Hyper Igm Syndrome Associated with Defective CD40-Mediated B Cell Activation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Allergy, Asthma & Immunology Associates (Private Practice) 2808
CURRICULUM VITAE Roger H. Kobayashi, M.D. Business Address: Allergy, Asthma & Immunology Associates (Private practice) 2808 South 80th Avenue, Suites 210 and 240, Omaha, NE 68124 (402) 391-1800 Fax (402) 391-1563 email: [email protected] Education: 6/1969 University of Nebraska, Lincoln, Nebraska, B.A. (Pre-Med/Economics) 9/69-6/73 University of Hawaii Medical School, Honolulu, Hawaii 6/72-5/75 University of Hawaii Graduate School, Honolulu, Hawaii, M.S. (Physiology) 9/74-4/75 UCSD School of Medicine & UCLA School of Medicine 7/73-5/75 University of Nebraska College of Medicine, Omaha, Nebraska, M.D. Academic Positions: 6/75-7/76 Pediatric Intern, University of Southern California School of Medicine, Los Angeles, California 7/76-7/77 Pediatric Resident, University of Southern California School of Medicine, Los Angeles, California 7/77-12/79 Fellowship, Pediatric Immunology & Allergy, UCLA School of Medicine, Los Angeles, California 1/80-6/84 Assistant Professor of Pediatrics and Medical Microbiology, University of Nebraska College of Medicine, Omaha, Nebraska 1/80-9/88 Director, Division of Allergy and Immunology, Department of Pediatrics, University of Nebraska 7/84-9/88 Associate Professor of Pediatrics, University of Nebraska College of Medicine 7/85-9/88 Associate Professor of Pathology and Medical Microbiology, University of Nebraska College of Medicine 9/88-1/90 Associate Professor of Pediatrics, UCLA School of Medicine, Los Angeles, CA 1/90-6/95 Assoc Clinical Prof of Pediatrics UCLA School of Medicine, Los Angeles, CA 6/95-present -
Infection Control for Neutropenic Cancer Patients : the Libraryuse of Prophylactic Antibiotics Lecture Author Jean A
Infection control for neutropenic cancer patients : the Libraryuse of prophylactic antibiotics Lecture author Jean A. Klastersky Onlineby Institut Jules Bordet,© Université Libre de Bruxelles (ULB) Brussels, Belgium ESCMID Complications and mortality associated with febrile neutropenia Library No Bacteremia Bacteremia Total ComplicationsLectureDeaths Total Complications Deaths author Solid tumors 784 60 (8 %) 25 135 30 (22 %) 17 Onlineby (3 %) (13 % ) © Hematological cancer 859 111 (13 %) 32 364 76 (21 %) 32 (4 %) (9 %) ESCMID J. Klastersky et al., 2007 2 Complications associated with febrile neutropenia Library Hypotension : systolic blood pressure less than 90 mmHg or need for pressor support to maintain blood pressure Respiratory failure : arterial oxygen pressure less than 60mmHg while breathing room air or needLecture for mechanical ventilation Disseminated intravascular coagulation Confusion or altered mental state author Congestive cardiac failure seen on chest X-ray and requiring treatment Onlineby Bleeding severe enough to require© transfusion Arrhythmia or ECG changes requiring treatment Renal failure requiring investigation and/or treatment with IV fluids, dialysis, or any other intervention ESCMID J. Klastersky et al., 2000 3 Cost of febrile neutropenia Library Initial hospitalization Initial hospitalization plus all downstreamLecture neutropenia care author 2.010 $ Onlineby 14.407 $ © ESCMID D. Weyckler et al., 2008 4 Use of oral antibiotics in protected units environment : clinical effectiveness and role in the emergence -
Neutropenia Fact Sheet
Neutropenia in Barth Syndrome i ii (Chronic, Cyclic or Intermittent) What problems can Neutropenia cause? Neutrophils are the main white blood cell for fighting or preventing bacterial or fungal infections. They may be referred to as polymorphonuclear cells (polys or PMNs), white cells with segmented nuclei (segs), or neutrophils in the complete blood cell count (CBC) report. Immature neutrophils are referred to as bands. When someone is neutropenic (an abnormally low level of neutrophils in the blood), the risk of infection increases. The absolute neutrophil count (ANC) is a measure of the total number of neutrophils present in the blood. When the ANC is less than 1,000, the risk of infection increases. Most infections occur in the ears, skin or throat and to a lesser extent, the chest. These infections can be very serious and may require antibiotics to clear infections. When someone with Barth syndrome is neutropenic his defenses are weakened, he is likely to become seriously ill more quickly than someone with a normal neutrophil count. Tips: • No rectal temperatures as any break in the skin can lead to an infection. • If the individual has a temperature > 100.4° F (38° C) or has infectious symptoms, the primary physician or hematologist should be notified. The individual may need to be seen. • If the individual has a temperature of 100.4° F (38° C) – 100.5° F (38.05° C)> 8 hours or a temperature > 101.5° F (38.61° C), an immediate examination by the physician is warranted. Some or all of the following studies may be ordered: CBC with differential and ANC Urinalysis Blood, urine, and other appropriate cultures C-Reactive Protein Echocardiogram if warranted • The physician may suggest antibiotics (and G-CSF if the ANC is low) for common infections such as otitis media, stomatitis. -
Somatic Mosaicism in Wiskott–Aldrich Syndrome Suggests in Vivo Reversion by a DNA Slippage Mechanism
Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism Taizo Wada*, Shepherd H. Schurman*, Makoto Otsu*, Elizabeth K. Garabedian*, Hans D. Ochs†, David L. Nelson‡, and Fabio Candotti*§ *Disorders of Immunity Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; †Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195; and ‡Immunophysiology Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Francis S. Collins, National Institutes of Health, Bethesda, MD, May 24, 2001 (received for review April 23, 2001) Somatic mosaicism caused by in vivo reversion of inherited muta- of whom showed a progressively mild clinical course because of tions has been described in several human genetic disorders. Back the selective growth advantage of the revertant lymphocytes. mutations resulting in restoration of wild-type sequences and The molecular mechanism leading to the reversion events has second-site mutations leading to compensatory changes have been remained unknown in most cases, except for the few cases where shown in mosaic individuals. In most cases, however, the precise crossing over or gene conversion has been shown in compound genetic mechanisms underlying the reversion events have re- heterozygous patients (11, 12). DNA polymerase slippage is the mained unclear, except for the few instances where crossing over most commonly invoked mechanism to explain triplet repeat or gene conversion have been demonstrated. Here, we report a expansion in human diseases (e.g., Huntington’s disease, fragile patient affected with Wiskott–Aldrich syndrome (WAS) caused by X syndrome, and Friedreich ataxia) (16). -
Vancomycin-Resistant Enterococci Colonization in Patients with Hematological Malignancies: Screening and Its Cost-Effectiveness
Vancomycin-resistant enterococci colonization in patients with hematological malignancies: screening and its cost-effectiveness Gedik Habip1, Şimşek Funda1, Kantürk Arzu1, Yıldırmak Taner1, Arıca Deniz2, Aydın Demet2, Yokuş Osman2, Demirel Naciye2 1. Department of Infectious Diseases and Clinical Microbiology, Ministry of Health Okmeydanı Training and Research Hospital, Istanbul 2. Department of Hematology, Ministry of Health Okmeydanı Training and Research Hospital, Istanbul Abstract: Background and objective: We evaluated the rates of vancomycin-resistant enterococci (VRE) colonization and VRE- related bacteremia in patients with hematological malignancies in terms of routine screening culture and its cost-effective- ness. Materials and Methods: All patients of the hematology department who were older than 14 years of age and who devel- oped at least one febrile neutropenia episode during chemotherapy for hematological cancers between November 2010 and November 2012 were evaluated retrospectively. Results: We retrospectively analyzed 282 febrile episodes in 126 neutropenic patients during a two-year study period. The study included 65 cases in the first study-year and 78 cases in the second study-year. The numbers of colonization days and colonized patient were748 days of colonization in 29 patients (44%) in the first study-year and 547 colonization days in 21 patients (26%) in the second study-year, respectively. Routine screening culture for VRE cost $4516,4 (427 cultures) in the first study-year, $5082,7 (504 cultures) in the second study-year depending on the number of patients and their length of stay. Conclusion: In line with our study results, routine screening of hematological patients for VRE colonization is not cost- effective. Routine surveillance culture for VRE should be considered with respect to the conditions of health care setting. -
Retrospective Diagnosis of X-Linked Hyper-Igm Syndrome in a Family With
Letters to the Editor ical malignancies. One of the proband’s brothers (Patient Retrospective diagnosis of X-linked hyper-IgM III.4) was hospitalized 6-7 times a year with recurrent, syndrome in a family with multiple deaths of affected males severe bacterial infections of the gastrointestinal and res - piratory tracts until his death at age 10. Laboratory eval - uations between 1971 and 1977 demonstrated severe hypo-gammaglobulinemia with normal or elevated IgM All males in two generations of a Hungarian fam - levels (IgG, 0.85-2.95 g/L; IgA, 0.10-0.87 g/L; IgM, 1.37- ily died of interstitial pneumonia. History and 3.72 g/L). These data together with the family history records suggested X-linked hyper-IgM syndrome suggested X-HIG. 1-2 (X-HIGM). DNA sequencing of a female carrier We performed mutational analysis of the CD40L of the revealed a c. 654C →A transversion of the CD40L proband and her mother. The proband’s aunt (II.4) who gene that predicts premature termination of CD40L died at 70 years of age, and had no children, was not synthesis. This report points to the importance of available for genetic testing. Genomic DNA was isolated early carrier detection and genetic counseling in from whole blood samples. Exons 1 to 5 of the CD40L, families with X-linked primary immunodeficiency and the flanking intron regions were amplified by PCR. 3 diseases. We propose that the c.654C →A sequence The PCR products were sequenced with the BigDye variant may associate with severe X-HIGM pheno - Terminator Cycle sequencing kit (Applied Biosystems). -
Agammaglobulinemia Hypogammaglobulinemia Hereditary Disease Immunoglobulins
Pediat. Res. 2: 72-84 (1968) Agammaglobulinemia hypogammaglobulinemia hereditary disease immunoglobulins Hereditary Alterations in the Immune Response: Coexistence of 'Agammaglobulinemia', Acquired Hypogammaglobulinemia and Selective Immunoglobulin Deficiency in a Sibship REBECCA H. BUCKLEY[75] and J. B. SIDBURY, Jr. Departments of Pediatrics, Microbiology and Immunology, Division of Immunology, Duke University School of Medicine, Durham, North Carolina, USA Extract A longitudinal immunologic study was conducted in a family in which an entire sibship of three males was unduly susceptible to infection. The oldest boy's history of repeated severe infections be- ginning in infancy and his marked deficiencies of all three major immunoglobulins were compatible with a clinical diagnosis of congenital 'agammaglobulinemia' (table I, fig. 1). Recurrent severe in- fections in the second boy did not begin until late childhood, and his serum abnormality involved deficiencies of only two of the major immunoglobulin fractions, IgG and IgM (table I, fig. 1). This phenotype of selective immunoglobulin deficiency is previously unreported. Serum concentrations of the three immunoglobulins in the youngest boy (who also had a late onset of repeated infection) were normal or elevated when he was first studied, but a marked decline in levels of each of these fractions was observed over a four-year period (table I, fig. 1). We could find no previous reports describing apparent congenital and acquired immunologic deficiencies in a sibship. Repeated infections and demonstrated specific immunologic unresponsiveness preceded gross ab- normalities in the total and fractional gamma globulin levels in both of the younger boys (tables II-IV). When the total immunoglobulin level in the second boy was 735 mg/100 ml, he failed to respond with a normal rise in titer after immunization with 'A' and 'B' blood group substances, diphtheria, tetanus, or Types I and II poliovaccines. -
Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck. -
X Inactivation and Immunocompetence in Female Carriers of the X-Linked Hyper-Igm Syndrome
X inactivation and immunocompetence in female carriers of the X-linked hyper-IgM syndrome. T J Kipps J Clin Invest. 1994;94(2):469-469. https://doi.org/10.1172/JCI117355. Editorial Find the latest version: https://jci.me/117355/pdf X Inactivation and Immunocompetence in Female Carriers of the X-linked Hyper-lgM Syndrome Editorial Immunocompetence requires cognate cell-cell communication severe combined immune deficiency, in which carriers predomi- that is mediated through cell surface ligand-receptor interac- nately generate mature lymphocytes that express the normal tions (1). An important player in such interactions is CD40, a allele. type I membrane glycoprotein that is expressed by a variety of Cases of extreme Lyonization can result in phenotype ex- cells, including B cells, monocytes, dendritic cells, and thymic pression of an X-linked disease in the female carrier, as has epithelial cells. Crosslinking this surface molecule can induce been noted in cases of Wiskott-Aldrich syndrome, hemophilia maturation, activation, and/or proliferation of CD40-bearing A, or Duchenne muscular dystrophy. However, with regard to cells. This is mediated by the CD40-ligand (otherwise called the relative number of T cells that can express a functional gp39 or TRAP), a type II membrane glycoprotein that is ex- CD40-ligand, it seems that a little can go a long way. This may pressed on the surface of T cells 6-8 h after their immune reflect the presence of signaling pathways other than that of the activation (2). CD40-CD40-ligand, that, once primed by a relatively small The importance of the CD40-CD40-ligand interaction is number of CD40-ligand-expressing T cells, can perpetuate the underscored by the X-linked hyper-IgM syndrome. -
Neonatal Leukopenia and Thrombocytopenia
Neonatal Leukopenia and Thrombocytopenia Vandy Black, M.D., M.Sc., FAAP March 3, 2016 April 14, 2011 Objecves • Summarize the differenHal diagnosis of leukopenia and/or thrombocytopenia in a neonate • Describe the iniHal steps in the evaluaon of a neonate with leukopenia and/or thrombocytopenia • Review treatment opHons for leukopenia and/ or thrombocytopenia in the NICU Clinical Case 1 • One day old male infant admiUed to the NICU for hypoglycemia and a sepsis rule out • Born at 38 weeks EGA by SVD • Birth weight 4 lbs 13 oz • Exam shows a small cephalohematoma; no dysmorphic features • PLT count 42K with an otherwise normal CBC Definions • Normal WBC count 9-30K at birth – Mean 18K • What is the ANC and ALC – <1000/mm3 is abnormal – 6-8% of infants in the NICU • Normal platelet count: 150-450,000/mm3 – Not age dependent – 22-35% of infants in the NICU have plts<150K Neutropenia Absolute neutrophil count <1500/mm3 Category ANC* InfecHon risk • Mild 1000-1500 None • Moderate 500-1000 Minimal • Severe <500 Moderate to Severe (Highest if <200) • Recurrent bacterial or fungal infecHons are the hallmark of symptomac neutropenia! • *ANC = WBC X % (PMNs + Bands) / 100 DefiniHon of Neutropenia Black and Maheshwari, Neoreviews 2009 How to Approach Cytopenias • Normal vs. abnormal (consider severity) • Malignant vs. non-malignant • Congenital vs. acquired • Is the paent symptomac • Transient, recurrent, cyclic, or persistent How to Approach Cytopenias • Adequate vs. decreased marrow reserve • Decreased producHon vs. increased destrucHon/sequestraon Decreased neutrophil/platelet producon • Primary – Malignancy/leukemia/marrow infiltraon – AplasHc anemia – Genec disorders • Secondary – InfecHous – Drug-induced – NutriHonal • B12, folate, copper Increased destrucHon/sequestraon • Immune-mediated • Drug-induced • Consumpon à Hypersplenism vs. -
Enterococcal Bacteremia in Febrile Neutropenic Children and Adolescents with Underlying Malignancies, and Clinical Impact of Vancomycin Resistance
Infection (2019) 47:417–424 https://doi.org/10.1007/s15010-018-1260-z ORIGINAL PAPER Enterococcal bacteremia in febrile neutropenic children and adolescents with underlying malignancies, and clinical impact of vancomycin resistance Kil‑Seong Bae1,2 · Ju Ae Shin1 · Seong koo Kim1,3 · Seung Beom Han1,2 · Jae Wook Lee1,3 · Dong‑Gun Lee2,3,4 · Nack‑Gyun Chung1,3 · Bin Cho1,3 · Dae Chul Jeong1,2 · Jin Han Kang1,2 Received: 28 August 2018 / Accepted: 15 December 2018 / Published online: 19 December 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Purpose Enterococci are a common cause of bacteremia in immunocompromised patients. Although the increase of van- comycin-resistant enterococci (VRE) makes appropriate antibiotic therapy difficult, clinical characteristics of enterococcal bacteremia and the impact of VRE infection on outcomes have rarely been reported in immunocompromised children. Methods We enrolled children and adolescents (< 19 years of age) with underlying malignancies who were diagnosed with enterococcal bacteremia during febrile neutropenia between 2010 and 2017. Medical records of the enrolled children were retrospectively reviewed to evaluate the clinical characteristics of enterococcal bacteremia and impact of VRE infection on outcomes. Results Thirty-six episodes of enterococcal bacteremia were identified in 30 patients. VRE infection was identified in 11 epi- sodes (30.6%); the 7- and 30-day mortalities were 27.8% and 44.4%, respectively. Acute lymphoblastic leukemia (50.0%) and acute myeloid leukemia (30.6%) were the most common underlying disorders. Three (8.3%) of the patients were in complete remission, and palliative and reinduction chemotherapies were administered in 47.2% and 36.1% of episodes, respectively. -
Neutropenia : an Analysis of the Risk Factors for Infection Steven Ira Rosenfeld Yale University
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1980 Neutropenia : an analysis of the risk factors for infection Steven Ira Rosenfeld Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Rosenfeld, Steven Ira, "Neutropenia : an analysis of the risk factors for infection" (1980). Yale Medicine Thesis Digital Library. 3087. http://elischolar.library.yale.edu/ymtdl/3087 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. NEUTROPENIA: AN ANALYSIS OF THE RISK FACTORS FOR INFECTION by Steven Ira Rosenfeld B.A. Johns Hopkins University 1976 A Thesis Submitted to The Yale University School of Medicine In Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine 1980 Med Li^> Ya ABSTRACT The risk factors for infection were evaluated retrospectively in 107 neutropenic patients without underlying malignancy or cyto¬ toxic drug therapy. Neutrophil count was an independent risk factor for infection, with the incidence of infection increasing as the neutrophil count decreased. The critical neutrophil count, below which the incidence of infection was significantly increased was 250/mnr*, (p<.001). Eighty five percent of the <250 group entered with, or developed infection. Additional risk factors for infection included increased duration of neutropenia, age less than 1 year old, male sex, hypogammaglobulinemia, and recent antibiotic therapy.