Nebulae from Eruptions of Luminous Evolved Stars: Eta Carinae, RY Scuti, and the Lbvs

Total Page:16

File Type:pdf, Size:1020Kb

Nebulae from Eruptions of Luminous Evolved Stars: Eta Carinae, RY Scuti, and the Lbvs Active OB Stars: Laboratories for Stellar and Circumstellar Physics ASP Conference Series, Vol. 361, 2007 S. Stefl,ˇ S. P. Owocki and A. T. Okazaki Nebulae from Eruptions of Luminous Evolved Stars: Eta Carinae, RY Scuti, and the LBVs N. Smith CASA, University of Colorado, 389 UCB, Boulder, CO 80309 Abstract. The most prodigious mass loss for luminous hot stars occurs during the Luminous Blue Variable (LBV) phase in transition to a Wolf-Rayet star. Most of the mass loss is a result of a few brief eruptions, rather than a steady wind. For the most luminous stars, these eruptions eject several M⊙ at once, accounting for a large fraction of their total post–main-sequence mass loss. The geometry of their nebulae in the young free expansion phase traces the roles of rotation and binary interactions. Our most observable example is the nebula around η Car, while nebulae around the eclipsing binary RY Sct and other LBVs share similar but less extreme properties. Both η Car and RY Sct have nebulae less than 200 yrs old with pronounced axial symmetry. 1. Introduction: High Luminosities and Circumstellar Nebulae In this contribution, I would like to explore the results of stellar activity in stars with temperatures similar to Be stars, but with much higher luminosities. Various types of stellar activity and non-spherical mass loss discussed at this meeting are present in Be stars largely as a consequence of lower geff induced by very rapid rotation rates. In high-luminosity B supergiants, especially the luminous blue variables (LBVs), extreme mass-loss and the effects of rotation follow from lower geff due to the proximity to the Eddington limit and near- critical rotation, even if the stars do not have high rotational velocities. The most spectacular manifestation of this is the short-duration outbursts of LBVs, which may dominate the post-MS mass loss in luminous stars. While we cannot study rotation rates directly (i.e. broadened lines) in these stars due to their dense winds, we can infer the importance of rotation from their circumstellar geometry. However, we must catch these nebulae soon after ejection, while still in the free-expansion phase. The most well-studied case is the 160-yr old bipolar nebula around η Car, but I will also mention a few other relevant objects. 2. Eta Carinae and the Homunculus The Homunculus Nebula around η Car is perhaps the most recognizable bipo- lar nebula seen by HST (Morse et al. 1998), and its 19th century eruption is arguably the most extreme example of stellar activity, barring the final destruc- tion of a massive star. That outburst ejected more than 10 M⊙ of material and released more kinetic energy than SN1054 (Smith et al. 2003b). The mass loss rate was so high that it could not have been a conventional line-driven wind because the material was optically thick, and so the mass-loss was either a super- 200 Nebulae from Eruptions 201 Figure 1. Dust structure in the Homunculus. (a) 18 µm image. (b) Color temperature. (c) Warm dust column density at 8.8 µm. (d) Cool dust column density at 18 µm (see Smith et al. 2003b). Figure 2. Spatio-kinematic structure of (a) [Fe ii] λ16435 and (b) H2 2.122 µm, with the long-slit aperture along the major axis of the Homunculus, but offset slightly from the star; from Smith (2002). 202 Smith Figure 3. High resolution spectrum of [Fe ii] λ16435 in P Cygniprofiles’s nebula, with the long-slit aperture oriented north-south (Smith & Hartigan 2006). Eddington continuum-driven wind (e.g., Owocki et al. 2004) or a hydrodynamic explosion (Arnett et al. 2005). The huge amount of mass ejected suggests that these outbursts may be important in stellar evolution. Recent study of the Homunculus has revealed a double-shell excitation structure (see Figs. 1 and 2), with a thin outer shell seen in cool dust and H2 emission, and a thicker inner shell seen in warmer dust and [Fe ii] emission (Smith et al. 2003b; Smith 2002, 2005). Most of the mass is contained in the thin and cool H2-emitting shell, whose bipolar shape and pinched waist point toward rapid rotation of the erupting star as the shaping mechanism (Smith 2002). The nebula is too dense and massive to have been shaped by a pre-existing torus, and proper motions of the expanding nebula are ballistic. Subsequent mass ejections have followed the same bipolar symmetry axis: for example, the 1890 eruption that formed the “Little Homunculus” (Ishibashi et al. 2003; Smith 2005) and the present-day stellar wind (Smith et al. 2003a). Eta Car is probably a binary system, but the specific role of the companion star is unclear and continues to be investigated. It is unlikely, however, that the putative companion star played a major role in shaping the ejecta of the 19th century eruption, since the kinetic energy of the Homunculus is greater than the gravitational binding energy of the orbit (Smith et al. 2003b). Of course, recurring close periastron passages in this eccentric system may have spun up the outer layers of the star (e.g., Smith et al. 2003a). 3. P Cygniprofiles: A Counter-Example P Cygniprofiles is the only other LBV in our Galaxy that has been observed during a giant outburst, back in 1600 A.D. (Humphreys et al. 1999). Its nebula ejected during that eruption (Smith & Hartigan 2006) is older and less massive than η Car’s, and so is more prone to shaping by the ambient medium. Unlike the Homunculus of η Car, the nebula around P Cygniprofiles appears to be spherical. Nebulae from Eruptions 203 It is a challenge to image this nebula because of the bright central star, but the spherical shape can be seen in high-resolution spectra, like the [Fe ii] data in Figure 3 (Smith & Hartigan 2006) or in similar [Ni ii] or [N ii] spectra (Barlow et al. 1994). The spherical shape is in stark contrast to the bipolar Homunculus of η Car. This implies that the effects of rotation in shaping outflows will be more severe at higher luminosities closer to the Eddington limit, since P Cyg is far 5.8 less luminous than η Car (P Cygniprofiles is ∼10 L⊙ at D=1.7 kpc (Najarro et al. 1997). The mildly bipolar or elliptical shape of AG Car’s nebula would support this view, since its luminosity is intermediate between η Car and P Cyg. The ejection speed and radiative luminosity during P Cygni’s outburst were less than for η Car. Recently, (Smith & Hartigan 2006) estimated the mass of P Cygni’s nebula to be ∼0.1 M⊙, which shows that the total mass ejected, the mass loss rate, and the kinetic energy during this eruption were also far less extreme than for η Car (although interestingly similar to η Car’s 1890 outburst which created the Little Homunculus (Smith 2005; Ishibashi et al. 2003). This illustrates the likely range of mass ejection in LBV outbursts, since P Cyg is at the lower luminosity end of LBVs that are not post-RSGs, relevant to the distribution of LBVs on the HR diagram (e.g., Smith et al. 2004). a) HST/WFPC2 b) VLA Hα 15 GHz (1997) (1992) 1" 1" c) Keck/LWS d) Flux ratio 11.7 µm 11.7 µm (1999) Hα 2" 2" Figure 4. RY Scuti’s nebula. (a) HST/WFPC2 image in Hα from (Smith et al. 2002). (b) 2 cm free-free continuum image taken with the VLA (Smith et al. 2001a; Gehrz et al. 1995)). (c) Dust emission at 11.7 µm (Gehrz et al. 2001); note the difference in size compared to Panel a. (d) Flux ratio of panels a and c, showing the spatial separation between ionized gas and dust. 204 Smith Figure 5. Left: Long-slit HST/STIS spectrum of [N ii] λ6583 in RY Scuti’s nebula, with the slit along the equatorial (major) axis. This shows the uneven brightness distribution around the ring, indicating severe azimuthal asymme- try (Smith et al. 2002). Right: Proper motions of RY Scuti’s nebula, showing the increase in the diameter of the nebula (Smith et al. 2001a). 4. RY Scuti, Equatorial Rings, and SN1987a RY Scuti is a luminous WR+OB eclipsing binary with an 11 day period and a separation of about 0.4 AU (Smith et al. 2002; Gehrz et al. 1995). What makes it interesting for trying to understand how binary stars shape outflows is its unusual circumstellar nebula (see Fig. 4). RY Scuti’s nebula is an equatorial dust torus, with the inner edge of the torus ionized by the central star (1995 Gehrz et al. 2001; Smith et al. 2002). The ionized nebula is especially weird, as it seems to show a pair of plane-parallel ionized rings with the same radius above and below the equator, while kinematics in spectra (Fig. 5) reveal severe azimuthal asymmetry (Smith et al. 2002). This geometry is likely to be a direct imprint of the mass-ejection geometry, since the expanding nebula was ejected sometime in the 19th century (Smith et al. 2001a, Fig. 5). The total mass of ionized gas in RY Scuti’s nebula is about 0.003 M⊙ (Smith et al. 2002). Thus, −1 the mass-loss rate to create the ionized nebula is 0.003/(∆tyr) M⊙ yr . For −1 ∆tyr∼<11 days, that’s M˙ ∼>0.1 M⊙ yr , which is extremely high. The mass in RY Scuti’s nebula is concentrated near the equatorial plane, implying that mass loss through the outer Lagrangian points in this over-contact system is the dominant mechanism shaping the outflow.
Recommended publications
  • OBSERVERS with the VLT VLT/ISAAC and HST/WFPC2 Observations of NGC 3603
    OBSERVERS WITH THE VLT VLT/ISAAC and HST/WFPC2 Observations of NGC 3603 B. BRANDL1, W. BRANDNER2, E.K. GREBEL3 AND H. ZINNECKER 4* 1Cornell University, Ithaca; 2University of Hawaii, Honolulu; 3University of Washington at Seattle; 4Astrophysikalisches Institut Potsdam 1. Abstract spectral signatures of Wolf-Rayet (W-R) side (Churchwell et al. 1987; O’Dell et al. stars contribute more than 2000 M0 to 1993). FUV photons (13.6 eV > hν > 6 We have studied NGC 3603, the the cluster mass. Normally, W-R stars are eV) heat up the inside of the proplyd en- most massive visible HII region in the evolved supergiants that have long left velope and lead to the dissociation of mol- Galaxy, with VLT/ISAAC in the near-in- the main sequence and have ages of 3–5 ecules in the outer layers of the circum- frared (NIR) Js, H, and Ks-bands and Myr. In NGC 3603, however, the W-R stellar disk (Johnstone et al. 1998). The HST/WFPC2 at Hα and [N II] wave- stars also show hydrogen absorption resulting evaporation flow provides a lengths. In this Messenger article we lines in addition to the typical W-R fea- steady supply of neutral atoms to the ion- describe the data analysis and some tures. It is believed that these stars are isation front and leads to the development first results from both our complemen- still main-sequence, core hydrogen- of a cometary tail (McCullough et al. 1995; tary observations. burning stars that are so massive and so Störzer & Hollenbach 1999). Until re- Our HST/WFPC2 gave us an un- close to the Eddington limit that they are cently, only one other proplyd had been precedented high-resolution view of loosing their outer envelopes through fast found outside the Orion nebula.
    [Show full text]
  • A Blast Wave from the 1843 Eruption of Eta Carinae
    1 A Blast Wave from the 1843 Eruption of Eta Carinae Nathan Smith* *Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720-3411 Very massive stars shed much of their mass in violent precursor eruptions [1] as luminous blue variables (LBVs) [2] before reaching their most likely end as supernovae, but the cause of LBV eruptions is unknown. The 19th century eruption of Eta Carinae, the prototype of these events [3], ejected about 12 solar masses at speeds of 650 km/s, with a kinetic energy of almost 1050ergs[4]. Some faster material with speeds up to 1000-2000 km/s had previously been reported [5,6,7,8] but its full distribution was unknown. Here I report observations of much faster material with speeds up to 3500-6000 km/s, reaching farther from the star than the fastest material in earlier reports [5]. This fast material roughly doubles the kinetic energy of the 19th century event, and suggests that it released a blast wave now propagating ahead of the massive ejecta. Thus, Eta Carinae’s outer shell now mimics a low-energy supernova remnant. The eruption has usually been discussed in terms of an extreme wind driven by the star’s luminosity [2,3,9,10], but fast material reported here suggests that it was powered by a deep-seated explosion rivalling a supernova, perhaps triggered by the pulsational pair instability[11]. This may alter interpretations of similar events seen in other galaxies. Eta Carinae [3] is the most luminous and the best studied among LBVs [1,2].
    [Show full text]
  • STAR FORMATION (Ch. 19)
    STAR FORMATION (Ch. 19) The basics: GRAVITY vs. PRESSURE (heat; but also rotation and magnetic fields can be important) Stages (you don’t have to memorize numbers of stages in textbook or here, just be able to describe the sequence of events) 1. Interstellar cloud—cold (T~10K), large (~1-10pc), massive 3 5 (~10 – 10 Msun), so gravity wins easily over gas pressure (atomic motions—see Fig. 19.2): cloud must break up, or “fragment.” Other inhibitors: rotation, magnetic fields (More Precisely 19-1, p. 503). 2. Collapsing cloud fragment—still cold, size~0.1-0.01pc. This may fragment further, so have multiple stages of fragmentation (see Fig. 19.3). 3. Fragmentation ceases—center of fragment dense enough to become opaque to its own radiation, so it heats up, slowing the collapse. (Previously it was transparent and so could stay cool because radiation escaped easily.) This property makes qualifies the object as a: 4. Protostar—now object has a “surface” because it is opaque; this surface is the photosphere (the layer where the photons can finally escape into space). So a protostar is defined by when the object becomes dense enough to have a photosphere. It appears in the H-R diagram in upper right (large! See Fig. 19.4) Protostar heats up by gravitational contraction and accretion of remaining material (from a disk). But the temperature in center is too low for nuclear reactions at this stage. 5. Continued slow contraction (getting fainter), heating. Protostar moves roughly on a vertical track in the H-R diagram (see Fig.
    [Show full text]
  • CANDIDATE X-RAY-EMITTING OB STARS in the CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS Matthew S
    For Publication in the Chandra Carina Complex Project Special Issue of the Astrophysical Journal Supplement Series Preprint typeset using LATEX style emulateapj v. 8/13/10 CANDIDATE X-RAY-EMITTING OB STARS IN THE CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS Matthew S. Povich,1,2 Leisa K. Townsley,1 Patrick S. Broos,1 Marc Gagne,´ 3 Brian L. Babler,4 Remy´ Indebetouw,5 Steven R. Majewski,5 Marilyn R. Meade,4 Konstantin V. Getman,1 Thomas P. Robitaille,6,7 & Richard H. D. Townsend4 For Publication in the Chandra Carina Complex Project Special Issue of the Astrophysical Journal Supplement Series ABSTRACT We report the results of a new survey of massive, OB stars throughout the Carina Nebula using the X-ray point source catalog provided by the Chandra Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela–Carina survey. Mid-IR photometry is relatively unaffected by extinction, hence it provides strong constraints on the luminosities of OB stars, assuming that their association with the Carina Nebula, and hence their distance, is confirmed. We fit model stellar atmospheres to the optical (UBV)and IR spectral energy distributions (SEDs) of 182 OB stars with known spectral types and measure the bolometric luminosity and extinction for each star. We find that the extinction law measured toward the OB stars has two components: AV = 1–1.5 mag produced by foreground dust with a ratio of total-to-selective absorption RV =3.1 plus a contribution from local dust with RV > 4.0inthe Carina molecular clouds that increases as AV increases.
    [Show full text]
  • An Aboriginal Australian Record of the Great Eruption of Eta Carinae
    Accepted in the ‘Journal for Astronomical History & Heritage’, 13(3): in press (November 2010) An Aboriginal Australian Record of the Great Eruption of Eta Carinae Duane W. Hamacher Department of Indigenous Studies, Macquarie University, NSW, 2109, Australia [email protected] David J. Frew Department of Physics & Astronomy, Macquarie University, NSW, 2109, Australia [email protected] Abstract We present evidence that the Boorong Aboriginal people of northwestern Victoria observed the Great Eruption of Eta (η) Carinae in the nineteenth century and incorporated the event into their oral traditions. We identify this star, as well as others not specifically identified by name, using descriptive material presented in the 1858 paper by William Edward Stanbridge in conjunction with early southern star catalogues. This identification of a transient astronomical event supports the assertion that Aboriginal oral traditions are dynamic and evolving, and not static. This is the only definitive indigenous record of η Carinae’s outburst identified in the literature to date. Keywords: Historical Astronomy, Ethnoastronomy, Aboriginal Australians, stars: individual (η Carinae). 1 Introduction Aboriginal Australians had a significant understanding of the night sky (Norris & Hamacher, 2009) and frequently incorporated celestial objects and transient celestial phenomena into their oral traditions, including the sun, moon, stars, planets, the Milky Way and Magellanic Clouds, eclipses, comets, meteors, and impact events. While Australia is home to hundreds of Aboriginal groups, each with a distinct language and culture, few of these groups have been studied in depth for their traditional knowledge of the night sky. We refer the interested reader to the following reviews on Australian Aboriginal astronomy: Cairns & Harney (2003), Clarke (1997; 2007/2008), Fredrick (2008), Haynes (1992; 2000), Haynes et al.
    [Show full text]
  • List of Publications (06/2021)
    Prof. Dr. Eva K. Grebel, Astronomisches Rechen-Institut, Zentrum f¨urAstronomie der Universit¨at Heidelberg, M¨onchhofstr. 12{14, D-69120 Heidelberg, Germany List of Publications (06/2021) A. Refereed publications (443) . 1 B. Reviews (34) . 47 C. Conference proceedings etc. (175) 50 D. Abstracts (141) . 66 E. Books (2) . 77 In publications with my students or postdocs their names are underlined when this work was completed (or partially carried out) while they held their position with me. A. Refereed Publications 1. Menon, S.H., Grasha, K., Elmegreen, B.G., Federrath, C., Krumholz, M.R., Calzetti, D., S´anchez, N., Linden, S.T., Adamo, A., Messa, M., Cook, D.O., Dale, D.A., Grebel, E.K., Fumagalli, M., Sabbi, E., Johnson, K.E., Smith, L.J., & Kennicutt, R.C. The Dependence of the Hierarchical Distribution of Star Clusters on Galactic En- vironment 2021, MNRAS, submitted 2. D´ek´any, I., Grebel, E.K., & Pojmanski, G. Metallicity estimation of RR Lyrae stars from their I-band light curves 2021, ApJ, submitted 3. Gatto, M., Ripepi, V., Bellazzini, M., Tosi, M., Cignoni, M., Tortora, C., Leccia, S., Clementini, G., Grebel, E.K., Longo, G., Marconi, M., & Musella, I. STEP Survey II: Structural Analysis of 170 star clusters in the SMC 2021, MNRAS, submitted 4. Orozco-Duarte, R., Wofford, A., Vidal-Garc´ıa, A., Bruzual, G., Charlot, S., Krumholz, M., Hannon, S., Lee, J., Wofford, T., Fumagalli, M., Dale, D., Messa, M., Grebel, E.K., Smith, L., Grasha, K., & Cook, D. Synthetic photometry of OB star clusters with stochastically sampled IMFs: anal- ysis of models and HST observations 2021, MNRAS, submitted 5.
    [Show full text]
  • Eta Carinae's Dusty Homunculus Nebula from Near-Infrared To
    The Astrophysical Journal, 842:79 (26pp), 2017 June 20 https://doi.org/10.3847/1538-4357/aa71b3 © 2017. The American Astronomical Society. All rights reserved. η Carinaeʼs Dusty Homunculus Nebula from Near-infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity Patrick W. Morris1, Theodore R. Gull2, D. John Hillier3, M. J. Barlow4, Pierre Royer5, Krister Nielsen6, John Black7, and Bruce Swinyard8,9 1 California Institute of Technology, IPAC, M/C 100−22, Pasadena, CA 91125, USA; [email protected] 2 NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771, USA 3 Department of Physics & Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260, USA 4 Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK 5 Katholieke Universiteit Leuven, Institute of Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium 6 Department of Physics, IACS, Catholic University of America, Washington, DC 20064, USA 7 Department of Earth & Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala, Sweden 8 Space Science & Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK Received 2017 March 28; revised 2017 May 3; accepted 2017 May 4; published 2017 June 15 Abstract Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable η Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the great eruption. We present the 2.4–670 μm spectral energy distribution, constructed from legacy Infrared Space Observatory observations and new spectroscopy obtained with the Herschel Space Observatory. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions that are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common.
    [Show full text]
  • Books About the Southern Sky
    Books about the Southern Sky Atlas of the Southern Night Sky, Steve Massey and Steve Quirk, 2010, second edition (New Holland Publishers: Australia). Well-illustrated guide to the southern sky, with 100 star charts, photographs by amateur astronomers, and information about telescopes and accessories. The Southern Sky Guide, David Ellyard and Wil Tirion, 2008 (Cambridge University Press: Cambridge). A Walk through the Southern Sky: A Guide to Stars and Constellations and Their Legends, Milton D. Heifetz and Wil Tirion, 2007 (Cambridge University Press: Cambridge). Explorers of the Southern Sky: A History of Astronomy in Australia, R. and R. F. Haynes, D. F. Malin, R. X. McGee, 1996 (Cambridge University Press: Cambridge). Astronomical Objects for Southern Telescopes, E. J. Hartung, Revised and illustrated by David Malin and David Frew, 1995 (Melbourne University Press: Melbourne). An indispensable source of information for observers of southern sky, with vivid descriptions and an extensive bibliography. Astronomy of the Southern Sky, David Ellyard, 1993 (HarperCollins: Pymble, N.S.W.). An introductory-level popular book about observing and making sense of the night sky, especially the southern hemisphere. Under Capricorn: A History of Southern Astronomy, David S. Evans, 1988 (Adam Hilger: Bristol). An excellent history of the development of astronomy in the southern hemisphere, with a good bibliography that names original sources. The Southern Sky: A Practical Guide to Astronomy, David Reidy and Ken Wallace, 1987 (Allen and Unwin: Sydney). A comprehensive history of the discovery and exploration of the southern sky, from the earliest European voyages of discovery to the modern age. Exploring the Southern Sky, S.
    [Show full text]
  • Appendix II. Publications
    Appendix II. Publications Gemini Staff Publications Papers in Peer­Reviewed Journals: Bauer, Amanda[4]. A young, dusty, compact radio source within a Lyα halo. Monthly Notices of the Royal Astronomical Society, 389:792-798. September, 2008. Trancho, G.[4]. The early expansion of cluster cores. Monthly Notices of the Royal Astronomical Society, 389:223-230. September, 2008. Stephens, A. W.[11]. Massive stars exploding in a He-rich circumstellar medium - III. SN 2006jc: infrared echoes from new and old dust in the progenitor CSM. Monthly Notices of the Royal Astronomical Society, 389:141-155. September, 2008. Serio, Andrew W.[1]. The variation of Io's auroral footprint brightness with the location of Io in the plasma torus. Icarus, 197:368-374. September, 2008. Radomski, James T.[5]. Understanding the 8 µm versus Paα Relationship on Subarcsecond Scales in Luminous Infrared Galaxies. The Astrophysical Journal, 685:211-224. September, 2008. Volk, K.[47]. Spitzer Survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (sage). IV. Dust Properties in the Interstellar Medium. The Astronomical Journal, 136:919-945. September, 2008. Díaz, R. J.[3]. Discovery of a [WO] central star in the planetary nebula Th 2-A. Astronomy and Astrophysics, 488:245-247. September, 2008. Schiavon, Ricardo P.[2]. Measuring Ages and Elemental Abundances from Unresolved Stellar Populations: Fe, Mg, C, N, and Ca. The Astrophysical Journal Supplement Series, 177:446- 464. August, 2008. Song, Inseok[3]. Gas and Dust Associated with the Strange, Isolated Star BP Piscium. The Astrophysical Journal, 683:1085-1103. August, 2008. Roth, Katherine C.[22].
    [Show full text]
  • Hot Massive Stars: the Impact Of
    Hot Massive Stars: The Impact of HST Paul A. Crowther Dept of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom [email protected] Summary. We review the contribution of Hubble Space Telescope to the study of hot, luminous stars. Optical and IR imaging have permitted spatially resolved observations of young, massive clusters within Local Group galaxies, such as R136, NGC 3603 and Arches, revealing unprecedented concentrations of very massive O stars. UV spectroscopy of field OB stars in the Magellanic Clouds have provided suitable templates for interpretation of metal-poor star-forming galaxies at high- redshift. Spectacular imaging provides the detailed structure of ejecta nebulae from individual stars, including the Homunculus associated with η Carinae and M1–67, associated with a Wolf-Rayet star. HST has permitted individual massive stars to be spatially resolved in giant HII regions located beyond the Local Group, such as NGC 604, plus individual clusters, dominated by the light of massive stars within starburst galaxies at larger distances, such as NGC 3125. UV spectroscopy of young, massive clusters in the extremely metal-poor HII galaxy I Zw 18 include signatures of large numbers of Wolf-Rayet stars. 1 Introduction Massive stars distinguish themselves from their lower mass siblings by their exceptionally high main-sequence luminosities, such that their lifetimes are measured in Myr rather than Gyr. Individual stars may be readily studied in detail in external galaxies - it was not be accident that the first post-servicing mission WFPC2 image was obtained of the Wolf-Rayet star Melnick 34 in the 30 Doradus star-forming region of the LMC (News Release: STScI-1994-05).
    [Show full text]
  • Stars, Galaxies, and Beyond, 2012
    Stars, Galaxies, and Beyond Summary of notes and materials related to University of Washington astronomy courses: ASTR 322 The Contents of Our Galaxy (Winter 2012, Professor Paula Szkody=PXS) & ASTR 323 Extragalactic Astronomy And Cosmology (Spring 2012, Professor Željko Ivezić=ZXI). Summary by Michael C. McGoodwin=MCM. Content last updated 6/29/2012 Rotated image of the Whirlpool Galaxy M51 (NGC 5194)1 from Hubble Space Telescope HST, with Companion Galaxy NGC 5195 (upper left), located in constellation Canes Venatici, January 2005. Galaxy is at 9.6 Megaparsec (Mpc)= 31.3x106 ly, width 9.6 arcmin, area ~27 square kiloparsecs (kpc2) 1 NGC = New General Catalog, http://en.wikipedia.org/wiki/New_General_Catalogue 2 http://hubblesite.org/newscenter/archive/releases/2005/12/image/a/ Page 1 of 249 Astrophysics_ASTR322_323_MCM_2012.docx 29 Jun 2012 Table of Contents Introduction ..................................................................................................................................................................... 3 Useful Symbols, Abbreviations and Web Links .................................................................................................................. 4 Basic Physical Quantities for the Sun and the Earth ........................................................................................................ 6 Basic Astronomical Terms, Concepts, and Tools (Chapter 1) ............................................................................................. 9 Distance Measures ......................................................................................................................................................
    [Show full text]
  • The Full Appendices with All References
    Breakthrough Listen Exotica Catalog References 1 APPENDIX A. THE PROTOTYPE SAMPLE A.1. Minor bodies We classify Solar System minor bodies according to both orbital family and composition, with a small number of additional subtypes. Minor bodies of specific compositions might be selected by ETIs for mining (c.f., Papagiannis 1978). From a SETI perspective, orbital families might be targeted by ETI probes to provide a unique vantage point over bodies like the Earth, or because they are dynamically stable for long periods of time and could accumulate a large number of artifacts (e.g., Benford 2019). There is a large overlap in some cases between spectral and orbital groups (as in DeMeo & Carry 2014), as with the E-belt and E-type asteroids, for which we use the same Prototype. For asteroids, our spectral-type system is largely taken from Tholen(1984) (see also Tedesco et al. 1989). We selected those types considered the most significant by Tholen(1984), adding those unique to one or a few members. Some intermediate classes that blend into larger \complexes" in the more recent Bus & Binzel(2002) taxonomy were omitted. In choosing the Prototypes, we were guided by the classifications of Tholen(1984), Tedesco et al.(1989), and Bus & Binzel(2002). The comet orbital classifications were informed by Levison(1996). \Distant minor bodies", adapting the \distant objects" term used by the Minor Planet Center,1 refer to outer Solar System bodies beyond the Jupiter Trojans that are not comets. The spectral type system is that of Barucci et al. (2005) and Fulchignoni et al.(2008), with the latter guiding our Prototype selection.
    [Show full text]