honolulu, Hawaii 6/72-5/75 University of Hawaii Graduate School, Honolulu, Hawaii, M.S. (Physiology) 9/74-4/75 UCSD School of Medicine & UCLA School of Medicine 7/73-5/75 University of Nebraska College of Medicine, Omaha, Nebraska, M.D. Academic Positions: 6/75-7/76 Pediatric Intern, University of Southern California School of Medicine, Los Angeles, California 7/76-7/77 Pediatric Resident, University of Southern California School of Medicine, Los Angeles, California 7/77-12/79 Fellowship, Pediatric Immunology & Allergy, UCLA School of Medicine, Los Angeles, California 1/80-6/84 Assistant Professor of Pediatrics and Medical Microbiology, University of Nebraska College of Medicine, Omaha, Nebraska 1/80-9/88 Director, Division of Allergy and Immunology, Department of Pediatrics, University of Nebraska 7/84-9/88 Associate Professor of Pediatrics, University of Nebraska College of Medicine 7/85-9/88 Associate Professor of Pathology and Medical Microbiology, University of Nebraska College of Medicine 9/88-1/90 Associate Professor of Pediatrics, UCLA School of Medicine, Los Angeles, CA 1/90-6/95 Assoc Clinical Prof of Pediatrics UCLA School of Medicine, Los Angeles, CA 6/95-present
    [Show full text]
  • Agammaglobulinemia Hypogammaglobulinemia Hereditary Disease Immunoglobulins
    Pediat. Res. 2: 72-84 (1968) Agammaglobulinemia hypogammaglobulinemia hereditary disease immunoglobulins Hereditary Alterations in the Immune Response: Coexistence of 'Agammaglobulinemia', Acquired Hypogammaglobulinemia and Selective Immunoglobulin Deficiency in a Sibship REBECCA H. BUCKLEY[75] and J. B. SIDBURY, Jr. Departments of Pediatrics, Microbiology and Immunology, Division of Immunology, Duke University School of Medicine, Durham, North Carolina, USA Extract A longitudinal immunologic study was conducted in a family in which an entire sibship of three males was unduly susceptible to infection. The oldest boy's history of repeated severe infections be- ginning in infancy and his marked deficiencies of all three major immunoglobulins were compatible with a clinical diagnosis of congenital 'agammaglobulinemia' (table I, fig. 1). Recurrent severe in- fections in the second boy did not begin until late childhood, and his serum abnormality involved deficiencies of only two of the major immunoglobulin fractions, IgG and IgM (table I, fig. 1). This phenotype of selective immunoglobulin deficiency is previously unreported. Serum concentrations of the three immunoglobulins in the youngest boy (who also had a late onset of repeated infection) were normal or elevated when he was first studied, but a marked decline in levels of each of these fractions was observed over a four-year period (table I, fig. 1). We could find no previous reports describing apparent congenital and acquired immunologic deficiencies in a sibship. Repeated infections and demonstrated specific immunologic unresponsiveness preceded gross ab- normalities in the total and fractional gamma globulin levels in both of the younger boys (tables II-IV). When the total immunoglobulin level in the second boy was 735 mg/100 ml, he failed to respond with a normal rise in titer after immunization with 'A' and 'B' blood group substances, diphtheria, tetanus, or Types I and II poliovaccines.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • CDG and Immune Response: from Bedside to Bench and Back Authors
    CDG and immune response: From bedside to bench and back 1,2,3 1,2,3,* 2,3 1,2 Authors: Carlota Pascoal , Rita Francisco , Tiago Ferro , Vanessa dos Reis Ferreira , Jaak Jaeken2,4, Paula A. Videira1,2,3 *The authors equally contributed to this work. 1 Portuguese Association for CDG, Lisboa, Portugal 2 CDG & Allies – Professionals and Patient Associations International Network (CDG & Allies – PPAIN), Caparica, Portugal 3 UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal 4 Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium Word count: 7478 Number of figures: 2 Number of tables: 3 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jimd.12126 This article is protected by copyright. All rights reserved. Abstract Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are Congenital Disorders of Glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterised by an increased propensity to – often life-threatening – infection.
    [Show full text]
  • Selective Igm Deficiency—An Underestimated Primary Immunodeficiency
    UC Irvine UC Irvine Previously Published Works Title Selective IgM Deficiency-An Underestimated Primary Immunodeficiency. Permalink https://escholarship.org/uc/item/6wg240n5 Journal Frontiers in immunology, 8(SEP) ISSN 1664-3224 Authors Gupta, Sudhir Gupta, Ankmalika Publication Date 2017 DOI 10.3389/fimmu.2017.01056 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW published: 05 September 2017 doi: 10.3389/fimmu.2017.01056 Selective IgM Deficiency—An Underestimated Primary Immunodeficiency Sudhir Gupta* and Ankmalika Gupta† Program in Primary Immunodeficiency and Aging, Division of Basic and Clinical Immunology, University of California at Irvine, Irvine, CA, United States Although selective IgM deficiency (SIGMD) was described almost five decades ago, it was largely ignored as a primary immunodeficiency. SIGMD is defined as serum IgM levels below two SD of mean with normal serum IgG and IgA. It appears to be more common than originally realized. SIGMD is observed in both children and adults. Patients with SIGMD may be asymptomatic; however, approximately 80% of patients with SIGMD present with infections with bacteria, viruses, fungi, and protozoa. There is an increased frequency of allergic and autoimmune diseases in SIGMD. A number Edited by: of B cell subset abnormalities have been reported and impaired specific antibodies Guzide Aksu, to Streptococcus pneumoniae responses are observed in more than 45% of cases. Ege University, Turkey Innate immunity, T cells, T cell subsets, and T cell functions are essentially normal. Reviewed by: Amos Etzioni, The pathogenesis of SIGMD remains unclear. Mice selectively deficient in secreted IgM University of Haifa, Israel are also unable to control infections from bacterial, viral, and fungal pathogens, and Isabelle Meyts, develop autoimmunity.
    [Show full text]
  • Common Variable Immunodeficiency (CVID)
    UNIVERSIDADE DE LISBOA FACULDADE DE MEDICINA DE LISBOA AUTOIMUNIDADE E CÉLULAS REGULADORAS + HIGH T CD4 CD25 NA IMUNODEFICIÊNCIA COMUM VARIÁVEL Susana Clara Barão Lopes da Silva dos Anjos MESTRADO EM IMUNOLOGIA MÉDICA 2007 UNIVERSIDADE DE LISBOA FACULDADE DE MEDICINA DE LISBOA AUTOIMUNIDADE E CÉLULAS REGULADORAS + HIGH T CD4 CD25 NA IMUNODEFICIÊNCIA COMUM VARIÁVEL Susana Clara Barão Lopes da Silva dos Anjos Mestrado em Imunologia Médica Dissertação orientada pelo Professor Doutor Antero G. Palma-Carlos Todas as afirmações efectuadas no presente documento são da exclusiva responsabilidade do seu autor, não cabendo qualquer responsabilidade à Faculdade de Medicina de Lisboa pelos conteúdos nele apresentados 2007 A impressão esta dissertação foi aprovada em Comissão Coordenadora do Conselho Científico da Faculdade de Medicina de Lisboa, em reunião de 8 de Maio de 2007. Good research brings you more questions than answers. Sir John Vane, Nobel Prize 1982 RESUMO Introdução: Vários mecanismos têm sido sugeridos para explicar a elevada prevalência de doenças autoimunes (DAIs) na Imunodeficiência Comum Variável (ICV). Procurámos avaliar a prevalência de DAIs numa população com IDCV, caracterizar estes doentes e verificar se um defeito quantitativo na população T CD4+CD25high poderia estar associado à maior prevalência de autoimunidade na ICV. Métodos: Foram incluídos 47 doentes com ICV sob terapêutica substitutiva com imunoglobulina endovenosa (IGEV). Através de revisão dos processos clínicos e entrevista individual foram recolhidos dados clínicos e laboratoriais relativamente às manifestações de apresentação e evolução clínica, incluindo DAIs e níveis séricos de imunoglobulinas no diagnóstico de ICV. Em estudo transversal, foi quantificada IgG sérica e populações T, B e NK e células T CD4CD25 por citometria de fluxo em sangue total.
    [Show full text]
  • DOCK8 Deficiency Without Hyper-Ige in a Child with a Large Deletion
    CASE REPORT published: 14 June 2021 doi: 10.3389/fped.2021.635322 Case Report: DOCK8 Deficiency Without Hyper-IgE in a Child With a Large Deletion Edna Venegas-Montoya 1*, Aidé Tamara Staines-Boone 1, Luz María Sánchez-Sánchez 2, Jorge Alberto García-Campos 3, Rubén Antonio Córdova-Gurrola 4, Yuridia Salazar-Galvez 1, David Múzquiz-Zermeño 1, María Edith González-Serrano 5 and Saul O. Lugo Reyes 5 1 Immunology Service, Hospital de Especialidades Unidad Medica de Alta Especialidad (UMAE) 25 del Instituto Mexicano del Seguro Social (IMSS), Monterrey, Mexico, 2 Pediatrics Service, Hospital de Especialidades Unidad Medica de Alta Especialidad (UMAE) 25 del Instituto Mexicano del Seguro Social (IMSS), Monterrey, Mexico, 3 Infectious Disease Department, Hospital de Especialidades Unidad Medica de Alta Especialidad (UMAE) 25 del Instituto Mexicano del Seguro Social (IMSS), Monterrey, Mexico, 4 Pediatrics Service, General Hospital 1, Saltillo, Mexico, 5 Immunodeficiencies Lab, National Institute of Pediatrics, Mexico City, Mexico Edited by: Stephen Jolles, Autosomal recessive (AR) DOCK8 deficiency is a well-known actinopathy, a combined University Hospital of Wales, primary immune deficiency with impaired actin polymerization that results in altered United Kingdom cell mobility and immune synapse. DOCK8-deficient patients present early in life Reviewed by: Beatriz Elena Marciano, with eczema, viral cutaneous infections, chronic mucocutaneous candidiasis, bacterial National Institutes of Health (NIH), pneumonia, and abscesses, together with eosinophilia, thrombocytosis, lymphopenia, United States and variable dysgammaglobulinemia that usually includes Hyper-IgE. In fact, before Andrea Taddio, Institute for Maternal and Child Health its genetic etiology was known, patients were described as having a form of Hyper- Burlo Garofolo (IRCCS), Italy IgE syndrome, a name now deprecated in favor of genetic defects.
    [Show full text]
  • Defective Glycosylation and Multisystem Abnormalities Characterize the Primary Immunodeficiency XMEN Disease
    Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease Juan C. Ravell, … , Matthias Mann, Michael J. Lenardo J Clin Invest. 2020;130(1):507-522. https://doi.org/10.1172/JCI131116. Research Article Immunology Graphical abstract Find the latest version: https://jci.me/131116/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Defective glycosylation and multisystem abnormalities characterize the primary immunodeficiency XMEN disease Juan C. Ravell,1 Mami Matsuda-Lennikov,1 Samuel D. Chauvin,1 Juan Zou,1 Matthew Biancalana,1 Sally J. Deeb,2 Susan Price,3 Helen C. Su,3 Giulia Notarangelo,1 Ping Jiang,1 Aaron Morawski,1 Chrysi Kanellopoulou,1 Kyle Binder,1,4 Ratnadeep Mukherjee,5 James T. Anibal,5 Brian Sellers,6 Lixin Zheng,1 Tingyan He,1,7 Alex B. George,1 Stefania Pittaluga,8 Astin Powers,9 David E. Kleiner,9 Devika Kapuria,10 Marc Ghany,10 Sally Hunsberger,11 Jeffrey I. Cohen,12 Gulbu Uzel,3 Jenna Bergerson,3 Lynne Wolfe,13 Camilo Toro,13 William Gahl,13 Les R. Folio,14 Helen Matthews,1 Pam Angelus,3,15 Ivan K. Chinn,16 Jordan S. Orange,16 Claudia M. Trujillo-Vargas,17 Jose Luis Franco,17 Julio Orrego-Arango,17 Sebastian Gutiérrez-Hincapié,17 Niraj Chandrakant Patel,18,19 Kimiyo Raymond,20 Turkan Patiroglu,21 Ekrem Unal,21 Musa Karakukcu,21 Alexandre G.R. Day,22 Pankaj Mehta,22 Evan Masutani,1 Suk S. De Ravin,3 Harry L. Malech,3 Grégoire Altan-Bonnet,5 V. Koneti Rao,3 Matthias Mann,2 and Michael J. Lenardo1 1Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA.
    [Show full text]
  • THESIS for DOCTORAL DEGREE (Ph.D
    From THE DEPARTMENT OF LABORATORY MEDICINE Karolinska Institutet, Stockholm, Sweden MULTIOMICS STRATEGY IN CLINICAL IMMUNOLOGY AIDING UNSOLVED ANTIBODY DEFICIENCIES Hassan Abolhassani, M.D., MPH, Ph.D. Stockholm 2018 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Eprint AB, Stockholm, Sweden © Hassan Abolhassani, 2018 ISBN 978-91-7676-941-6 Multiomics Strategy in Clinical Immunology Aiding Unsolved Antibody Deficiencies THESIS FOR DOCTORAL DEGREE (Ph.D. in Clinical Immunology) Venue: 4U Solen, Alfred Nobels Allé 8, 4th floor, Karolinska Institutet, Huddinge. Date: Friday 6th April 2018, 10:00 By Hassan Abolhassani, M.D., MPH, Ph.D. Principal Supervisor: Opponent: Professor Lennart Hammarström Professor Thomas Fleisher Karolinska Institutet NIH Clinical Center Department of Laboratory Medicine Department of Laboratory Medicine Division of Clinical Immunology Bethesda, MD, USA Co-supervisor(s): Examination Board: Professor Asghar Aghamohammadi Professor Anders Örn Tehran Univ. of Medical Sciences Karlolinska Institutet Department of Pediatrics Department of Microbiology, Tumor and Cell Biology Division of Clinical Immunology Professor Ola Winqvist Professor Qiang Pan-Hammarström Karlolinska Institutet Karolinska Institutet Department of Medicine Department of Laboratory Medicine Division of Clinical Immunology Associate Professor Karlis Pauksens Uppsala University Department of Medical Sciences In the name of God, the Most Compassionate, the Most Merciful
    [Show full text]
  • Delayed Diagnosis of Ataxia-Telangiectasia in an Adolescent Patient
    International Journal of Medicine and Medical Sciences Vol. 2(11), pp. 332-334, November 2010 Available online http://www.academicjournals.org/ijmms ISSN 2006-9723 ©2010 Academic Journals Case Report Delayed diagnosis of ataxia-telangiectasia in an adolescent patient Ahmet Sert*, Dursun Odabas, Bahar Demir and Cengizhan Kılıcarslan Department of Pediatrics, Konya Training and Research Hospital, Konya, Turkey. Accepted 7 October, 2010 Ataxia-telangiectasia (AT) is a rare autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia, telangiectasies, immune defects, and a predisposition to malignancy. Patients present in early childhood with progressive cerebellar ataxia and later develop conjunctival telangiectases, other progressive neurologic degeneration, sinopulmonary infection and malignancies. Under- diagnosis or diagnostic delay of AT and its pulmonary complications contribute to morbidity and early mortality. We reported a patient who, due to a delay in diagnosis of AT, presented with bronchiectasis at the age of seventeen. To reduce the morbidity associated with AT, there needs to be greater awareness of the respiratory complications. Early management and monitoring lung function can minimize pulmonary damage. Key words: Adolescent, ataxia-telangiectasia, bronchiectasis. INTRODUCTION Ataxia-telangiectasia (AT) is a rare autosomal recessive day history of cough. He was born term as the 6th child of multisystem disorder characterized by progressive healthy parents who are first cousins. Although there cerebellar ataxia, oculocutaneous telangiectasia, were several consanguineous marriages in the family, no recurrent sinopulmonary infection, variable humoral and genetic disorder was observed. His first sibling had died cellular immunodeficiency, high incidence of mainly B from unknown causes. He displayed normal early lymphoid malignancy and hypersensitivity to ionizing developmental milestones and walked at the age of 1 radiation (Chun et al., 2004).
    [Show full text]
  • X-Linked Lymphoproliferative Disease Type 1: a Clinical and Molecular Perspective
    REVIEW published: 04 April 2018 doi: 10.3389/fimmu.2018.00666 X-Linked Lymphoproliferative Disease Type 1: A Clinical and Molecular Perspective Neelam Panchal1, Claire Booth1,2*, Jennifer L. Cannons3,4 and Pamela L. Schwartzberg3,4* 1 Molecular and Cellular Immunology Section, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom, 2 Department of Pediatric Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom, 3 National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States, 4 National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States X-linked lymphoproliferative disease (XLP) was first described in the 1970s as a fatal lymphoproliferative syndrome associated with infection with Epstein–Barr virus (EBV). Features include hemophagocytic lymphohistiocytosis (HLH), lymphomas, and dys- gammaglobulinemias. Molecular cloning of the causative gene, SH2D1A, has provided insight into the nature of disease, as well as helped characterize multiple features of Edited by: normal immune cell function. Although XLP type 1 (XLP1) provides an example of a Isabelle Meyts, primary immunodeficiency in which patients have problems clearing primarily one infec- KU Leuven, Belgium tious agent, it is clear that XLP1 is also a disease of severe immune dysregulation, even Reviewed by: independent of EBV infection. Here, we describe clinical features of XLP1, how molecular Tri Giang Phan, Garvan Institute of Medical Research, and biological studies of the gene product, SAP, and the associated signaling lymphocyte Australia activation molecule family receptors have provided insight into disease pathogenesis Sylvain Latour, Centre National de la Recherche including specific immune cell defects, and current therapeutic approaches including the Scientifique (CNRS), France potential use of gene therapy.
    [Show full text]
  • Syndrome of Serum Igm in Patients with Hyper-Igm Defective Self
    Defective Self-Reactive Antibody Repertoire of Serum IgM in Patients with Hyper-IgM Syndrome This information is current as Sébastien Lacroix-Desmazes, Igor Resnick, Dorothea Stahl, of September 25, 2021. Luc Mouthon, Teresa Espanol, Jacov Levy, Srini V. Kaveri, Luigi Notarangelo, Martha Eibl, Alain Fischer, Hans Ochs and Michel D. Kazatchkine J Immunol 1999; 162:5601-5608; ; http://www.jimmunol.org/content/162/9/5601 Downloaded from References This article cites 46 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/162/9/5601.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Defective Self-Reactive Antibody Repertoire of Serum IgM in Patients with Hyper-IgM Syndrome1 Se´bastien Lacroix-Desmazes,* Igor Resnick,† Dorothea Stahl,* Luc Mouthon,* Teresa Espanol,‡ Jacov Levy,§ Srini V. Kaveri,* Luigi Notarangelo,¶ Martha Eibl,i Alain Fischer,** Hans Ochs,†† and Michel D.
    [Show full text]