The Spectrin Superfamily

Total Page:16

File Type:pdf, Size:1020Kb

The Spectrin Superfamily Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Cytoskeletal Integrators: The Spectrin Superfamily Ronald K.H. Liem Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032 Correspondence: [email protected] SUMMARY This review discusses the spectrin superfamily of proteins that function to connect cytoskeletal elements to each other, the cell membrane, and the nucleus. The signature domain is the spectrin repeat, a 106–122-amino-acid segment comprising three a-helices. a-actinin is considered to be the ancestral protein and functions to cross-link actin filaments. It then evolved to generate spectrin and dystrophin that function to link the actin cytoskeleton to the cell membrane, as well as the spectraplakins and plakins that link cytoskeletal elements to each other and to junctional complexes. A final class comprises the nesprins, which are able to bind to the nuclear membrane. This review discusses the domain organization of the various spectrin family members, their roles in protein–protein interactions, and their roles in disease, as determined from mutations, and it also describes the functional roles of the family members as determined from null phenotypes. Outline 1 Introduction 5 Spectraplakins and plakins 2 a-actinin 6 Nesprins 3 Spectrins 7 Concluding remarks 4 Dystrophin and utrophin References Editors: Thomas D. Pollard and Robert D. Goldman Additional Perspectives on The Cytoskeleton available at www.cshperspectives.org Copyright # 2016 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a018259 Cite this article as Cold Spring Harb Perspect Biol 2016;8:a018259 1 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press R.K.H. Liem 1 INTRODUCTION fore considering the spectraplakin/plakin members, and finally the nesprin proteins. Cytoskeletal elements, such as microtubules, microfila- ments, and intermediate filaments, are linked to each other, 2 a-ACTININ to the cell membrane, and to the nucleus by a class of cytoskeletal integrators. The common feature among these a-actinin is known primarily as an actin-cross-linking pro- cytoskeletal integrators is the presence of tandem arrays of tein and has been reviewed in this capacity elsewhere (Pol- units known as spectrin repeats (SRs). In addition, many of lard 2016). It is included in this review of cytoskeletal these proteins have calponin-homology (CH) domains integrators because it appears to be the ancestor protein that bind to actin filaments. Other features found in vari- to the family of proteins described here (Broderick and ous subclasses of these cytoskeletal integrators are domains Winder 2005). a-actinin comprises three domains, an actin that bind to microtubules, intermediate filaments, and the filament–binding domain consisting of two CH domains, nuclear membrane. Furthermore, there are other protein– a series of four SRs, and a domain consisting of EF hand– protein interaction domains in most of these molecules. like motifs (see Fig. 1A). As these domains are also present First, I will discuss the simplest of these proteins—a-acti- in the other cytoskeletal integrators discussed herein, they nin—followed by spectrin and dystrophin/utrophin, be- are described in more detail below. α-actinin A KEY CH1 CH2 EF CH1CH2 Actin-binding domain PH domain EF CH2 CH1 EF EF-hand motif CC-ROD β -spectrin Spectrin repeats Plakin repeat CH1 CH2 W WW domain GAR domain EF Coiled coils GSR domain α-spectrin ZZ ZZ domain Plakin-like repeat Dystrophin SH3 domain KASH domain CH1 CH2 W EF ZZ Utrophin CH1 CH2 W EF ZZ B Shot I CH1 CH2 EF Shot II CH1 CH2 EF VAB-10A CH1 CH2 VAB-10B CH1 CH2 EF Figure 1. Schematic diagrams of the spectrin superfamily of cytoskeletal linker proteins. (A) a-actinin, spectrin, and dystrophin/utrophin. a-actinin is shown as an antiparallel dimer. The two actin-binding domains (ABDs) CH1 and CH2 allow the cross-linking of actin filaments. Spectrin is shown as a dimer of a- and b-spectrin, with a-spectrin shown below b-spectrin in an antiparallel orientation (from carboxyl to amino terminus). A tetramer can be formed by a second antiparallel dimer in the opposite direction, with the amino terminus of a-spectrin interacting with the carboxyl terminus of b-spectrin (Broderick and Winder 2005). The resulting tetramer resembles a-actinin, but has many more spectrin repeats (SRs). Dystrophin is shown as a monomer. It can interact with actin through the ABD, but has many more interaction domains, including a second ABD in the last two SRs. Utrophin is similar to dystrophin, except that the last two SRs are missing. (Figure and legend continue on facing page.) 2 Cite this article as Cold Spring Harb Perspect Biol 2016;8:a018259 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press The Spectrin Superfamily 2.1 CH Domains nin, where it was identified before it was found to be in actin-binding proteins. The CH1 domain is able to bind to The actin-binding domain (ABD) of the spectrin family of actin filaments by itself, albeit with lower affinity than the proteins consists of two calponin-homology (CH1 and combined CH1–CH2 domains (Gimona and Winder CH2) domains in tandem. These ABDs are found near 1998). In contrast, the CH2 domain alone cannot bind to the amino termini of these proteins. Calponin, which is a actin filaments. None of the members of the spectrin super- calcium-binding protein present in smooth muscle, has a family expresses only the CH1 domain, although there are single CH domain that is not able to bind to actin. It is the isoforms that express only the CH2 domain (Jefferson et al. prototype CH domain because it was first found in calpo- 2004). Structurally, the CH domain is a compact globular C MACF1a CH1 CH2 EF MACF1b CH1 CH2 A A C b c EF BPAG1a CH1 CH2 EF BPAG1b CH1 CH2 A EF BPAG1e B C Plectin CH1 CH2 B B B B B C Desmoplakin I A B C D Nesprin-1G CH2CH1 Nesprin-2G CH1 CH2 Nesprin-3α Nesprin-4 Figure 1. (Continued) The domain labeled “ZZ” is the zinc-finger domain. (B) Invertebrate spectraplakins. The two splice forms of the two known invertebrate spectraplakins are shown. Shots I and II are the Drosophila spectraplakins, and VAB-10aand VAB-10bare the Caenorhabditis elegans spectraplakins. The identityof the various domains is given in the key. (C) Vertebrate spectraplakins and plakins. The major “a” and “b” splice forms of microtubule-actin cross- linking factor 1 (MACF1) and bullous pemphigoid antigen 1 (BPAG1) are shown. MACF1a and MACF1b have domain structures similar to those of BPAG1a and BPAG1b, respectively. However, a third splice form of BPAG1— BPAG1e—only shares the so-called plakin domain in common with the other two isoforms. BPAG1e can dimerize through its coiled-coil rod. Plectin and desmoplakin, along with BPAG1e, are considered “plakins” rather than “spectraplakins,” although the plakin domain actually consists of SRs. (D) Nesprins. The four major isoforms of the nesprins are shown. There are some unusual SRs in the two giant isoforms, but, for simplicity, they are shown here as standard SRs. Cite this article as Cold Spring Harb Perspect Biol 2016;8:a018259 3 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press R.K.H. Liem domain that comprises four a-helices that are 11–18 res- idues in length and show a roughly parallel orientation, interspersed with three shorter helices (Broderick and A Winder 2002). 2.2 SR Domains C Repeat 1 SRs occur in tandem and constitute the so-called rod do- main or SR domain. This domain is required for proteins to N be considered members of the spectrin superfamily of cy- L toskeletal integrators. These SR domains consist of between B 2 and 74 SRs and act as flexible spacers between the actin E cytoskeleton and the membrane or other cytoskeletal ele- Repeat 2 ments. In addition, the SR domain can function to interact D with other molecules in the cytoplasm. The repeats are 106–122 residues in length. Each repeat comprises three a-helices, and tandem SRs are connected with an inter- spectrin repeat that is also helical in nature (Fig. 2). F Proteins with spectrin repeat–containing rod domains C can dimerize in either a parallel or antiparallel manner. SRs Figure 2. Ribbon diagram illustrating the structure of two spectrin can have limited homology at the amino acid level but are repeats (SRs) in the plakin domain of bullous pemphigoid antigen 1 related structurally. Protein-prediction programs can iden- (BPAG1/dystonin), which is a member of the spectrin superfamily. tify SRs based on the expected secondary structure. Depicted is a loop-like region (green) at the far amino-terminal end, followed by a pair of SRs 1 and 2 (red and blue, respectively) arranged in tandem and connected by a linker region (L, purple) that is also 2.3 EF Hands helical in nature. Also labeled are the component helices A–C and D–F. (Reprinted from Jefferson et al. 2004.) The carboxyl terminus of a-actinin has an EF hand motif. The EF hand consists of two a-helices linked bya short loop found to be a common component that lines the intra- region. This helix–loop–helix arrangement resembles the cellular side of the plasma membrane of cells of many ver- spread thumb and forefinger of a hand. Calcium ions can tebrate tissues and is also present in a number of bind to the EF hand, leading to a conformational change nonvertebrates.
Recommended publications
  • Desmin Interacts Directly with Mitochondria
    International Journal of Molecular Sciences Article Desmin Interacts Directly with Mitochondria Alexander A. Dayal 1, Natalia V. Medvedeva 1, Tatiana M. Nekrasova 1, Sergey D. Duhalin 1, Alexey K. Surin 1,2 and Alexander A. Minin 1,* 1 Institute of Protein Research of Russian Academy of Sciences, Vavilova st., 34, 119334 Moscow, Russia; [email protected] (A.A.D.); [email protected] (N.V.M.); [email protected] (T.M.N.); [email protected] (S.D.D.); [email protected] (A.K.S.) 2 Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected] Received: 14 October 2020; Accepted: 26 October 2020; Published: 30 October 2020 Abstract: Desmin intermediate filaments (IFs) play an important role in maintaining the structural and functional integrity of muscle cells. They connect contractile myofibrils to plasma membrane, nuclei, and mitochondria. Disturbance of their network due to desmin mutations or deficiency leads to an infringement of myofibril organization and to a deterioration of mitochondrial distribution, morphology, and functions. The nature of the interaction of desmin IFs with mitochondria is not clear. To elucidate the possibility that desmin can directly bind to mitochondria, we have undertaken the study of their interaction in vitro. Using desmin mutant Des(Y122L) that forms unit-length filaments (ULFs) but is incapable of forming long filaments and, therefore, could be effectively separated from mitochondria by centrifugation through sucrose gradient, we probed the interaction of recombinant human desmin with mitochondria isolated from rat liver. Our data show that desmin can directly bind to mitochondria, and this binding depends on its N-terminal domain.
    [Show full text]
  • PSPC1 Potentiates IGF1R Expression to Augment Cell Adhesion and Motility
    1 Supplementary information 2 PSPC1 potentiates IGF1R expression to augment cell 3 adhesion and motility 4 Hsin-Wei Jen1,2 , De-Leung Gu 2, Yaw-Dong Lang 2 and Yuh-Shan Jou 1,2,* 5 1 Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 6 2 Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 7 * Author to whom correspondence should be addressed 8 Cells 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/cells Cells 2020, 9, x FOR PEER REVIEW 2 of 10 9 10 11 Supplementary Figure S1: Expression of IGF1R and integrin in PSPC1-expressing or PSPC1-depleted 12 HCC cells by Western blotting analysis 13 (A) Detection of IGF1R protein levels in three PSPC1-knockdown cells Huh7, HepG2 and Mahlavu. (B) 14 Detection of selected integrin expression in PSPC1-overexpressing or PSPC1-depleted HCC cells by using 15 their total cell lysates immunoblotted with specific integrin antibodies as shown. 16 17 18 Supplementary Figure S2: PSPC1-modulated IGF1R downstream signaling in HCC cells. Cells 2020, 9, x FOR PEER REVIEW 3 of 10 19 (A, B) Immunoblotting of IGF1R expression in PSPC1-overexpressing SK-Hep1 and PLC5 cells 20 treated with IGF1R shRNAs. (C, D) Cell migration and adhesion were measured in PSPC1- 21 knockdown Hep3B cells rescued with exogenous expression of IGF1R. Exogenous expression of 22 IGF1R in PSPC1-knockdown Hep3B cells were then applied for detection of altered AKT/ERK 23 signaling including (E) total PSPC1, IGF1R, AKT, ERK, p-IGF1R, p-AKT(S473), and 24 p-ERK(T202/Y204) as well as altered FAK/Src signaling including (F) total FAK, Src, p-FAK(Y397) 25 and p-Src(Y416) by immunoblotting assay.
    [Show full text]
  • Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin a and Affects the Migration and Invasion Potential of Breast Cancer Cells
    Published OnlineFirst February 28, 2010; DOI: 10.1158/0008-5472.CAN-08-1108 Tumor and Stem Cell Biology Cancer Research Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin A and Affects the Migration and Invasion Potential of Breast Cancer Cells Zhijiu Zhong, Wen-Shuz Yeow, Chunhua Zou, Richard Wassell, Chenguang Wang, Richard G. Pestell, Judy N. Quong, and Andrew A. Quong Abstract Cyclin D1 belongs to a family of proteins that regulate progression through the G1-S phase of the cell cycle by binding to cyclin-dependent kinase (cdk)-4 to phosphorylate the retinoblastoma protein and release E2F transcription factors for progression through cell cycle. Several cancers, including breast, colon, and prostate, overexpress the cyclin D1 gene. However, the correlation of cyclin D1 overexpression with E2F target gene regulation or of cdk-dependent cyclin D1 activity with tumor development has not been identified. This suggests that the role of cyclin D1 in oncogenesis may be independent of its function as a cell cycle regulator. One such function is the role of cyclin D1 in cell adhesion and motility. Filamin A (FLNa), a member of the actin-binding filamin protein family, regulates signaling events involved in cell motility and invasion. FLNa has also been associated with a variety of cancers including lung cancer, prostate cancer, melanoma, human bladder cancer, and neuroblastoma. We hypothesized that elevated cyclin D1 facilitates motility in the invasive MDA-MB-231 breast cancer cell line. We show that MDA-MB-231 motility is affected by disturbing cyclin D1 levels or cyclin D1-cdk4/6 kinase activity.
    [Show full text]
  • Biomarkers in Tbi and Abi: Present, Future, and Going Nowhere
    BIOMARKERS IN TBI AND ABI: PRESENT, FUTURE, AND GOING NOWHERE GABRIEL NEWMAN, PH.D., DIRECTOR: THE NEUROSCIENCE TEAM, TOWSON Disclosures: • No ties to drug companies, labs, or medical equipment companies • Studies being conducted by author at present are in area of Neuromoduation as an intervention in Autism, and Photobiomodulation as an intervention in TBI and ABI, not specifically in reliability of biomarkers for these conditions • Author of presentation is primarily a clinician in practice (70%), not researcher (30%) Lab assays: 1. MEG3 and Interluekin: Drops in MEG3 and rise in interleukin-1β (IL-1β), IL-6, and IL-8 correlate with poor prognosis in TBI. Thought to be specific to TBI, but research will tell… (Shao et al, May 2019, Eur Rev Med Pharmacol Sci). High likelihood for good use in future. Relatively easy to order. 2. S100β: calcium binding protein found in astrocytes, responsible for regulating intracellular levels of calcium; not brain specific, thus it shows up in injury not involving TBI. Must be considered along with trauma history. Also, must be taken an hour after concussion. Problem: Hard to obtain because of time limit. – probably going nowhere (Linda Papa, MD, MSc., Sports Med Arthrosc. 2016 Sep; 24(3): 108–115) 3. Glial Fibrillary Acid Protein (GFAP): Glial Fibrillary Acidic Protein (GFAP) is a promising, brain-specific glial-derived biomarker for MTBI in adults and children. GFAP is released in highly increased amounts into blood serum within an hour of an mTBI injury, and can remain elevated for several days after injury. More feasible, given extended detectability. Papa L, Mittal MK, Ramirez J, et al.; .
    [Show full text]
  • Supplementary Figures
    Mena regulates the LINC complex to control actin–nuclear lamina associations, trans-nuclear membrane signalling and cancer gene expression Frederic Li Mow Chee!, Bruno Beernaert!, Alexander Loftus!, Yatendra Kumar", Billie G. C. Griffith!, Jimi C. Wills!, Ann P. Wheeler#, J. Douglas Armstrong$, Maddy Parsons%, Irene M. Leigh,(, Charlotte M. Proby&, Alex von Kriegsheim!, Wendy A. Bickmore", Margaret C. Frame,* & Adam Byron,* Supplementary Information Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 3 Supplementary Table 1 Supplementary Table 2 Supplementary Table 3 Supplementary Table 4 !Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH< =XR, UK. "MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH< =XU, UK. #Advanced Imaging Resource, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH< =XU, UK. $Simons Initiative for the Developing Brain, School of Informatics, University of Edinburgh, Edinburgh EHH IYL, UK. %Randall Centre for Cell and Molecular Biophysics, King’s College London, London SEM MUL, UK. &Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD <HN, UK. 'Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EM =AT, UK. *email: [email protected] or [email protected] 1 a cSCC IAC correlation b cSCC IAC pathways c Core adhesome network ENAH −log10(q) MACF1 CSRP1 Met1 Met4 0 5 10 + + CORO2A Integrin signalling + CFL1 pathway PRNP ILK + HSPB1 PALLD PPFIA1 TES RDX Cytoskeletal regulation + VASP + + ARPC2 by Rho GTPase PPP2CA + Met1 + LASP1 MYH9 + VIM TUBA4A Huntington ITGA3 + disease ITGB4 VCL CAV1 ACTB ROCK1 KTN1 FLNA+ CALR DNA FBLIM1 CORO1B RAC1 + replication +ACTN1 ITGA6 + Met4 ITGAV Parkinson ITGB1 disease Actin cytoskel.
    [Show full text]
  • Microtubule Plus-End Tracking Proteins in Neuronal Development
    Cell. Mol. Life Sci. (2016) 73:2053–2077 DOI 10.1007/s00018-016-2168-3 Cellular and Molecular Life Sciences REVIEW Microtubule plus-end tracking proteins in neuronal development 1 1 1 Dieudonne´e van de Willige • Casper C. Hoogenraad • Anna Akhmanova Received: 13 December 2015 / Revised: 4 February 2016 / Accepted: 22 February 2016 / Published online: 11 March 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Regulation of the microtubule cytoskeleton is AIS Axon initial segment of pivotal importance for neuronal development and BDNF Brain-derived neurotrophic factor function. One such regulatory mechanism centers on CAMSAP Calmodulin-regulated spectrin-associated microtubule plus-end tracking proteins (?TIPs): struc- protein turally and functionally diverse regulatory factors, which CAP-Gly Cytoskeletal-associated protein glycine-rich can form complex macromolecular assemblies at the CEP Centrosomal protein growing microtubule plus-ends. ?TIPs modulate important CFEOM1 Congenital fibrosis of the extraocular muscles properties of microtubules including their dynamics and type 1 their ability to control cell polarity, membrane transport CH Calponin homology and signaling. Several neurodevelopmental and neurode- CLASP Cytoplasmic linker protein-associated protein generative diseases are associated with mutations in ?TIPs CLIP Cytoplasmic linker protein or with misregulation of these proteins. In this review, we DRG Dorsal root ganglia focus on the role and regulation of ?TIPs in neuronal EB
    [Show full text]
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Plakins, a Versatile Family of Cytolinkers: Roles in Skin Integrity and in Human Diseases Jamal-Eddine Bouameur1,2, Bertrand Favre1 and Luca Borradori1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW Plakins, a Versatile Family of Cytolinkers: Roles in Skin Integrity and in Human Diseases Jamal-Eddine Bouameur1,2, Bertrand Favre1 and Luca Borradori1 The plakin family consists of giant proteins involved in in (Roper et al., 2002; Jefferson et al., 2004; Sonnenberg and the cross-linking and organization of the cytoskeleton Liem, 2007; Boyer et al., 2010; Suozzi et al., 2012). and adhesion complexes. They further modulate sev- Mammalian plakins share a similar structural organization eral fundamental biological processes, such as cell and comprise seven members: bullous pemphigoid antigen 1 adhesion, migration, and polarization or signaling (BPAG1), desmoplakin, envoplakin, epiplakin, microtubule- pathways. Inherited and acquired defects of plakins actin cross-linking factor 1 (MACF1), periplakin, and plectin in humans and in animal models potentially lead to (Figure 1) (Choi et al., 2002; Jefferson et al., 2007; Choi and dramatic manifestations in the skin, striated muscles, Weis, 2011; Ortega et al., 2011). The existence of develop- and/or nervous system. These observations unequivo- mentally regulated and tissue-specific splice variants of some cally demonstrate the key role of plakins in the plakins further increases the diversity and versatility of these proteins (Table 1; Figure 1; Leung et al., 2001; Rezniczek et al., maintenance of tissue integrity. Here we review the 2003; Lin et al., 2005; Jefferson et al., 2006; Cabral et al., 2010). characteristics of the mammalian plakin members BPAG1 (bullous pemphigoid antigen 1), desmoplakin, PLAKINS IN THE EPIDERMIS plectin, envoplakin, epiplakin, MACF1 (microtubule- Epithelial BPAG1 (BPAG1e, also called BP230) constitutes the actin cross-linking factor 1), and periplakin, highlight- epithelium-specific isoform of BPAG1 and is localized in basal ing their role in skin homeostasis and diseases.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Keratins and Plakin Family Cytolinker Proteins Control the Length Of
    RESEARCH ARTICLE Keratins and plakin family cytolinker proteins control the length of epithelial microridge protrusions Yasuko Inaba*, Vasudha Chauhan, Aaron Paul van Loon, Lamia Saiyara Choudhury, Alvaro Sagasti* Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States Abstract Actin filaments and microtubules create diverse cellular protrusions, but intermediate filaments, the strongest and most stable cytoskeletal elements, are not known to directly participate in the formation of protrusions. Here we show that keratin intermediate filaments directly regulate the morphogenesis of microridges, elongated protrusions arranged in elaborate maze-like patterns on the surface of mucosal epithelial cells. We found that microridges on zebrafish skin cells contained both actin and keratin filaments. Keratin filaments stabilized microridges, and overexpressing keratins lengthened them. Envoplakin and periplakin, plakin family cytolinkers that bind F-actin and keratins, localized to microridges, and were required for their morphogenesis. Strikingly, plakin protein levels directly dictate microridge length. An actin-binding domain of periplakin was required to initiate microridge morphogenesis, whereas periplakin-keratin binding was required to elongate microridges. These findings separate microridge morphogenesis into distinct steps, expand our understanding of intermediate filament functions, and identify microridges as protrusions that integrate actin and intermediate filaments. *For correspondence: [email protected] (YI); Introduction [email protected] (AS) Cytoskeletal filaments are scaffolds for membrane protrusions that create a vast diversity of cell shapes. The three major classes of cytoskeletal elements—microtubules, actin filaments, and inter- Competing interests: The mediate filaments (IFs)—each have distinct mechanical and biochemical properties and associate authors declare that no with different regulatory proteins, suiting them to different functions.
    [Show full text]
  • The Spectraplakin Dystonin Antagonizes YAP Activity and Suppresses Tumourigenesis Praachi B
    www.nature.com/scientificreports OPEN The spectraplakin Dystonin antagonizes YAP activity and suppresses tumourigenesis Praachi B. Jain1,2,3, Patrícia S. Guerreiro1,2,3, Sara Canato1,2,3 & Florence Janody 1,2,3* Aberrant expression of the Spectraplakin Dystonin (DST) has been observed in various cancers, including those of the breast. However, little is known about its role in carcinogenesis. In this report, we demonstrate that Dystonin is a candidate tumour suppressor in breast cancer and provide an underlying molecular mechanism. We show that in MCF10A cells, Dystonin is necessary to restrain cell growth, anchorage-independent growth, self-renewal properties and resistance to doxorubicin. Strikingly, while Dystonin maintains focal adhesion integrity, promotes cell spreading and cell-substratum adhesion, it prevents Zyxin accumulation, stabilizes LATS and restricts YAP activation. Moreover, treating DST- depleted MCF10A cells with the YAP inhibitor Verteporfn prevents their growth. In vivo, the Drosophila Dystonin Short stop also restricts tissue growth by limiting Yorkie activity. As the two Dystonin isoforms BPAG1eA and BPAG1e are necessary to inhibit the acquisition of transformed features and are both downregulated in breast tumour samples and in MCF10A cells with conditional induction of the Src proto-oncogene, they could function as the predominant Dystonin tumour suppressor variants in breast epithelial cells. Thus, their loss could deem as promising prognostic biomarkers for breast cancer. Breast cancer progression depends on cell autonomous regulatory mechanisms, driven by mutations and epi- genetic changes, and on non-cell autonomous interactions with the surrounding tumour microenvironment1,2. During this multistep process, normal breast epithelial cells acquire various cellular properties arising from dereg- ulated cellular signalling3,4.
    [Show full text]
  • Drp1 Overexpression Induces Desmin Disassembling and Drives Kinesin-1 Activation Promoting Mitochondrial Trafficking in Skeletal Muscle
    Cell Death & Differentiation (2020) 27:2383–2401 https://doi.org/10.1038/s41418-020-0510-7 ARTICLE Drp1 overexpression induces desmin disassembling and drives kinesin-1 activation promoting mitochondrial trafficking in skeletal muscle 1 1 2 2 2 3 Matteo Giovarelli ● Silvia Zecchini ● Emanuele Martini ● Massimiliano Garrè ● Sara Barozzi ● Michela Ripolone ● 3 1 4 1 5 Laura Napoli ● Marco Coazzoli ● Chiara Vantaggiato ● Paulina Roux-Biejat ● Davide Cervia ● 1 1 2 1,4 6 Claudia Moscheni ● Cristiana Perrotta ● Dario Parazzoli ● Emilio Clementi ● Clara De Palma Received: 1 August 2019 / Revised: 13 December 2019 / Accepted: 23 January 2020 / Published online: 10 February 2020 © The Author(s) 2020. This article is published with open access Abstract Mitochondria change distribution across cells following a variety of pathophysiological stimuli. The mechanisms presiding over this redistribution are yet undefined. In a murine model overexpressing Drp1 specifically in skeletal muscle, we find marked mitochondria repositioning in muscle fibres and we demonstrate that Drp1 is involved in this process. Drp1 binds KLC1 and enhances microtubule-dependent transport of mitochondria. Drp1-KLC1 coupling triggers the displacement of KIF5B from 1234567890();,: 1234567890();,: kinesin-1 complex increasing its binding to microtubule tracks and mitochondrial transport. High levels of Drp1 exacerbate this mechanism leading to the repositioning of mitochondria closer to nuclei. The reduction of Drp1 levels decreases kinesin-1 activation and induces the partial recovery of mitochondrial distribution. Drp1 overexpression is also associated with higher cyclin-dependent kinase-1 (Cdk-1) activation that promotes the persistent phosphorylation of desmin at Ser-31 and its disassembling. Fission inhibition has a positive effect on desmin Ser-31 phosphorylation, regardless of Cdk-1 activation, suggesting that induction of both fission and Cdk-1 are required for desmin collapse.
    [Show full text]